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HYDROMAGNETIC BOUNDARY LAYER FLOW OF ROTATING
DUSTY FLUID UNDER VARYING PRESSURE GRADIENT
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ABSTRACT: An asymptotic analysis of a hydromagnetic boundary layer flow of an incompressible viscous
conducting dusty fluid bounded by semi-infinite plate is considered. The flow is due to the influence of time
dependent pressure gradient and uniform magnetic field. The analytical solution of the boundary layer equations
are obtained by asymptotic behaviour of Laplace transform treatment. The solutions for small times, shown that
the general features of hydromagnetic boundary layer flow is unaffected by the dusty parameter as well as
rotation and magnetic parameter. In subsequent large times, the structure of velocity distribution and the associated
boundary layer is investigated i.e., the effect of magnetic parameter, Ekman parameter and Hall current parameter
are depicted graphically.
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1. INTRODUCTION

Saffman [1] has initiated and investigated the effect of dusty particles on the stability of the laminar flow of an
incompressible fluid with constant mass concentration of dust particles. Michael and Miller [2] have discussed
the motion of dusty gas occupying the semi infinite space above a rigid plane boundary. This interest stems
from the fact that the magnetohydrodynamic boundary layer flow finds its applications in wide range of science
and technology like MHD power generation, cooling of nuclear reactors and in several astrophysical situations.
The theory of rotating fluids is highly important due to its occurrence in various natural phenomena and for its
applications in various technological situations which are directly governed by the action of Coriolis force. The
broad subjects of oceanography, Meteorology, Atmospheric science and Limnology all contain some important
and essential features of rotating fluids.

Further the fluid flow problems in rotating medium have attracted many scholars and there appeared a
number of studies in literature viz. Tiwari and Kamal Singh [3] have obtained solution for an asymptotic
analysis of an unsteady hydromagnetic boundary layer flow generated impulsively incompressible viscous
conducting fluid with uniform distribution of dust particle bounded by semi-infinite plate. Prasada Rao and
Krishna [4] have studied Hall effect on unsteady hydromagnetic flow. Kanch, Jana [5] investigated Hall effects
on unsteady hydromagnetic flow past a rotating disk when the fluid at infinity rotates about non-coincident
axes. Ghosh, Anwar Beg and Zueco [7] have studied the hydromagnetic natural convection boundary layer flow
past an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction
effects. Debnath [8] studied the effect of hall current on unsteady hydromagnetic flow past a porous plate in a
rotating fluid system.

Aim of this paper is to study the effect of Hall current on hydromagnetic flow on an oscillating plate in a
rotating fluid with uniform distribution of dust particles in the presence of time dependent pressure gradient.
Laplace Transform technique is employed to obtain the solution. But its exact inversion would be extremely
difficult, so the asymptotic behavior of the solution has been analyzed for both small and large time to highlight
the transient approach to the steady flow and other physical process involved in it.

2. MATHEMATICAL FORMULATION

Consider an unsteady flow induced in a semi-infinite plate of an electrically conducting incompressible viscous
fluid with uniform distribution of dust particles bounded by an infinite plate at z = 0. A uniform magnetic field
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B0 is acting normal to plate. The fluid as well as the plate is in a state of solid body rotation with constant
angular velocity � about the z-axis normal to the plate and additionally, non-torsional oscillation of frequency
�1 is imposed on the plate in its own plane.

An unsteady hydromagnetic dusty fluid flow in a rotating co-ordinate system is governed by the following
equations [1]:
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we have the following nomenclature:

u
�

 = (u1, u2, u3) and v
�

 = (v1, v2, v3) are the velocities of fluid and dust phase respectively, p1- pressure field

including the centrifugal term, J
�

-electric current density, B
�

-total magnetic field, N-number density of dust
particles, m-mass of the dust particle, K- Stokes-co-efficient of resistance, �-density, �-kinematic viscosity of
the fluid, �e magnetic permeability and t-time.

