THE GENERATING FUNCTION OF ASSOCIATED NUMBERS AND THE REPRESENTING FORMULA OF $\Phi(n)$ WITH COMBINATORIAL FORMULAS OF $\Phi(n, k)$ AND $C_k(n)$

LiMin Yang & TianMing Wang

RECEIVED: February 16, 2018. Revised June 12, 2018.

ABSTRACT: In this paper, our idea from graphical theory, the authors have proposed the concept that is called as one associated number with $N(K_n, k)$ (see [1]), denoted by $\phi(n, k)$. By means of combinatorial methods and mechanical proof of computer, we present the generating function of $\phi(n, k)$, give the recurrence relation of $C_k(n)$, derive series of combinatorial formulas of $\phi(n, k)$ and series of combinatorial formulas of $C_k(n)$, finally, solve the representing formula of $\phi(n)$.

Keywords: Associated numbers, $\phi(n)$, The number of chains $C_k(n)$, Pell numbers.

1. INTRODUCTION

In order to the number $N(K_n, k)$ (the number of $S^{(n)}$ -factors with exactly k components in K_n , see [1]), the authors give the definition that is called as one associated number is as follows

Definition 1: For any $k, n \in N$,

$$\phi(n,k) = \sum_{\substack{\sum_{i=1}^{n} ib_i = n \\ \sum_{i=1}^{n} b_i = k}} \frac{k!}{b_1!} \prod_{i \ge 2} \frac{1}{b_i! (i!)^{b_i}},$$

where k is the number of components of $S^{(n)}$ -factors with exactly k components in the complete graph K_n , then $\phi(n, k)$ is called as one associated number with $N(K_n, k)$. (Also see LiMin Yang [1] and [2]).

Let $\phi(n)$ be the number of all associated numbers, namely, $\phi(n) = \sum_{k=1}^{n} \phi(n, k)$.

In [1], we gave the recurrence relation of $\phi(n, k)$ and some combinatorial formulas. In [2], LiMin Yang discussed the number of Fubini formulas by means of $\phi(n, k)$. In this paper, the authors will continue to research other new problems. We will present main results as follows:

(1) generating function of
$$\phi(n, k)$$
 is $\frac{y+1}{2y^2}e^{-2x}$;

- (2) the recurrence relation of $C_{\nu}(n)$;
- (3) series of combinatorial identities of $\phi(n, k)$;
- (4) series of combinatorial identities of $C_{\mu}(n)$;
- (5) the representing formula of $\phi(n)$.

Here combinatorial identities are referring to all kinds of numbers, for examples, involving Lucas number, Pell number, Fibonacci number and Chebishev numbers (or Chebishev polynomials).

2. LEMMAS

For any $k, n \in N$, when k > n, $\phi(n, k) = 0$, when $n \ge 1$, $\phi(n, 0) = 0$, when $k \ge 1$, $\phi(0, k) = 0$, and $\phi(0, 0) = 1$.

Lemma 1 [1]: For any $k, n \in N$, there exists the recurrence equality

$$\phi(n,k) = \frac{k}{n} \left[\phi(n-1,k-1) + \phi(n-1,k) \right].$$

Some special values of $\phi(n, k)$ are given as follows:

$$\phi(n,n) = 1, \ \phi(n,1) = \frac{1}{n!}, \ \phi(n,2) = \frac{2}{n!}(2^{n-1}-1), \ \phi(n,n-1) = \frac{n-1}{2}, \ \phi(n,3) = \frac{3}{n!}$$
$$(2^{n-1}-1) + \frac{3 \cdot 3!}{n!} \left[4 \cdot 3^{n-1} - 2^{n+1} - 2^{n-1} + 2^{n-3} - 8(n-1)^2 + \binom{n}{2} - 3 \right].$$

Lemma 2 [1]: For any associated number $\phi(n, k)$, $k, n \in N$, if $G(t) = \sum_{k=0}^{\infty} g(k)t^k$, g(k) is one complex coefficient, $k \ge 1$, then we have the combinatorial formula

$$\sum_{k=0}^{\infty} \phi(n,k) \frac{1}{k!} G^{(k)} t^k = \sum_{k=0}^{\infty} \frac{g(k)}{n!} k^n t^k,$$

where $G^{(k)}(t)$ is differential of G(t) of order k.

Lemma 3: There exists the combinatorial formula $n!\phi(n, k) = k!S(n, k)$, where S(n, k) is the Stirling number of the second kind.

Proof: Omitted. (see[2])

3. THE GENERATING FUNCTION OF $\phi(n, k)$

Theorem 1: If $Z = \varphi(x, y) = \sum_{n,k \ge 0} \phi(n,k) x^n y^k$, and $\phi(n,k)$ is any associated number, then there exists the generating function as follows

$$Z = \frac{y+1}{2y^2}e^{-2x}.$$

Proof:

Let
$$\varphi(x, y) = \sum_{n,k\geq 0} \varphi(n,k) x^n y^k$$
, $\frac{\partial \varphi(x,y)}{\partial x} = \sum_{n\geq 1,k\geq 0} n\varphi(n,k) x^{n-1} y^k + \sum_{n\geq 1} n\varphi(n,k) x^n y^k$

0) $x n^{-1}$, and by Lemma 1 $\phi(n, k) = \frac{k}{n} [\phi(n-1, k-1) + \phi(n-1, k)]$, when $n \ge 1$, $\phi(n, 0) = 0$, and $\phi(0, 0) = 1$, then

$$\begin{aligned} \frac{\partial \varphi(x, y)}{\partial x} &= \sum_{n \ge 1, k \ge 1} k[\varphi(n-1, k-1) + \varphi(n-1, k)] x^{n-1} y^k + 0 \\ &= \sum_{n \ge 1, k \ge 1} k \varphi(n-1, k-1) x^{n-1} y^k + \sum_{n \ge 1, k \ge 1} k \varphi(n-1, k) x^{n-1} y^k \\ &= y \frac{\partial}{\partial y} \sum_{n \ge 1, k \ge 1} \varphi(n-1, k-1) x^{n-1} y^k + y \frac{\partial}{\partial y} \sum_{n \ge 1, k \ge 1} \varphi(n-1, k) x^{n-1} y^k \\ &= y \frac{\partial}{\partial y} y \sum_{n \ge 1, k \ge 1} \varphi(n-1, k-1) x^{n-1} y^{k-1} + y \frac{\partial}{\partial y} \sum_{p \ge 0, k \ge 1} \varphi(p, k) x^p y^k \\ &= y \frac{\partial}{\partial y} y \varphi(x, y) + y \frac{\partial}{\partial y} [\sum_{p \ge 0, k \ge 0} \varphi(p, k) x^p y^k - \sum_{p \ge 0} \varphi(p, 0) x^p] \\ &= y \varphi(x, y) + y^2 \frac{\partial}{\partial y} \varphi(x, y) + y \frac{\partial}{\partial y} [\varphi(x, y) - 1] \\ &= y \varphi(x, y) + y^2 \frac{\partial \varphi(x, y)}{y} + y \frac{\partial \varphi(x, y)}{\partial y} \end{aligned}$$

So that we derive the equation

$$\frac{\partial \varphi(x, y)}{\partial x} - (y^2 + y) \frac{\partial \varphi(x, y)}{\partial y} = y \varphi(x, y).$$

Because of $Z = \varphi(x, y)$, then the equation is as follows

$$\frac{\partial Z}{\partial x} - (y^2 + y)\frac{\partial Z}{\partial y} = yZ.$$

The solution of the equation is proved by mechanical proof of computer as the following

$$Z = \frac{F_1 \left[\frac{(y+1)e^{-x}}{y}\right] e^{-x}}{y} = F_1 \frac{y+1}{y^2} e^{-2x} .(*)$$
$$Z = \varphi(x, y) = \sum_{n \ge 0, k \ge 0} \phi(n, k) x^n y^k$$
$$= 1 + \sum_{k \ge 1} \phi(0, k) y^k + \sum_{n \ge 1, k \ge 0} \phi(n, k) x^n y^k = 1 + \sum_{n \ge 1, k \ge 0} \phi(n, k) x^n y^k$$

$$Z(0, 1) = 1 + \sum_{n \ge 1, k \ge 0} \phi(n, k) 0^n 1^k = 1$$
, by the equating (*), $1 = F_1 \frac{1+1}{1^2} e^{-2*0}$, $F_1 = \frac{1}{2}$.

