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THE GENERATING FUNCTION OF ASSOCIATED NUMBERS
AND THE REPRESENTING FORMULA OF (n) WITH
COMBINATORIAL FORMULAS OF (n, k) AND Ck(n)

LiMin Yang & TianMing Wang

ABSTRACT: In this paper,our idea from graphical theory,the authors have proposed the
concept that is called as one associated number with N(K

n
, k) (see [1]),denoted by �(n, k).

By means of combinatorial methods and mechanical proof of computer, we present the
generating function of �(n, k), give the recurrence relation of C

k
(n), derive series of

combinatorial formulas of �(n, k) and series of combinatorial formulas of C
k
(n), finally,

solve the representing formula of �(n).

KEYWORDS: Associated numbers, �(n), The number of chains C
k
(n), Pell numbers.

1. INTRODUCTION

In order to the number N(K
n
, k) (the number of S(n)-factors with exactly k components

in K
n
, see [1]), the authors give the definition that is called as one associated number

is as follows

Definition 1: For any k, n � N,
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where k is the number of components of S(n)-factors with exactly k components in
the complete graph K

n
, then �(n, k) is called as one associated number with N(K

n
, k).

(Also see LiMin Yang [1] and [2]).

Let �(n) be the number of all associated numbers, namely, 
1

( ) ( , )
n

k
n n k

�
� � �� .

In [1], we gave the recurrence relation of �(n, k) and some combinatorial formulas.
In [2], LiMin Yang discussed the number of Fubini formulas by means of �(n, k). In
this paper, the authors will continue to research other new problems. We will present
main results as follows:

(1) generating function of �(n, k) is 
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;
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2 LIMIN & TIANMING WANG

(2) the recurrence relation of C
k
(n);

(3) series of combinatorial identities of �(n, k);

(4) series of combinatorial identities of C
k
(n);

(5) the representing formula of �(n).

Here combinatorial identities are referring to all kinds of numbers, for examples,
involving Lucas number, Pell number, Fibonacci number and Chebishev numbers
(or Chebishev polynomials).

2. LEMMAS

For any k, n � N, when k > n, �(n, k) = 0, when n � 1, �(n, 0) = 0, when k � 1, �(0, k)
= 0, and �(0, 0) = 1.

Lemma 1 [1]: For any k, n � N, there exists the recurrence equality

� �( , ) ( 1, 1) ( 1, ) .
k

n k n k n k
n

� � � � � � � �

Some special values of �(n, k) are given as follows:

�(n, n) = 1, �(n, 1) = 
1
!n

, �(n, 2) = 
12 (2 1)

!
n

n
� � , �(n, n – 1) = 1

2
n� , �(n, 3) = 3

!n

(2n–1 – 1) + 
1 1 1 3 23 3! 4 3 2 2 2 8( 1) 3

! 2
n n n n n

n
n
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.

Lemma 2 [1]: For any associated number �(n, k), k, n � N, if G(t) =

0
( ) ,k

k
g k t

�

�� g(k) is one complex coefficient, k � 1, then we have the combinatorial

formula
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where G(k)(t) is differential of G(t) of order k.

Lemma 3: There exists the combinatorial formula n!�(n, k) = k!S(n, k), where
S(n, k) is the Stirling number of the second kind.

Proof: Omitted. (see[2])
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3. THE GENERATING FUNCTION OF (n, k)

Theorem 1: If Z = �(x, y) = 
, 0

( , )
n k

n k
�

�� xnyk, and �(n, k) is any associated number,

then there exists the generating function as follows
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Proof:

Let ��(x, y) = 
� �� 0n k

� (n, k) xn yk , �� �
� � � �

� � ��( )
1 0

( )x y
x n k

n n k xn–1yk + 
�� 1n

n� (n,

0) x n–1, and by Lemma 1 �(n, k) = [ ( 1 1) ( 1 )]k
n n k n k� � � � � � � � , when n � 1, � (n, 0)

= 0, and ��(0, 0) = 1, then
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x
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So that we derive the equation

�� � �� �
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y y y x y
x y
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Because of Z = �(x, y), then the equation is as follows

� �
� � � �

� �
2( )

Z Z
y y yZ

x y

The solution of the equation is proved by mechanical proof of computer as the
following

�� �

�
� �

�� �� �� � � �
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( ) ( ) n k
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Z x y n k x y
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1 1 0 1 0

1 (0 ) ( ) 1 ( )k n k n k

k n k n k

k y n k x y n k x y

Z (0, 1) = 1 + 
� � �� 1 0n k

 �(n, k)0n1k = 1, by the equating (*), 1 = F
1

� �� �2
2 01 1 1

1 21
,e F .