Assuming that the magnetic Reynolds number to be small, we neglect the induced magnetic field in
comparison with the applied magnetic field. The generalized Ohm’s law, in the absence of the electric field is
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where �e, �e, �, e, pe and ne are respectively the cyclotron frequency of electrons, the electron collision time, the
electrical conductivity, the electron charge, the electron pressure and the number density of the electron. The
ion-slip and thermoelectric effects are not included in equation (2.5). Further, it is assumed that �e �e ~ O (1) and
�i �i �� 1, where �i and �i are cyclotron frequency and collision time for ions respectively.

Now assume that the velocity field depends on z and t only, so that

u (z, t) = [u1(z, t), u2(z, t), u3(z, t)], (2.6)

v (z, t) = [v1(z, t), v2(z, t), v3(z, t)]. (2.7)

For the present problem

u3(z, t) = 0, v3(z, t) = 0 and N = N0 (constant). (2.8)

The equations of motion (2.1) and (2.3) takes the form
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where 0m Nl ��  (mass concentration) and m
K

� �  (relaxation time).

Introducing the notation p = u1 + iu2 and q = v1 + i v2 in the equations (2.9) to (2.12), we get
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In view of the imposed oscillation on the plate, equations (2.13) and (2.14) have to be solved subject to a
non-slip boundary condition at the plate and no disturbance at infinity as

p (z, t) = p0 + p0
* (a1 e

i�1 t + b1 e
– i�1 t), (2.15)

q (z, t) = q0 + p0
* (a1 e

i�1 t + b1 e
– i�1 t) on z = 0, t > 0, (2.16)

p (z, t), q (z, t) � 0 as z � �, t > 0, (2.17)

where p0, p0
*, q0 are constants with the dimention of velocities, and a, b, a1 and b1 are complex constants, so that

the real and imaginary parts of p (z, t) and q (z, t) become real on the plate.

The initial conditions of the problem are

p (z, t) = q (z, t) = 0 at t � 0 for all z. (2.18)

3. SOLUTION OF THE PROBLEM

To make the above system dimensionless, introduce the following non-dimensional variables
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and the non-dimensional parameter
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also � = �1/� is the non-dimensional frequency of oscillation and �� = �U*2/� = mU*2/k�.
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After non-dimensionalizing equations (2.13) and (2.14) and the boundary and initial conditions (2.15)-(2.18)
can be written as follows:
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p, q � 0 as z � �, t > 0, (3.5)

p, q = 0   at t — 0 for all z. (3.6)

Case 1: In this case the constant pressure gradient is considered i.e.,

1
1
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 = C (constant). (3.7)

To solve the initial value problem, we introduce the Laplace transforms for fluid and dust velocities of
p (z, t) and q (z, t) respectively as,
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On applying the Laplace transform, the equations (3.1) and (3.2) reduces second order differential equations
and are solved by using the transformed boundary conditions. The solutions for p (z, s) and q (z, s) are obtained as

0
*

z Kp a b C C
p e

s i s i Ks KsU s
�� �� � �� �� �� � � �� �

, (3.9)

0 1 1
*

z Kq a b C C
q e

s i s i Ks KsU s
�� �� � �� �� �� � � �� �

. (3.10)

3.1 Solutions for Small Times

The nature of the flow fields p (z, t) and q (z, t) for small times can be determined by the asymptotic behavior of
their Laplace transforms for the large value of | s | are given by
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Taking inverse Laplace transform to equations (3.18) and (3.19) one can get
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From the above solution one can see that immediately after the pulsatile motion is imposed on the plate, an
unsteady boundary layer flow builds up in the vicinity of the plate. Further the solution consists of Stokes layer

of thickness of order �
�  and the Rayleigh layer of order t� . Also one can observe that the solution is

remains unaffected by the dusty parameter as well as rotation and magnetic term. Similar discussion is true for
q (z, t) also.