So that we gain the main result

$$Z = \frac{1}{2} \frac{y+1}{y^2} e^{-2x} = \frac{y+1}{2y^2} e^{-2x}.$$

The proof is completed.

Definition 2: $C_k(n)$ is the number of chains $\phi = S_0 \subset S_1 \subset S_2 \subset \cdots \subset S_k = [n]$, or alternatively the number of ordered partitions $(S_1, S_2 - S_1, S_3 - S_2, \cdots, [n] - S_{k-1})$ of [n] into k(non-empty) blocks. (see[6]).

Let C(n) denote the total number of ordered partitions of set [n], namely, C(n) =

$$\sum_{k=1}^n C_k(n).$$

Theorem 2: If $C_k(n)$ is the number of chains $\phi = S_0 \subset S_1 \subset S_2 \subset \cdots \subset S_k = [n]$, then there exists the recurrence relation

$$C_k(n) = kC_{k-1}(n-1) + kC_k(n-1), k, n \in N.$$

Proof: Because $C_k(n)$ is the number of chains, then $C_k(n) = k!S(n, k)$ (see[6]). For $S(n.k) = \frac{n!}{k!} \phi(n, k)$, then $C_k(n) = n! \phi(n, k)$. By Lemma 1, $\phi(n, k) = \frac{k}{n} [\phi(n-1, k-1)]$ + $\phi(n-1, k)$], then $C_k(n) = n! \frac{k}{n} [\phi(n-1, k-1) + \phi(n-1, k)] = k[(n-1)!\phi(n-1, k-1)] + k[(n-1)!\phi(n-1, k)]$, and $C_{k-1}(n-1) = (n-1)!\phi(n-1, k-1)$, $C_k(n-1) = (n-1)!\phi(n-1, k)$. Finally, we prove the recurrence relation

$$C_{k}(n) = kC_{k-1}(n-1) + kC_{k}(n-1), k, n \in N.$$

Theorem 3: Suppose C(n) is the total number of ordered partitions of set [n], then $\phi(n) = \frac{1}{n!}C(n)$.

Proof: By Lemma 3, then $\phi(n) = \sum_{k=1}^{n} \phi(n, k) = \sum_{k=1}^{n} \frac{k!}{n!} S(n, k) = \frac{1}{n!} \sum_{k=1}^{n} k! S(n, k)$ $k) = \frac{1}{n!} C(n).$

The proof is completed.

4. SERIES OF COMBINATORIAL IDENTITIES ON $\phi(n, k)$

A Pell number P_n is satisfied as follows generating function

$$\sum_{n=0}^{\infty} P_n x^n = \frac{x}{1 - 2x - x^2},$$

 P_n may be interpreted combinatorially as the number of tilings of a $1 \times (n - 1)$ rectangle with tiles of size 1×1 and 1×2 , where each 1×1 tile can be red or blue.

Theorem 4: Suppose $\phi(n, k)(n, k \in N)$ are associated numbers, and $P_n(n \ge 1)$ are Pell numbers, then

$$\sum_{n=0}^{\infty} \phi(n,k) \left[\frac{\alpha}{\alpha - \beta} \cdot \frac{1}{(\alpha - t)^{k+1}} - \frac{\beta}{\alpha - \beta} \frac{1}{(\beta - t)^{k+1}} \right] t^k = \frac{1}{n!} \sum_{n=0}^{\infty} P_k k^n t^k,$$

where $\alpha = -1 + \sqrt{2}, \beta = -1 - \sqrt{2}$

Proof: When $1 - 2t - t^2 = 0$, $t^2 + 2t - 1 = 0$, let $\alpha = -1 + \sqrt{2}$, $\beta = -1 - \sqrt{2}$, and $t^2 + 2t - 1 = (t - \alpha)(t - \beta)$, then

$$\frac{t}{1-2t-t^2} = \frac{-t}{(t-\alpha)(t-\beta)} = -\frac{(t-\alpha)+\alpha}{(t-\alpha)(t-\beta)} = \frac{1}{\beta-t} + \frac{\alpha}{\alpha-\beta} \left[\frac{1}{\alpha-t} - \frac{1}{\beta-t}\right].$$

$$G(t) = \frac{t}{1-2t-t^2}, G^{(k)}(t) = \frac{k!}{(\beta-t)^{k+1}} + \frac{\alpha}{\alpha-\beta} \left[\frac{k!}{(\alpha-t)^{k+1}} - \frac{k!}{(\beta-t)^{k+1}} \right], \quad \text{on the other hand,}$$

 $\sum_{n=0}^{\infty} P_k t^k = \frac{t}{1-2t-t^2}, P_k (k \ge 1) \text{ are Pell numbers, } P_0 = 1, g(k) = P_k, \text{ for } k \ge 1. \text{ By Lemma 2, then we derive the relation between associated numbers and Pell numbers as follows}$

$$\sum_{n=0}^{\infty} \phi(n,k) \frac{1}{k!} \left[\frac{k!}{(\beta-t)^{k+1}} + \frac{\alpha}{\alpha-\beta} \left(\frac{k!}{(\alpha-t)^{k+1}} - \frac{k!}{(\beta-t)^{k+1}} \right) \right] t^{k} = \sum_{k=1}^{\infty} P_{k} \frac{k^{n}}{n!} t^{k}$$
$$\sum_{n=0}^{\infty} \phi(n,k) \left[\frac{\alpha}{\alpha-\beta} \cdot \frac{1}{(\alpha-t)^{k+1}} - \frac{\beta}{\alpha-\beta} \frac{1}{(\beta-t)^{k+1}} \right] t^{k} = \frac{1}{n!} \sum_{n=0}^{\infty} P_{k} k^{n} t^{k},$$

where $\alpha = -1 + \sqrt{2}, \beta = -1 - \sqrt{2}$

Corollary 1: If P_n is any Pell number, then there exists the recurrence relation

$$\sum_{2l+m=n} (-1)^l (m+1) P_{m+1} = \frac{1}{4} (n+1) P_n + \frac{1}{4} (3n+4) P_{n+1},$$

where n is non-negative integers.