So that we gain the main result

� �� �
� � �2 2

2 2

1 1 1
2 2

x xy y
Z e e

y y

The proof is completed.

Definition 2: C
k
(n) is the number of chains � = S

0
 � S

1
 � S

2
 � � � S

k
 = [n], or

alternatively the number of ordered partitions (S
1
, S

2
 – S

1
, S

3
 – S

2
, � , [n] – S

k–1
) of

[n] into k(non-empty) blocks. (see[6]).

Let C(n) denote the total number of ordered partitions of set [n], namely, C(n) =

�� 1
( )

n
kk

C n .

Theorem 2: If C
k
(n) is the number of chains � = S

0
 � S

1
 � S

2
 � � � S

k
 = [n],

then there exists the recurrence relation

C
k
(n) = kC

k–1
(n – 1) + kC

k
(n – 1), k, n � N.

Proof: Because C
k
(n) is the number of chains, then C

k
(n) = k!S(n, k) (see[6]).

For S(n.k) = �
�

n
k ��(n, k), then C

k
(n) = n!��(n, k). By Lemma 1, �(n, k) = k

n [�(n–1, k–1)
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+��(n–1, k)], then C
k
(n) = n! k

n [�(n–1, k–1) +��(n–1, k)] = k[(n–1)!�(n–1, k–1)] +
k[(n–1)!��(n–1, k)], and C

k–1
(n–1) = (n–1)!�(n–1, k–1), C

k
(n–1) = (n–1)!�(n–1, k).

Finally, we prove the recurrence relation

C
k
(n) = kC

k–1
(n – 1) + kC

k
(n – 1), k, n � N.

Theorem 3: Suppose C(n) is the total number of ordered partitions of set [n],

then �(n) = 1
!n C(n).

Proof: By Lemma 3, then �(n) = �� 1

n

k �(n, k) = �
��� 1

n k
nk S(n, k) = � ��1

1

n

n k k!S(n,

k) = �
1
n C(n).

The proof is completed.

4. SERIES OF COMBINATORIAL IDENTITIES ON (n, k)

A Pell number P
n
 is satisfied as follows generating function

�

�

� �
� �

� 2
0 1 2

n
n

n

x
P x

x x

P
n
 may be interpreted combinatorially as the number of tilings of a 1× (n – 1) rectangle

with tiles of size 1 × 1 and 1 × 2, where each 1 × 1 tile can be red or blue.

Theorem 4: Suppose �(n, k)(n, k � N) are associated numbers, and P
n
(n � 1) are

Pell numbers, then

� �

� �
� �

� �� �
� � � � � �� �� �� � �� �� � ��� �

� �1 1
0 0

1 1 1
( )

( ) ( )
k n k

kk k
n n

n k t P k t
nt t

where � � � � � � � � �1 2 1 2

Proof: When 1 – 2t – t2 = 0, t2 + 2t – 1 = 0, let � = –1 + 2 , � = –1 – 2 , and
t2 + 2t – 1 = (t – ��(t – �), then

� �� �� � � �
� � � � � � �� ��� �� �� �� �� ��� �� ��� � � �2

( ) 1 1 1
( )( ) ( )( )1 2

t t t

t t t t t t tt t

2 1 1 1
( )

1 2 ( ) ( ) ( )
( ) , ( ) ,k k k

kt k k k
t t t t t

G t G t � � �
� � � �

���� � �� �� ��
� �� � � �� �� �

 on the other hand,

75



6 LIMIN & TIANMING WANG

0
k

kn
P t

�

��  = 21 2
t
t t� �

, P
k
(k � 1) are Pell numbers, P

0
 = 1, g(k) = P

k
, for k � 1. By

Lemma 2, then we derive the relation between associated numbers and Pell numbers
as follows