3.2 Solutions for Large Times

Solutions p (z, t) and q (z, t) for large times can be determined by the asymptotic behavior of their Laplace
transforms for the small value of |s| are given by
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Taking inverse Laplace transform of equations (3.20) and (3.20) we get

p (z, t) ~
1 1 1

2 2
L

i t Lz iae L
e erfc z ti

t L

�
�

�
� �� � �� �� � �� � � �� �� ��� � �� �� ��

1 1 1
2

L
Lz i L

e erfc z ti
t L

�
�

� � � �� �� �� � � �� � � �� �� �� �� �� �� ��

1 1 1
2 2

L

i t Lz ibe L
e erfc z ti

t L

�
�

� � � �� � �� �� � �� � � � �� �� ��� � �� �� ��

1 1 1
2

L
Lz i L

e erfc z ti
t L

�
�

�� � �� �� �� � � �� � � �� �� �� �� �� �� ��

0
*

1 1
2 2 2

z zp L t L terfc erfce ez z
U t L t L

� �
� ��

� �� � � �� �� � ��� �� � � �
� �� �� � � �� �

1 1 1
2 2 2

z zC L t L terfc erfce ez z
t L t L

� �
� ��

� � �� � � � �� ��� � ��� �� � � �� � � �� �� � � �� ��

1 [1 ]
2

LL

tt CL ee erfc z
t

�� � �� �� � �� �� � �� �� ��
,

q (z, t) ~
1

1 1 1
2 2

L

i t Lz ia e L
e erfc z ti

t L

�
�

�
� �� � �� �� � �� � � �� �� ��� � �� �� ��

1 1 1
2

L
Lz i L

e erfc z ti
t L

�
�

� � � �� �� �� � � �� � � �� �� �� �� �� �� ��

1
1 1 1

2 2
L

i t Lz ib e L
e erfc z ti

t L

�
�

� � � �� � �� �� � �� � � � �� �� ��� � �� �� ��

1 1 1
2

L
Lz i L

e erfc z ti
t L

�
�

�� � �� �� �� � � �� � � �� �� �� �� �� �� ��

0
*

1 1
2 2 2

z zq L t L terfc erfce ez z
U t L t L

� �
� ��

� �� � � �� �� � ��� �� � � �
� �� �� � � �� �

2 1

2 2

z zC z L t z L terfc erfce eE D t L t L

� �
� ��

� � �� � � � � �� �� � ��� � �� � � �� � � �� �� � � � �� ��



Hydromagnetic Boundary Layer Flow of Rotating Dusty Fluid Under Varying Pressure Gradient 129

( ) 1
( 1) 2

L
tL Le erfc z

DL t
� � ��� � �

� �� �

1

2
1 1

2( ) 2

L
L

Dt
z De L

e erfc z tD
D L D t L

�
�

�
�� � �� �� � �� � � �� �� �� �� � �� �� ��

1 1 1
2

L
L

z D L
e erfc z tD

t L

�
�

�� ��� � �� �� � � �� �� �� �� �� �� �� � �� ���

2

1
( 1) ( )

t
L DtC Le e

E D DL D L D

�
�� �� � �� � �

� �� � � �� �
.

Case 2: Here the periodic pressure gradient is considered i.e.,
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Applying the same procedure as in the case-1, the solutions for p— (z, s), and q— (z, s) are obtained as
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3.3 Solutions for Small Times

The nature of the flow fields p (z, t) and q (z, t) for small times can be determined by the asymptotic behavior of
their Laplace transforms for the large value of | s | are given by
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Taking inverse Laplace transform to equations (3.18) and (3.19) one can get
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3.4 Solutions for Large Times

Solutions p (z, t) and q (z, t) for large times can be determined by the asymptotic behavior of their Laplace
transforms for the small value of | s | are given by
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Taking inverse Laplace transform of equations (3.20) and (3.20) we get
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Case 3: By combining the case 1 and case 2, the pressure gradient becomes pulsatile, i.e.,

1
1

p� �
�

 = C + A cos (Bt). (3.21)

Where C and A are constants, and B is the infrequency of oscillation. The solutions for p (z, s), and q (z, s)
are obtained as

0
2 2 2 2*

1 1z K
C As C Asp a b

p e
S Ss i s i K Ks B s BU s

�
� �� � � �� �� � � � �� �� � � �� � � � � �� � � �� �

, (3.22)