Proof: Because of

$$\frac{1}{(1-2x-x^2)^2} = \frac{1}{1+x^2} \left(\frac{x}{1-2x-x^2} \right)'$$
$$= \frac{1}{1-(-x^2)} \left(\sum_{n=0}^{\infty} P_n x^n \right)'$$
$$= \sum_{n=0}^{\infty} (-1)^n x^{2n} \sum_{n=1}^{\infty} n P_n x^{n-1}$$
$$= \sum_{n=0}^{\infty} (-1)^n x^{2n} \sum_{n=0}^{\infty} (n+1) P_{n+1} x^n$$
$$= \sum_{k=0}^{\infty} \left[\sum_{2l+m=k} (-1)^l (m+1) P_{m+1} \right] x^k$$

$$= \sum_{n=0}^{\infty} \left[\sum_{2l+m=n} (-1)^l (m+1) P_{m+1} \right] x^n,$$

and $\frac{1}{(1-2x-x^2)^2} = \sum_{n=0}^{\infty} \frac{1}{4} ((n+1)P_n + (3n+4)P_n + 1) x^n$ (see [5]), then there exists

the recurrence relation

$$\sum_{2l+m=n} (-1)^l (m+1)P_{m+1} = \frac{1}{4} \left((n+1)P_n + (3n+4)P_{n+1} \right) = \frac{1}{4} (n+1)P_n + \frac{1}{4} (3n+4)P_{n+1}.$$

The proof is completed.

Theorem 5: There exists the equality between Chebishev polynomial $U_k(x)$ of the second kind and associated numbers $\phi(n, k)$ as follows

$$\frac{1}{\gamma_1 - \gamma_2} \sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] t^k = \frac{1}{n!} \sum_{k=1}^{\infty} U_k(x) k^n t^k,$$

where $\gamma_1 = x + \sqrt{x^2 - 1}, \gamma_2 = x - \sqrt{x^2 - 1}, x \in (-\infty, -1) \cup (1, +\infty).$

Proof: Suppose $t^2 - 2t + 1 = 0$, then $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, $x \in (-\infty, -1) \cup (1, +\infty)$,

$$\frac{1}{1-2tx+t^2} = \frac{1}{(t-\gamma_1)(t-\gamma_2)} = \frac{1}{\gamma_1-\gamma_2} \left(\frac{1}{\gamma_2-t} - \frac{1}{\gamma_1-t}\right), \quad G(t) = \frac{1}{1-2tx+t^2},$$

$$G^{(k)}(t) = \frac{1}{\gamma_1 - \gamma_2} \left[\frac{k!}{(\gamma_2 - t)^{k+1}} - \frac{k!}{(\gamma_1 - t)^{k+1}} \right] = \frac{k!}{\gamma_1 - \gamma_2} \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right].$$

On the other hand, G(t) is the generating function of Chebishev polynomial $U_{k}(x)$ of the second kind,

$$G(t) = \sum_{k \ge 0} U_k(x)t^k = \frac{1}{1 - 2tx + t^2} (see[3]), \quad g(k) = U_k(x), \quad k \ge 1,$$

by Lemma 2, then we have the equality as the following

$$\begin{split} &\sum_{k=1}^{\infty} \phi(n,k) \frac{1}{k!} \frac{k!}{\gamma_1 - \gamma_2} \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] t^k = \sum_{k=1}^{\infty} U_k(x) \frac{k^n}{n!} t^k, \\ &\frac{1}{\gamma_1 - \gamma_2} \sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] t^k = \frac{1}{n!} \sum_{k=1}^{\infty} U_k(x) k^n t^k, \end{split}$$

where $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, $x \in (-\infty, -1) \cup (1, +\infty)$.

Corollary 2:
$$U_k(x) = \frac{\gamma_1^{k+1} - \gamma_2^{k+1}}{2\sqrt{x^2 - 1}}$$
, where $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, $x \in (-\infty, -1) \cup (1, +\infty)$, $k \in N$

Proof: The authors give a simple proof for Corollary 2. By the course of Theorem 5, and

$$\begin{split} \gamma_{1}\gamma_{2} &= 1, \\ \frac{1}{1-2tx+t^{2}} &= \frac{1}{\gamma_{1}-\gamma_{2}} \left(\frac{1}{\gamma_{2}-t} - \frac{1}{\gamma_{1}-t} \right) = \frac{1}{\gamma_{1}-\gamma_{2}} \left(\frac{\gamma_{1}}{1-\gamma_{1}t} - \frac{\gamma_{2}}{1-\gamma_{2}t} \right) \\ &= \frac{1}{\gamma_{1}-\gamma_{2}} \left(\gamma_{1}\sum_{k=0}^{\infty} \gamma_{1}^{k}t^{k} - \gamma_{2}\sum_{k=0}^{\infty} \gamma_{2}^{k}t^{k} \right) \\ &= \frac{1}{\gamma_{1}-\gamma_{2}} \sum_{k=0}^{\infty} \left(\gamma_{1}^{k+1} - \gamma_{2}^{k+1} \right) t^{k} \\ &= \sum_{k=0}^{\infty} \frac{\gamma_{1}^{k+1} - \gamma_{2}^{k+1}}{2\sqrt{x^{2}-1}} t^{k}, \\ \frac{1}{1-2tx+t^{2}} &= \sum_{k=0}^{\infty} U_{k}(x)t^{k}, \end{split}$$

then we have the formula $U_k(x) = \frac{\gamma_1^{k+1} - \gamma_2^{k+1}}{2\sqrt{x^2} - 1}$, where $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \frac{1}{2\sqrt{x^2} - 1}$

$$\sqrt{x^2-1}, x \in (-\infty, -1) \cup (1, +\infty), k \in \mathbb{N}.$$

Corollary 3: There exists the identity

$$\frac{1}{n!} \sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} \left[1 + (-1)^{k+2-l} \right] \binom{k+1}{l} 2^l \sqrt{3}^{k+1-l} t^k = \sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(2-\sqrt{3}-t)^{k+1}} - \frac{1}{(2+\sqrt{3}-t)^{k+1}} \right] t^k.$$

Proof: Let x = 2, then $\gamma_1 = 2 + \sqrt{3}$, $\gamma_2 = 2 - \sqrt{3}$.

$$\begin{split} U_{k}(2) &= \frac{(2+\sqrt{3})^{k+1} - (2-\sqrt{3})^{k+1}}{2\sqrt{3}} \\ &= \frac{1}{2\sqrt{3}} \Biggl[\sum_{l=0}^{k+1} \binom{k+1}{l} 2^{l} \sqrt{3}^{k+1-l} - \sum_{l=0}^{k+1} (-1)^{k+1-l} \binom{k+1}{l} 2^{l} \sqrt{3}^{k+1-l} \Biggr] \\ &= \frac{1}{2\sqrt{3}} \sum_{l=0}^{k+1} \Bigl[1 + (-1)^{k+2-l} \Bigr] \binom{k+1}{l} 2^{l} \sqrt{3}^{k+1-l}. \end{split}$$

By Theorem 7, we have the identity

$$\frac{1}{n!}\sum_{k=1}^{\infty}k^{n}\sum_{l=0}^{k+1}\left[1+(-1)^{k+2-l}\right]\binom{k+1}{l}2^{l}\sqrt{3}^{k+1-l}t^{k}=\sum_{k=1}^{\infty}\phi(n,k)\left[\frac{1}{(2-\sqrt{3}-t)^{k+1}}-\frac{1}{(2+\sqrt{3}-t)^{k+1}}\right]t^{k}.$$

Corollary 4: There exists the identity

$$\frac{1}{n!}\sum_{k=1}^{\infty}k^{n}\sum_{l=0}^{k+1}\left[1+(-1)^{k+2-l}\right]\binom{k+1}{l}3^{l}(2\sqrt{2})^{k+1-l}t^{k} = \sum_{k=1}^{\infty}\phi(n,k)\left[\frac{1}{(3-2\sqrt{2}-t)^{k+1}}-\frac{1}{(3+2\sqrt{2}-t)^{k+1}}\right]t^{k}.$$