1 1 1
0 1

1
( )

( ) ( ) ( )

n
k k

kk k k
n k

k k k k
n k t P t

k nt t t
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� � � � �� �� �� � �� ��� � � ��� �� �� �
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� � � � � �� �� �� � �� �� � ��� �

� �

where 1 2 1 2� � � � � � � � �

Corollary 1: If P
n
 is any Pell number, then there exists the recurrence relation

1 1
2

1 1
( 1) ( 1) ( 1) (3 4)

4 4
l

m n n
l m n

m P n P n P� �
� �
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where n is non-negative integers.

Proof: Because of

2 2

1

(1 2 )x x� �
= 
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1 1 2

x

x x x
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= 
2
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n

n
n

P x
x

�

�

�� �
� �
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= 2 1

0 1

( 1)n n n
n

n n

x nP x
� �
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= 2
1

0 0

( 1) ( 1)n n n
n

n n

x n P x
� �

�
� �
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= 1
0 2

( 1) ( 1)l k
m

k l m k

m P x
�
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� � �
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� �� �
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= 1
0 2

( 1) ( 1)l n
m

n l m n

m P x
�

�
� � �

� �
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� �
� �

and 2 2
1 1

40(1 2 ) nx x

�
�� �

��  ((n + 1)P
n
 + (3n + 4)P

n
+1) xn(see [5]), then there exists

the recurrence relation

� �1 1 1
2

1 1 1
( 1) ( 1) ( 1) (3 4) ( 1) (3 4)

4 4 4
l

m n n n n
l m n

m P n P n P n P n P� � �
� �
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The proof is completed.

Theorem 5: There exists the equality between Chebishev polynomial U
k
(x) of

the second kind and associated numbers �(n, k) as follows

1 1
1 2 1 12 1

1 1 1 1
( ) ( )

( ) ( )
k n k

kk k
k k

n k t U x k t
nt t

� �

� �
� �

� �
� � � � �� �� � � �� � � �� �

� �

where 2 2
1 21 1 ( 1) (1 )x x x x x� � � � � � � � � � � ���� ��� ��

Proof: Suppose t2 – 2t + 1 = 0, then �
1
 = x + 2 1x � , �

2
 = x – 2 1x � , x �

(–�, –1) � (1, + �),

2 2
1 2 1 2 2 1

1 1 1 1 1 1
( )

( )( )1 2 1 2
G t

t t t ttx t tx t

� �
� � � � � �� �� � � � � � � � � � �� � � �� �

( )
1 1 1 1

1 2 1 22 1 2 1

1 1 1
( )

( ) ( ) ( ) ( )
k

k k k k

k k k
G t

t t t t� � � �

� � � �� � �
� � � � �� � � �� � � � � �� � � � � � � �� � � �

On the other hand, G(t) is the generating function of Chebishev polynomial
U

k
(x) of the second kind,

2
0

1
( ) ( ) ( [3]) ( ) ( ) 1

1 2
k

k k
k

G t U x t see g k U x k
tx t�

� � � � � � �
� ��

by Lemma 2, then we have the equality as the following
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1 1
1 21 12 1

1 1 1
( ) ( )

( ) ( )

n
k k

kk k
k k

k k
n k t U x t

k nt t

� �

� �
� �

� ��
� � � � �� �� � � � �� � � �� �

� �

1 1
1 2 1 12 1

1 1 1 1
( ) ( )

( ) ( )
k n k

kk k
k k

n k t U x k t
nt t

� �

� �
� �

� �
� � � � �� �� � � �� � � �� �

� �

where �
1
 = x + 2 1x � , �

2
 = x – 2 1x � , x � (–�, –1) � (1, + �).