0 1 1
2 2 2 2*

1 1z K
C As C Asq a b

q e
S Ss i s i K Ks B s BU s

�
� �� � � �� �� � � � �� �� � � �� � � � � �� � � �� �

. (3.23)



Hydromagnetic Boundary Layer Flow of Rotating Dusty Fluid Under Varying Pressure Gradient 133

3.5 Solutions for Small Times

The nature of the flow fields p (z, t) and q (z, t) for small times can be determined by the asymptotic behavior of
their Laplace transforms for the large value of | s | are given by
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Taking inverse Laplace transform to equations (3.24) and (3.25) one can get
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3.6 Solutions for Large Times

Solutions p (z, t) and q (z, t) for large times can be determined by the asymptotic behavior of their Laplace
transforms for the small value of | s | are given by
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Taking inverse Laplace transform of equations (3.26) and (3.27) we get
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4. RESULTS AND DISCUSSION

The present investigation deals with the study of an unsteady hydromagnetic boundary layer flow in rotating
dusty fluid in the presence of hall current and time dependent pressure gradient. The governing equations are
solved by applying the of Laplace transform technique. The effect of various physical parameters like Ekman
number E, magnetic parameter M and Hall current parameter m are examined and depicted graphically. Further
it is found that, the thickness of the boundary layer changes with the Ekman number, magnetic parameter and
Hall current parameter. In fact, the boundary layer thickness increases with increase in Hall current parameter.
Similar prediction for Hall current effect is also made by Debnath [8] and R. Tiwari and Kamal singh [3].

Figure 1, 2 and 3 depict the velocity profile for fluid and dust phase versus z, for different values of Ekman
number E for three cases respectively, We infer from these figures that the fluid and dust velocities decreases
with the increasing in Ekman number for both small and large times.

Figure 1: Effect of Ekman Number on Fluid and Dust Velocity for Small and Large Times (Case 1)

Figure 2: Effect of Ekman Number on Fluid and Dust Velocity for Small and Large Times (Case 2)
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Figure 3: Effect of Ekman Number on Fluid and Dust Velocity for Small and Large Times (Case 3)

The velocity of fluid and dust remains unaffected by magnetic parameter and Hall parameter in small times
solution, where as in large times both fluid and dust velocities are effected by the magnetic parameter and Hall
parameter.

Figure 4: Effect of Hall Current Parameter on Fluid and Dust Velocity for Large Times

(Case 1) (Case 2)

(Case 3)
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(Case 1) (Case 2)

(Case 3)

Figure 5: Effect of Magnetic Parameter on Fluid and Dust Velocity for Large Times

(Case 1) (Case 2)



140 B. J. Gireesha, Mahesha S. Manjunatha & C. S. Bagewadi

Figure 4 represents the graph of fluid and dust velocities versus z, for different values of Hall current
parameter m for all the three cases. It is evident from the figure that the fluid and dust velocity decreases with
increase of m, i.e., the boundary layer thickness increases with increase in Hall current parameter.

Figure 5 indicates the fluid and dust velocity versus z. Here the effect of increasing values of a magnetic
parameter M decreases the fluid and dust velocity. As M increases, the Lorentz force also increases. Hence it
leads to deceleration of the flow.

Figure 6 reveals that the fluid and dust velocity decrease with the increase in the time for all the cases. It is
interesting to note that the thickness of boundary decreases with increasing time for large times.

5. CONCLUSIONS

A mathematical analysis on boundary layer flow of an rotating dusty fluid in the presence of hall current with
time dependent pressure gradient is examined. Some of the important observations of our analysis obtained by
the graphical representation are listed below:

• The solution remains unaffected by magnetic parameter and Hall current parameter in small times,
where as these effects in large times.

• The effect of Ekman number E decrease the fluid and dust partical velocity.

• The effect of magnetic parameter M and Hall current parameter m decrease the fluid and dust partical
velocities.

• The effect of time decrease both the fluid and dust velocity.
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