Proof: Let x = 3, then $\gamma_1 = 3 + 2\sqrt{2}$, $\gamma_1 = 3 - 2\sqrt{2}$.

$$\begin{split} U_k(3) &= \frac{(3+2\sqrt{2})^{k+1} - (3-2\sqrt{2})^{k+1}}{4\sqrt{2}} \\ &= \frac{1}{4\sqrt{2}} \Biggl[\sum_{l=0}^{k+1} \binom{k+1}{l} 3^l (2\sqrt{2})^{k+1-l} - \sum_{l=0}^{k+1} (-1)^{k+1-l} \binom{k+1}{l} 3^l (2\sqrt{2})^{k+1-l} \Biggr] \\ &= \frac{1}{4\sqrt{2}} \sum_{l=0}^{k+1} \Bigl[1+(-1)^{k+2-l} \Bigr] \binom{k+l}{l} 3^l (2\sqrt{2})^{k+1-l}. \end{split}$$

By Theorem 5, then we have the identity

$$\frac{1}{n!} \sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} [1 + (-1)^{k+2-l}] \binom{k+1}{l} 3^l (2\sqrt{2})^{k+1-l} t^k = \sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(3-2\sqrt{2}-t)^{k+1}} - \frac{1}{(3+2\sqrt{2}-t)^{k+1}} \right] t^k.$$

Theorem 6: There exists the equality

$$\sum_{k=1}^{\infty} \phi(n,k) \left[\binom{d+k-2}{k-1} + t \binom{d+k-2}{k} \right] \frac{t^k}{(1-t)^{d+k}} = \frac{1}{n!} \sum_{k=1}^{\infty} D(k-1;(a)) k^n t^k,$$

where $(a) = (1, 1, \dots, 1)$; the number of 1 in (a) is *d*.

Proof: Let $G(t) = \frac{t}{(1-t)^d}$, $d \in N$, and $G(t) = \frac{1}{(1-t)^d} - \frac{1}{(1-t)^{d-1}}$, $G^{(k)}(t) = \frac{\langle d \rangle_k}{(1-t)^{d+1}} - \frac{\langle d - 1 \rangle_k}{(1-t)^{d+1-1}}$, on the other hand,

$$G(t) = \frac{t}{(1-t)^d} = t \left(\sum_{n=0}^{\infty} t^n\right)^d = t \sum_{k=0}^{\infty} \left(\sum_{\substack{x_1+x_2+\dots+x_d=k\\x_i\geq 0\\1\le i\le d}} 1\right) t^k,$$

the equation $a_1x + a_2x + \dots + a_dx_d = n$, the number of solutions of non-negative integers is denoted by $D(n; (a)), (a) = (a_1, a_2, \dots, a_d)$ (see Louis Comtet [3]), then $G(t) = t \sum_{k=0}^{\infty} D(k; (a))t^k$, where $(a) = (1, 1, \dots, 1)$, the number of 1 in (a) is $d, G(t) = \sum_{k=0}^{\infty} D(k-1; (a))t^k$, $g(k) = D(k-1; (a)), k \ge 1$.

By Lemma 2, then we have the equality

$$\sum_{k=1}^{\infty} \phi(n,k) \frac{1}{k!} \left[\frac{\left\langle d \right\rangle_k}{(1-t)^{d+k}} - \frac{\left\langle d-1 \right\rangle_k}{(1-t)^{d+k-1}} \right] t^k = \sum_{k=1}^{\infty} D(k-1;(a)) \frac{k^n}{n!} t^k,$$
$$\sum_{k=1}^{\infty} \phi(n,k) \frac{1}{(1-t)^{d+k-1}} \left[\frac{\left(\frac{d+k-1}{k} \right)}{(1-t)} - \left(\frac{d+k-2}{k} \right) \right] t^k = \sum_{k=1}^{\infty} D(k-1;(a)) \frac{k^n}{n!} t^k,$$

$$\sum_{k=1}^{\infty} \phi(n,k) \left[\binom{d+k-2}{k-1} + t \binom{d+k-2}{k} \right] \frac{t^k}{(1-t)^{d+k}} = \frac{1}{n!} \sum_{k=1}^{\infty} D(k-1;(a)) k^n t^k,$$

The proof is completed.

Corollary 5[2]: If $\phi(n)$ is the number of all associated numbers, then $\phi(n) =$

$$\frac{1}{n!}\sum_{k=1}^{\infty}\frac{k^n}{2^{k+1}}.$$

Proof: Let d = 1, by Theorem 8, then we have the relation equality

$$\sum_{k=1}^{\infty} \phi(n,k) \left[\binom{k-1}{k-1} + t \binom{k-1}{k} \right] \frac{t^k}{(1-t)^{1+k}} = \frac{1}{n!} \sum_{k=1}^{\infty} D(k-1;(a)) k^n t^k,$$

where (a) = (1).

Because of (a) = (1), and D(k - 1; (a)) = 1, then we have the equality

$$\sum_{k=1}^{\infty} \phi(n,k) \frac{t^k}{(1-t)^{1+k}} = \frac{1}{n!} \sum_{k=1}^{\infty} k^n t^k,$$

and k > n, $\phi(n, k) = 0$, let $t = \frac{1}{2}$, so that we gain

$$\phi(n) = \sum_{k=1}^{n} \phi(n,k) = \frac{1}{n!} \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}$$

Corollary 6: If C(n) is the total number of chains, then $C(n) = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}$.

Proof: Because of $C_k(n) = k!S(n, k), C(n) = \sum_{k=1}^n k!S(n, k) = \sum_{k=1}^n n!\phi(n, k) = n! \sum_{k=1}^n \phi(n, k)$, by Corollary 5, then

$$C(n) = n! \frac{1}{n!} \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}} = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}.$$

Corollary 7: There exists the combinatorial identity

$$\sum_{k=1}^{n} \Delta^{k} O^{n} = \sum_{k=1}^{\infty} \frac{k^{n}}{2^{k+1}}.$$

Proof: Because of $\Delta^k O^n = k! S(n, k) (see[6])$, then $\sum_{k=1}^n \Delta^k O^n = \sum_{k=1}^n k! S(n, k)$.

By Corollary 6, $\sum_{k=1}^{\infty} k! S(n,k) = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}$, then there exists the combinatorial identity

$$\sum_{k=1}^{n} \Delta^{k} O^{n} = \sum_{k=1}^{\infty} \frac{k^{n}}{2^{k+1}}.$$

Theorem 7: If $\phi(n, k)$ is any associated number, F_k is the *k*-th Fibonacci number, $k \ge 1, n \in N$, then

$$\sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(\gamma_1 - t)^{k+1}} - \frac{1}{(\gamma_2 - t)^{k+1}} \right] t^k = \sqrt{5} \sum_{k=1}^{\infty} F_k \frac{k^n}{n!} t^k,$$

where $\gamma_1 = \frac{-1 + \sqrt{5}}{2}, \gamma_2 = \frac{-1 - \sqrt{5}}{2}.$

Proof: Let
$$G(t) = \frac{1}{1-t-t^2} = \frac{1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_1 - t} - \frac{1}{\gamma_2 - t} \right)$$
, and $\gamma_1 = \frac{-1 + \sqrt{5}}{2}$, $\gamma_2 = \frac{-1 - \sqrt{5}}{2}$, $G^{(k)}(t) = \frac{1}{\gamma_1 - \gamma_2} \left[\frac{k!}{(\gamma_1 - t)^{k+1}} - \frac{k!}{(\gamma_2 - t)^{k+1}} \right]$, $k \ge 1$.