Corollary 2: U
k
(x) = 

1 1
1 2

22 1

k k

x

� �� � �
�

�
where �

1
 = x + 2 1x � , �

2
 = x – 2 1x � , x �

(–�, –1) � (1, + �), k � N

Proof: The authors give a simple proof for Corollary 2. By the course of Theorem
5, and

�
1 
�

2
= 1,

2

1

1 2tx t� �
= 1 2

1 2 2 1 1 2 1 2

1 1 1 1
1 1t t t t

� � � �� �
� � �� � � �� � � � � � � � � � � � � �� � � �

= 1 1 2 2
1 2 0 0

1 k k k k

k k

t t
� �

� �

� �
� � � � �� �� � � � �
� �

= � �1 1
1 2

1 2 0

1 k k k

k

t
�

� �

�

� � �
� � � �

= 
1 1

1 2

2
0 2 1

k k
k

k

t
x

� ��

�

� � �
�

�
�

2

1

1 2tx t� �
= 

0

( ) k
k

k

U x t
�

�

��

then we have the formula 
1 1

1 2

2
( )

2 1

k k

kU x
x

� �� � �
� �

�
where �

1
 = x + 2 1x � , �

2
 = x –
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2 1x � , x � (– �, –1) � (1, + �), k � N.

Corollary 3: There exists the identity

1 1

1 12 1 1
(2 3 ) (2 3 )

1 0 1

11
1 ( 1) 2 3 ( ) k k

k k ln k l l k k

t t
k l k

k
k t n k t

n l � �

� � �� �� �
� � � �

� � �

�� � � �� �� � � � � � �� �� � � �� �� � �
� � �

Proof: Let x = 2, then �
1
 = 2 + 3 ,  �

2
 = 2 – 3 .

U
k
(2) =

1 1(2 3) (2 3)

2 3

k k� �� � �

=
1 11 11

0 0

1 11
2 3 ( 1) 2 3

2 3

k kk l k ll k l l

l l

k k

l l

� �� � � �� �

� �

� �� �� � � �
� �� �� � � �

� � � �� �
� �

=
1 12

0

11
1 ( 1) 2 3

2 3

k k lk l l

l

k

l

� � �� �

�

�� �� �� � �� �� � � �
�

By Theorem 7, we have the identity

1 1

1 12 1 1
(2 3 ) (2 3 )1 0 1

11
1 ( 1) 2 3 ( ) k k

k k ln k l l k k

t tk l k

k
k t n k t

n l � �

� � �� �� �
� � � �� � �

�� � � �� �� � � � �� � � � �� �� � � �� �� � �

Corollary 4: There exists the identity

1 1

1
2 1 1 1

(3 2 2 ) (3 2 2 )1 0 1

11
1 ( 1) 3 (2 2) ( ) k k

k
n k l l k l k k

t tk l k

k
k t n k t

n l � �

� � �
� � � �

� � � �� � �

�� � � �� �� � � � �� � � � �� �� � � �� �� � �

Proof: Let x = 3, then �
1
 = 3 + 2 2 , �

1
 = 3 – 2 2 .

U
k
(3) =

1 1(3 2 2) (3 2 2)

4 2

k k� �� � �

=
1 1

1 1 1

0 0

1 11
3 (2 2) ( 1) 3 (2 2)

4 2

k k
l k l k l l k l

l l

k k

l l

� �
� � � � � �

� �

� �� �� � � �
� �� �� � � �

� � � �� �
� �

=
1

2 1

0

1
1 ( 1) 3 (2 2)

4 2

k
k l l k l

l

k l

l

�
� � � �

�

�� �� �� � �� �� � � �
�
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By Theorem 5, then we have the identity

1 1

1
2 1 1 1

(3 2 2 ) (3 2 2 )1 0 1

11
[1 ( 1) ] 3 (2 2) ( ) k k

k
n k l l k l k k

t tk l k

k
k t n k t

n l � �

� � �
� � � �

� � � �� � �

�� � � �� � � � � � � � � �� � � �� �� � �

Theorem 6: There exists the equality

1 1

2 2 1
( ) ( 1 ( ))

1 (1 )

k
n k

d k
k k

d k d k t
n k t D k a k t

k k nt

� �

�
� �

� �� � � �� � � �
� � � � � � �� �� � � �� ��� � � �� �

� �

where (a) = (1, 1, ��, 1); the number of 1 in (a) is d.

