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ABSTRACT: By means of partial fraction decomposition method, this paper investigates the
problems on combinatorial computations of trigonometric identities with double free
parameters, which yields a series of trigonometric sum formulae.
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1. INTRODUCTION

The partial fraction decomposition of rational function is very useful in mathematics.
For example, in order to integrate a rational function, it is crucial to obtain the partial
fraction decomposition. Through partial fraction decompositions Chu and Marini [2]
derived numerous important formulae for evaluating trigonometric sums. As
continuation and extension of this approach, in this paper, we shall develop parametric
decompositions of partial fractions, establish trigonometric sum identities with an
extra free parameter , which generalize naturally the corresponding results obtained
by Chu and Marini.

2. PARTIAL FRACTION DECOMPOSITION

In this section, we shall establish two trigonometric identities involving double free
parameters through partial fraction decompositions.

Theorem 2.1: If P(�) is a Laurent polynomial of degree � n in “cos �”, y is a real
free parameter, then holds:
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Proof: First, we suppose 0 < y < p < �/n, 0 < � < �. The trigonometric function

sin ( )
sin

n P� �
�  may be considered as a polynomial of degree � 2n – 1 in “cos �”, and

cos 2ny – cos 2n�, as a polynomial of degree 2n in “cos �”, 2n distinct zeros are
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Multiplying across (2.1) by cos� – cos�
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Therefore we derive through L’Hôpital’s rule that
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Putting (2.1) and (2.2) together, we confirm the trigonometric sum identity
displayed in Theorem 2.1.

Although we have supposed 0 < y < �/n, 0 < � < � in previous proof, but we can
check without difficulty that Theorem 2.1 is available for any possible y, �.

In terms of similarly process other trigonometric sum identities may be expressed:

Theorem 2.2: If P(�) is a Laurent polynomial of degree � in “cos�”, y is a real
free parameter, then holds:
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Theorem 2.3: If P(�) is a Laurent polynomial of degree < in “cos�”, y is a real
free parameter, then holds:
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The general results displayed in the previous three theorems imply numerous
identities on trigonometric sums, which will be exhibited as followers:

Example 2.4: Let P(�) = 1 in Theorem 2.1, we derive
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Example 2.5: Let P(�) = 2 cos n� in Theorem 2.1, we derive
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Example 2.6: Let P(�) = 2 = 2 cos n� in Theorem 2.2, we derive
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Example 2.7: Let P(�) = 1 in Theorem 2.3, we derive
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When y = 0, the corresponding sums in Example 2.4-2.7 to the moment have
been studied by Chu and Marini [2].

The trigonometric identities in Example 2.4-2.7 involve double free parameters
y, �, we consequently can establish a series of closed formulae of finite trigonometric
sums (See [5]).

There are other interesting trigonometric sum identities, for example, those
appeared in Berndt [1], Chu [3], and Gessel [4]. The reader is encouraged to try
further.
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