When $G(t) = \frac{1}{1-t-t^2} = \sum_{k=0}^{\infty} F_k t^k$, F_k is any k-th Fibonacci number, $k \ge 1$, then

$$g(k) = F_k, k \ge 1, \ F_k = \frac{\beta^{k+1} - \alpha^{k+1}}{\sqrt{5}}, \alpha = \frac{1 - \sqrt{5}}{2}, \beta = \frac{1 + \sqrt{5}}{2}.$$

By Lemma 2, then we have the relation equality

$$\sum_{k=1}^{\infty} \phi(n,k) \frac{1}{k!} \frac{1}{\gamma_1 - \gamma_2} \left[\frac{k!}{(\gamma_1 - t)^{k+1}} - \frac{k!}{(\gamma_2 - t)^{k+1}} \right] t^k = \sum_{k=1}^{\infty} F_k \frac{k^n}{n!} t^k,$$

$$\sum_{k=1}^{\infty} \phi(n,k) \left[\frac{1}{(\gamma_1 - t)^{k+1}} - \frac{1}{(\gamma_2 - t)^{k+1}} \right] t^k = \sqrt{5} \sum_{k=1}^{\infty} F_k \frac{k^n}{n!} t^k,$$

where $\gamma_1 = \frac{-1 + \sqrt{5}}{2}, \gamma_2 = \frac{-1 - \sqrt{5}}{2}.$

Corollary 8: If F_n is the *n*-th Fibonacci number, then there exists the recurrence relation

$$\sum_{l+m=n} (-1)^l 2^l (m+1) F_{n+1} = \frac{1}{5} (n+1) F_n + \left(\frac{3}{5}n+1\right) F_{n+1}.$$

Proof:

$$\begin{aligned} \frac{1}{(1-x-x^2)^2} &= \frac{1}{1+2x} \left(\frac{1}{1-x-x^2} \right)' = \sum_{n=0}^{\infty} (-2)^n x^n \left(\sum_{n=0}^{\infty} F_n x^n \right)' \\ &= \sum_{n=0}^{\infty} (-1)^n 2^n x^n \sum_{n=1}^{\infty} nF_n x^{n-1} \\ &= \sum_{n=0}^{\infty} (-1)^n 2^n x^n \sum_{n=0}^{\infty} (n+1)F_{n+1} x^n \\ &= \sum_{k=0}^{\infty} \left[\sum_{l+m=k} (-1)^l 2^l (m+1)F_{m+1} \right] x^k \\ &= \sum_{n=0}^{\infty} \left[\sum_{l+m=k} (-1)^l 2^l (m+1)F_{m+1} \right] x^n, \end{aligned}$$

and

$$\frac{1}{(1-x-x^2)^2} = \sum_{n=0}^{\infty} \left[\left(\frac{1}{5}n + \frac{1}{5} \right) F_n + \left(\frac{3}{5}n + 1 \right) F_{n+1} \right] x^n (see[5]).$$

Then there exists the recurrence relation

$$\sum_{l+m=n} (-1)^l 2^l (m+1) F_{m+1} = \frac{1}{5} (n+1) F_n + \left(\frac{3}{5}n+1\right) F_{n+1}.$$

The proof is completed.

Theorem 8: Suppose $T_k(x)$ is Chebishev polynomial of the first kind, and

$$\sum_{k\geq 0} T_k(x)t^k = \frac{1-tx}{1-2tx+t^2},$$

then

$$\sum_{k=1}^{\infty} \phi(n,k) \left\{ \frac{1}{\gamma_1 - \gamma_2} \left[\frac{(1 - x\gamma_2)}{(\gamma_2 - t)^{k+1}} + \frac{(x\gamma_2 - 1)}{(\gamma_1 - t)^{k+1}} \right] + \frac{x}{(\gamma_2 - t)^{k+1}} \right\} t^k = \sum_{k=1}^{\infty} T_k(x) \frac{k^n}{n!} t^k,$$

where $\gamma_1 = x + \sqrt{x^2 + 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, $x \in (-\infty, -1) \cup (1, +\infty)$.

Proof: Let
$$1-2tx + t^2 = 0$$
, $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, $x \in (-\infty, -1) \cup (1, +\infty)$,

$$\frac{tx}{1-2tx+t^2} = \frac{xt}{(t-\gamma_1)(t-\gamma_2)} = \frac{x(t-\gamma_1+\gamma_1)}{(t-\gamma_1)(t-\gamma_2)}$$

$$= \frac{x\gamma_1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_2 - t} - \frac{1}{\gamma_1 - t} \right) - \frac{x}{\gamma_2 - t},$$

$$\frac{1}{1-2tx+t^2} = \frac{1}{(t-\gamma_1)(t-\gamma_2)}$$
$$= \frac{1}{\gamma_1-\gamma_2} \left(\frac{1}{\gamma_2-t} - \frac{1}{\gamma_1-t}\right), \text{ then}$$

$$\frac{1-tx}{1-2tx+t^2} = \frac{1}{1-2tx+t^2} - \frac{tx}{1-2tx+t^2}$$
$$= \frac{1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_2 - t} - \frac{1}{\gamma_1 - t}\right) - \frac{x\gamma_1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_2 - t} - \frac{1}{\gamma_1 - t}\right) + \frac{x}{\gamma_2 - t}.$$

Let
$$G(t) = \frac{1 - tx}{1 - 2tx + t^2}$$
, then

$$G_{k}(t) = \frac{1}{\gamma_{1} - \gamma_{2}} \left[\frac{k!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{1} - t)^{k+1}} \right] - \frac{x\gamma_{1}}{\gamma_{1} - \gamma_{2}} \left[\frac{k!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{1} - t)^{k+1}} \right] + \frac{xk!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{2} - t)^{k+1}} = \frac{k!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{2} - t)^{k+1}} = \frac{k!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{2} - t)^{k+1}} = \frac{k!}{(\gamma_{2} - t)^{k+1}} = \frac{k!}{(\gamma_{2} - t)^{k+1}} - \frac{k!}{(\gamma_{2} - t)^{k+1}} = \frac{k!$$

On the other hand, $T_k(x)$ is the Chebishev polynomial of the first kind, its

generation function
$$\sum_{k=0}^{\infty} T_k(x)t^k = \frac{1-tx}{1-2tx-x^2} = G(t), \text{ then } g(k) = T_k(x), k \ge 1.$$

By Lemma 2, then we derive the identity between $\phi(n, k)$ and the Chebishev polynomial $T_k(x)$ of the first kind as follows

$$\begin{split} \sum_{k=1}^{\infty} \phi(n,k) \frac{1}{k!} \left\{ \frac{1}{\gamma_1 - \gamma_2} \left[\frac{k!}{(\gamma_2 - t)^{k+1}} - \frac{k!}{(\gamma_1 - t)^{k+1}} \right] - \frac{x\gamma_1}{\gamma_1 - \gamma_2} \left[\frac{k!}{(\gamma_2 - t)^{k+1}} - \frac{k!}{(\gamma_1 - t)^{k+1}} \right] \right. \\ \left. + \frac{xk!}{(\gamma_2 - t)^{k+1}} \right\} t^k &= \sum_{k=1}^{\infty} T_k(x) \frac{k^n}{n!} t^k, \\ \sum_{k=1}^{\infty} \phi(n,k) \left\{ \frac{1}{\gamma_1 - \gamma_2} \left[\frac{1 - x\gamma_2}{(\gamma_2 - t)^{k+1}} + \frac{x\gamma_2 - 1}{(\gamma_1 - t)^{k+1}} \right] + \frac{x}{(\gamma_2 - t)^{k+1}} \right\} t^k &= \sum_{k=1}^{\infty} T_k(x) \frac{k^n}{n!} t^k \\ \sum_{k=1}^{\infty} \phi(n,k) \left\{ \frac{1 - x\gamma_2}{\gamma_1 - \gamma_2} \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] + \frac{x}{(\gamma_2 - t)^{k+1}} \right\} t^k &= \sum_{k=1}^{\infty} T_k(x) \frac{k^n}{n!} t^k \end{split}$$
here $\gamma_1 = x + \sqrt{x^2 - 1}, \gamma_2 = x - \sqrt{x^2 - 1}.$

where $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$. **Corollary 9:** If $T_n(x)$ is the Chebishev polynomial of the first kind, then $T_n(x) =$

$$\frac{\gamma_1^n + \gamma_2^n}{2}, \gamma_1 = x + \sqrt{x^2 - 1}, \gamma_2 = x - \sqrt{x^2 - 1}, x \in (-\infty, -1) \cup (1, +\infty), n \in N.$$

Proof: Here we give a method to prove the Corollary 9 by the course of Theorem 8. By Theorem 8,

$$G(t) = \frac{1 - tx}{1 - 2tx + t^2} = \frac{1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_2 - t} - \frac{1}{\gamma_1 - t} \right) - \frac{x\gamma_1}{\gamma_1 - \gamma_2} \left(\frac{1}{\gamma_2 - t} - \frac{1}{\gamma_1 - t} \right) + \frac{x}{\gamma_2 - t},$$

 $\gamma_1 \gamma_2 = 1$ and $\gamma_1 - \gamma_2 = 2\sqrt{x^2 - 1}$, then

$$\begin{split} G(t) &= \frac{1}{\gamma_1 - \gamma_2} \Biggl[\frac{1}{\gamma_2} \sum_{k=0}^{\infty} \frac{t^k}{\gamma_2^k} - \frac{1}{\gamma_1} \sum_{k=0}^{\infty} \frac{t^k}{\gamma_1^k} \Biggr] \\ &- \frac{x\gamma_1}{\gamma_1 - \gamma_2} \Biggl[\frac{1}{\gamma_2} \sum_{k=0}^{\infty} \frac{t^k}{\gamma_2^k} - \frac{1}{\gamma_1} \sum_{k=0}^{\infty} \frac{t^k}{\gamma_1^k} \Biggr] + \frac{x}{\gamma_2} \sum_{k=0}^{\infty} \frac{t^k}{\gamma_2^k} \Biggr] \\ &= \frac{1}{\gamma_1 - \gamma_2} \sum_{k=0}^{\infty} \Biggl(\frac{1}{\gamma_2^{k+1}} - \frac{1}{\gamma_1^{k+1}} - \frac{x\gamma_1}{\gamma_2^{k+1}} + \frac{x\gamma_1}{\gamma_1^{k+1}} \Biggr] t^k + x \sum_{k=0}^{\infty} \frac{t^k}{\gamma_2^{k+1}} \Biggr] \\ &= \frac{1 - x\gamma_1}{\gamma_1 - \gamma_2} \sum_{k=0}^{\infty} \Biggl(\frac{1}{\gamma_2^{k+1}} - \frac{1}{\gamma_1^{k+1}} \Biggr] t^k + x \sum_{k=0}^{\infty} \frac{t^k}{\gamma_2^{k+1}} \Biggr] \\ &= \sum_{k=0}^{\infty} \Biggl(\frac{1 - x\gamma_2}{\gamma_1 - \gamma_2} \frac{1}{\gamma_2^{k+1}} - \frac{1 - x\gamma_1}{\gamma_1 - \gamma_2} \frac{1}{\gamma_1^{k+1}} \Biggr] t^k \Biggr] \\ &= \sum_{k=0}^{\infty} \frac{(1 - x\gamma_2)\gamma_1^{k+1} - (1 - x\gamma_1)\gamma_2^{k+1}}{(\gamma_1 - \gamma_2)(\gamma_1\gamma_2)^{k+1}} \Biggr] t^k, \end{split}$$

and $G(t) = \sum_{k=0}^{\infty} T_k(x) t^k$, so that

$$T_k(x) = \frac{(1 - x\gamma_2)\gamma_1^{k+1} - (1 - x\gamma_1)\gamma_2^{k+1}}{2\sqrt{x^2 - 1}}.$$

Finally, we derive the Chebishev polynomial of the first kind

$$T_n(x) = \frac{(1 - x\gamma_2)\gamma_1^{n+1} - (1 - x\gamma_1)\gamma_2^{n+1}}{2\sqrt{x^2 - 1}} = \frac{(\gamma_1 - x)\gamma_1^n + (x - \gamma_2)\gamma_2^n}{2\sqrt{x^2 - 1}}$$
$$= \frac{\sqrt{x^2 - 1}\gamma_1^n + \sqrt{x^2 - 1}\gamma_2^n}{2\sqrt{x^2 - 1}} = \frac{\gamma_1^n + \gamma_2^n}{2},$$

where
$$\gamma_1 = x + \sqrt{x^2 - 1}$$
, $\gamma_2 = x - \sqrt{x^2 - 1}$, $n \in N$.

This completes the proof.

5. SERIES OF COMBINATORIAL IDENTITIES ON $C_k(n)$

Theorem 9: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{\alpha}{(\alpha - t)^{k+1}} - \frac{\beta}{(\beta - t)^{k+1}} \right] t^k = 2\sqrt{2} \sum_{k=1}^{\infty} P_k k^n t^k,$$

where $P_k (k \ge 1)$ are Pell numbers, $\alpha = -1 + \sqrt{2}$ and $\beta = -1 - \sqrt{2}$.

Proof: Because of $\phi(n, k) = \frac{k!}{n!}S(n, k) = \frac{1}{n!}C_k(n)$ and by *Theorem* 4, then

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{\alpha}{(\alpha - t)^{k+1}} - \frac{\beta}{(\beta - t)^{k+1}} \right] t^k = 2\sqrt{2} \sum_{k=1}^{\infty} P_k k^n t^k,$$

where $P_k(k \ge 1)$ are Pell numbers, $\alpha = -1 + \sqrt{2}$ and $\beta = -1 - \sqrt{2}$.

Theorem 10: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] t^k = 2\sqrt{x^2 - 1} \sum_{k=1}^{\infty} U_k(x) k^n t^k,$$

where $U_k(x) = \frac{\gamma_1^{k+1} - \gamma_2^{k+1}}{2\sqrt{x^2 - 1}}$, $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$, and $x \in (-\infty, -1) \cup (1, \infty)$.

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$ and by *Theorem* 7, then

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(\gamma_2 - t)^{k+1}} - \frac{1}{(\gamma_1 - t)^{k+1}} \right] t^k = 2\sqrt{x^2 - 1} \sum_{k=1}^{\infty} U_k(x) k^n t^k,$$

where $U_k(x) = \frac{\gamma_1^{k+1} - \gamma_2^{k+1}}{2\sqrt{x^2 - 1}}, k \in N, \gamma_1 = x + \sqrt{x^2 - 1}, \gamma_2 = x - \sqrt{x^2 - 1}$, and $x \in (-\infty, -1) \cup (1, \infty)$.

Corollary 10: There exists the combinatorial identity

$$\begin{split} &\sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} \left[1 + (-1)^{k+2-l} \right] \binom{k+1}{l} 2^l \sqrt{3}^{k+1-l} t^k \\ &= \sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{\left(2 - \sqrt{3} - t\right)^{k+1}} - \frac{1}{\left(2 + \sqrt{3} - t\right)^{k+1}} \right] t^k. \end{split}$$

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$ and by *Corollary* 3,then

$$\begin{split} &\sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} \left[1 + (-1)^{k+2-l} \right] \binom{k+1}{l} 2^l \sqrt{3}^{k+1-l} t^k \\ &= \sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(2-\sqrt{3}-t)^{k+1}} - \frac{1}{(2+\sqrt{3}-t)^{k+1}} \right] t^k. \end{split}$$

Corollary 11: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} \left[1 + (-1)^{k+2-l} \right] \binom{k+1}{l} 3^l (2\sqrt{2})^{k+1-l} t^k$$
$$= \sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(3-2\sqrt{2}-t)^{k+1}} - \frac{1}{(3+2\sqrt{2}-t)^{k+1}} \right] t^k.$$

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$, by *Corollary* 4, then

$$\sum_{k=1}^{\infty} k^n \sum_{l=0}^{k+1} \left[1 + (-1)^{k+2-l} \right] \binom{k+1}{l} 3^l (2\sqrt{2})^{k+1-l} t^k$$
$$= \sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(3-2\sqrt{2}-t)^{k+1}} - \frac{1}{(3+2\sqrt{2}-t)^{k+1}} \right] t^k.$$

Theorem 11: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} C_k(n) \left[\binom{d+k-2}{k-1} + t \binom{d+k-2}{k} \right] \frac{t^k}{(1-t)^{d+k}} = \sum_{k=1}^{\infty} D(k-1;(a)) k^n t^k,$$

where $(a) = (1, 1, \dots, 1)$, the number of 1 in (a) is *d*.

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$ and by *Theorem* 6, then

$$\sum_{k=1}^{\infty} C_k(n) \left[\binom{d+k-2}{k-1} + t \binom{d+k-2}{k} \right] \frac{t^k}{(1-t)^{d+k}} = \sum_{k=1}^{\infty} D(k-1;(a)) k^n t^k,$$

where $(a) = (1, 1, \dots, 1)$, the number of 1 in (a) is *d*.

Theorem 12: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(\gamma_1 - t)^{k+1}} - \frac{1}{(\gamma_2 - t)^{k+1}} \right] t^k = \sqrt{5} \sum_{k=1}^{\infty} F_k k^n t^k,$$

where F_k is the *k*-th Fibonacci number, $\gamma_1 = \frac{-1+\sqrt{5}}{2}$ and $\gamma_2 = \frac{-1-\sqrt{5}}{2}$, $k \in N$.

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$ and by *Theorem* 7, then

$$\sum_{k=1}^{\infty} C_k(n) \left[\frac{1}{(\gamma_1 - t)^{k+1}} - \frac{1}{(\gamma_2 - t)^{k+1}} \right] t^k = \sqrt{5} \sum_{k=1}^{\infty} F_k k^n t^k,$$

where F_k is the *k*-th Fibonacci number, $\gamma_1 = \frac{-1+\sqrt{5}}{2}$ and $\gamma_2 = \frac{-1-\sqrt{5}}{2}$, $k \in N$.

Theorem 13: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} C_k(n) \left\{ \frac{1}{\gamma_1 - \gamma_2} \left[\frac{1 - x\gamma_2}{(\gamma_2 - t)^{k+1}} + \frac{x\gamma_2 - 1}{(\gamma_1 - t)^{k+1}} \right] + \frac{x}{(\gamma_2 - t)^{k+1}} \right\} = \sum_{k=1}^{\infty} T_k(x) k^n t^k,$$

where $\gamma_1 = x + \sqrt{x^2 - 1}$, $\gamma_2 = x - \sqrt{x^2 - 1}$ and $T_k(x) = \frac{\gamma_1^k + \gamma_2^k}{2}$, $k \in N$.

Proof: Because of $\phi(n, k) = \frac{1}{n!} C_k(n)$ and by *Theorem* 8, then

$$\sum_{k=1}^{\infty} C_k(n) \left\{ \frac{1}{\gamma_1 - \gamma_2} \left[\frac{1 - x\gamma_2}{(\gamma_2 - t)^{k+1}} + \frac{x\gamma_2 - 1}{(\gamma_1 - t)^{k+1}} \right] + \frac{x}{(\gamma_2 - t)^{k+1}} \right\} = \sum_{k=1}^{\infty} T_k(x) k^n t^k,$$

where
$$\gamma_1 = x + \sqrt{x^2 - 1}$$
, $\gamma_2 = x - \sqrt{x^2 - 1}$ and $T_k(x) = \frac{\gamma_1^k + \gamma_2^k}{2}$, $k \in N$.

Corollary 12: There exists the combinatorial identity

$$\sum_{k=1}^{\infty} \left\{ k^n \sum_{l=1}^{\lfloor \frac{k}{2} \rfloor} \binom{k}{2l} 2^{3l+1} 3^l 5^{k-2l} \right\} t^k = \sum_{k=1}^{\infty} C_k(n) \left[\frac{-5 + 2\sqrt{6}}{(5 + 2\sqrt{6} - t)^{k+1}} + \frac{15 - 2\sqrt{6}}{(5 - 2\sqrt{6} - t)^{k+1}} \right] t^k.$$

Proof: Let x = 5, then $\gamma_1 = 5 + 2\sqrt{6}$, $\gamma_2 = 5 - 2\sqrt{6}$. For x = 5,

$$\begin{split} T_k(5) &= \frac{(5+2\sqrt{6})^k + (5-2\sqrt{6})^k}{2} = \frac{1}{2} \Biggl[\sum_{l=0}^k \binom{k}{l} (2\sqrt{6})^l 5^{k-l} + \sum_{l=0}^k \binom{k}{l} (-2\sqrt{6})^l 5^{k-l} \Biggr] \\ &= \frac{1}{2} \sum_{l=0}^k \left[1 + (-1)^l \right] \binom{k}{l} (2\sqrt{6})^l 5^{k-l} = \frac{1}{2} \sum_{l=0}^{\lfloor \frac{k}{2} \rfloor} 2\binom{k}{2l} (2\sqrt{6})^{2l} 5^{k-2l} \\ &= \sum_{l=0}^{\lfloor \frac{k}{2} \rfloor} \binom{k}{2l} 2^{2l} 6^l 5^{k-2l} = \sum_{l=0}^{\lfloor \frac{k}{2} \rfloor} \binom{k}{2l} 2^{3l} 3^l 5^{k-2l} \\ &= \frac{1}{\gamma_1 - \gamma_2} \Biggl[\frac{1 - x\gamma_2}{(\gamma_2 - t)^{k+1}} + \frac{x\gamma_2 - 1}{(\gamma_1 - t)^{k+1}} \Biggr] + \frac{x}{(\gamma_2 - t)^{k+1}} \\ &= \frac{1}{4\sqrt{6}} \Biggl[\frac{10\sqrt{6} - 24}{(5 - 2\sqrt{6} - t)^{k+1}} + \frac{24 - 10\sqrt{6}}{(5 + 2\sqrt{6} - t)^{k+1}} \Biggr] + \frac{5}{(5 - 2\sqrt{6} - t)^{k+1}} \\ &= \frac{1}{2} \Biggl[\frac{-5 + 2\sqrt{6}}{(5 + 2\sqrt{6} - t)^{k+1}} + \frac{15 - 2\sqrt{6}}{(5 - 2\sqrt{6} - t)^{k+1}} \Biggr]. \end{split}$$

Then by Theorem 13, there exists the combinatorial identity

$$\frac{1}{2}\sum_{k=1}^{\infty}C_k(n)\left[\frac{-5+2\sqrt{6}}{\left(5+2\sqrt{6}-t\right)^{k+1}}+\frac{15-2\sqrt{6}}{\left(5-2\sqrt{6}-t\right)^{k+1}}\right]t^k = \sum_{k=1}^{\infty}k^n\sum_{l=0}^{\lfloor\frac{k}{2}\rfloor}\binom{k}{2l}2^{3l}3^l5^{k-2l}t^k,$$

$$\sum_{k=1}^{\infty} \left\{ k^n \sum_{l=0}^{\lfloor \frac{k}{2} \rfloor} \binom{k}{2l} 2^{3l+1} 3^l 5^{k-2l} t^k \right\} = \sum_{k=1}^{\infty} C_k(n) \left[\frac{-5 + 2\sqrt{6}}{(5 + 2\sqrt{6} - t)^{k+1}} + \frac{15 - 2\sqrt{6}}{(5 - 2\sqrt{6} - t)^{k+1}} \right] t^k.$$

Theorem 14: For any $C_k(n)$, $k, n \in N$, if $G(t) = \sum_{k=1}^{\infty} g(k)t^k$, g(k) is one complex coefficient, $k \ge 1$, then there exists the combinatorial formula

$$\sum_{k=1}^{\infty} C_k(n) G^{(k)}(t) \frac{t^k}{k!} = \sum_{k=1}^{\infty} g(k) k^n t^k.$$

Proof: Because of $C_k(n) = k! S(n, k) = n! \phi(n, k)$, then $\phi(n, k) = \frac{1}{n!} C_k(n)$. By Lemma 2, there exists the equality

$$\sum_{k=1}^{\infty} \phi(n,k) G^{(k)}(t) \frac{t^k}{k!} = \sum_{k=1}^{\infty} \frac{g(k)}{n!} k^n t^k.$$

Then

$$\sum_{k=1}^{\infty} \frac{1}{n!} C_k(n) G^{(k)}(t) \frac{t^k}{k!} = \sum_{k=1}^{\infty} \frac{g(k)}{n!} k^n t^k, \sum_{k=1}^{\infty} C_k(n) G^{(k)}(t) \frac{t^k}{k!} = \sum_{k=1}^{\infty} g(k) k^n t^k.$$

The proof is completed.

Corollary 13: For any $C_k(n)$, $k, n \in N$, there exists the equality

$$\sum_{k=1}^{\infty} C_k(n) \frac{t^k}{(1-t)^{k+1}} = \sum_{k=1}^{\infty} k^n t^k.$$

Proof: Let $G(t) = \frac{1}{1-t}$, then $G^{(k)}(t) = \frac{k!}{(1-t)^{k+1}}$ and $G(t) = \frac{1}{1-t} = \sum_{k=0}^{\infty}$, here g(k) = 1, $k \ge 1$. By *Theorem* 13 we have the equality

$$x \ge 1$$
. By *Theorem* 13 we have the equality

$$\sum_{k=1}^{\infty} C_k(n) \frac{t^k}{(1-t)^{k+1}} = \sum_{k=1}^{\infty} k^n t^k.$$

Corollary 14: Let C(n) be the total number of chains, then

$$C(n) = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}.$$
 (see Corollary 6)

Proof: We give another method to prove *Corollary* 14.

Let $t = \frac{1}{2}$ and by *Corollary* 13. Then we derive the explicit formula as follows

$$\sum_{k=1}^{\infty} C_k(n) \frac{\left(\frac{1}{2}\right)^k}{\left(1-\frac{1}{2}\right)^{k+1}} = \sum_{k=1}^{\infty} k^n \left(\frac{1}{2}\right)^k, C(n) = \sum_{k=1}^n C_k(n) = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}.$$

6. THE REPRESENTING FORMULA OF $\phi(n)$

Theorem 15: If $\phi(n)$ is the number of all associated numbers, then

$$\phi(n) = \frac{1}{n!} \sum_{k=1}^{n} \Delta^{k} O^{n}$$

, where Δ is the difference operator.

Proof: By *Corollary* 5, then $\phi(n) = \frac{1}{n!} \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}$. On the other hand, by *Corollary* 7, then $\sum_{k=1}^{\infty} \Delta^k O^n = \sum_{k=1}^{\infty} \frac{k^n}{2^{k+1}}$. Finally, $\phi(n) = \frac{1}{n!} \sum_{k=1}^n \Delta^k O^n$.

Here we solve the representing formula of $\phi(n)$.

Corollary 15: There exists the combinatorial identity

$$\sum_{k=1}^{n} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^{n} = \sum_{k=1}^{\infty} \frac{k^{n}}{2^{k+1}}.$$

Proof: Because of $\Delta^k O^n = \sum_{i=0}^k (-1)^{k-i} {k \choose i} i^n$ (see[6]) and by the course of

Theorem 15 $\sum_{k=0}^{n} \Delta^{k} O^{n} = \sum_{k=1}^{\infty} \frac{k^{n}}{2^{k+1}}$, then

$$\sum_{k=1}^{n} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^{n} = \sum_{k=1}^{\infty} \frac{k^{n}}{2^{k+1}}.$$

7. CONCLUSIONS AND FUTURE WORK

In this paper, we solve the generating function of associated numbers $\phi(n, k)$, obtain the explicit formulas of C(n) and $\phi(n)$, discuss series of combinatorial formulas involving Lucas number, Pell number, Fibonacci number and Chebishev numbers, finally, present the representing formula of $\phi(n)$ on the difference operator. In future work, we will give some other results on associated numbers $\phi(n, k)$.

REFERENCES

- [1] Limin Yang, Tianming Wang, The Combinatorial Formulas of Associated Numbers $\phi(k, n)$ with $N(K_n, k)$, Far East J. Math. Sci. (FJMS), **18** (1) (2005) 109–119 (India).
- [2] Limin Yang, The Number of Fubini Formulas, J. of Liao Ning Normal. Uni., **28**(1) (2005) 27–31. (In Chinese)
- [3] Louis Commtet, Advanced Combinatorics, D.reidel Publishing Company, 1974.
- [4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, the Macmil Press.L.J.D, 1976.
- [5] Eric S. Egge, Toufik Mansour, 132-avoiding two sortable permutations, Fibonacci numbers, and Pell numbers, Discrete Applied Math., **143**(1-3)(2004), 72–83.
- [6] Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997. 2004.10.14

LiMin Yang

School of Mathematics and Computer Dali University, Dali 671000 Yunhan, P. R. China

TianMing Wang

Department of Applied Mathematics DaLian University of Technology DaLian 116024, P.R.China *E-mail: yanglm65@yahoo.com.cn; wangtm@dlut.edu.cn*