Proof: Let G(t) = 
(1 )d

t
t�
�  d � N, and G(t) = 1

1 1
(1 ) (1 )

,d dt t �� �
�  G (k)(t) =

1 1 1

1

(1 ) (1 )
k k
d d

d d

t t� � �

�

� �
� , on the other hand ,

1 20 0
0

1

( ) ( 1)
(1 ) d

i

d
n k

d
x x x kn k

x

i d

t
G t t t t t

t

� �

� � � �� �
�

� �

� �
� � � �� �

� � �
� � �

�

the equation a
1
x + a

2
x + � + a

d
x

d
 = n, the number of solutions of non-negative

integers is denoted by D(n; (a)), (a) = (a
1
, a

2
, � , a

d
) (see Louis Comtet [3]), then

G(t) = t
0k

�

�
� D(k; (a))tk, where (a) = (1, 1, � , 1), the number of 1 in (a) is d, G(t) =

0k

�

�
� D(k – 1; (a))tk, g(k) = D(k – 1; (a)), k � 1.

By Lemma 2, then we have the equality

1
1 1

11
( ) ( 1 ( ))

(1 ) (1 )

n
k kk k

d k d k
k k

d d k
n k t D k a t

k nt t

� �

� � �
� �

� ��
� � � � � � �� �

� �� �� �� �
� �

1

1
1 1

21
( ) ( 1 ( ))

(1 )(1 )

d k
n

k k k
d k

k k

d k k
n k t D k a t

t k nt

� �� �� �� �� �
� �

� �
� �

� �
� �� �� �

� � � � � � �� �� �� �� � �� �
� �

� �
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1 1

2 2 1
( ) ( 1 ( ))

1 (1 )

k
n k

d k
k k

d k d k t
n k t D k a k t

k k nt

� �

�
� �

� �� � � �� � � �
� � � � � � �� �� � � �� ��� � � �� �

� �

The proof is completed.

Corollary 5[2]: If �(n) is the number of all associated numbers, then �(n) =

1
1

1

2

n

k
k

k
n

�

�
��� .

Proof: Let d = 1, by Theorem 8, then we have the relation equality

1
1 1

1 1 1
( ) ( 1 ( ))

1 (1 )

k
n k

k
k k

k k t
n k t D k a k t

k k nt

� �

�
� �

� �� �� � � �
� � � � � � �� �� � � �� ��� � � �� �

� �

where (a) = (1).

Because of (a) = (1), and D(k – 1; (a)) = 1, then we have the equality

1
1 1

1
( )

(1 )

k
n k

k
k k

t
n k k t

nt

� �

�
� �

� � � �
��

� �

and k > n, �(n, k) = 0, let t = 1
2 , so that we gain

�(n) = 
1

1 1

1
( )

2

nn

k
k k

k
n k

n

�

�
� �

� � � �
�� �

Corollary 6: If C(n) is the total number of chains, then C(n) =
1

1 2

n

k
k

k�

�
�

��

Proof: Because of C
k
(n) = k!S(n, k),C(n) = 

1
( )

n

k
k S n k

�
� � � =

1
( )

n

k
n n k

�
� �� � = n!

1

n

k�
�

�(n, k), by Corollary 5, then

1 1
1 1

1
( )

2 2

n n

k k
k k

k k
C n n

n

� �

� �
� �

� � � �
�� �

Corollary 7: There exists the combinatorial identity
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1
1 1 2

nn
k n

k
k k

k
O

�

�
� �

� � �� �

Proof: Because of �kOn = k!S(n, k)(see[6]), then 
1 1

n n
k n

k k
O

� �
� � � � k!S(n, k).

By Corollary 6, 121 1
( )

n

k
k

k k
k S n k �

� �

� �
� � � � � �  then there exists the combinatorial identity

121 1

n

k

n
k n k

k k
O �

�

� �
� � � � �

Theorem 7: If �(n, k) is any associated number, F
k
 is the k–th Fibonacci number,

k � 1, n � N, then

1 1
1 11 2

1 1
( ) 5

( ) ( )

n
k k

kk k
k k

k
n k t F t

nt t

� �

� �
� �

� �
� � � � �� � �� � � �� �

� �

where �
1
 = 2

1 5 1 5
2 2

� � � �
� � � �

Proof: Let G(t) = 
2

1 2 1 2

1 1 1 1

1 t tt t

� �
� � �� �� � � � � � �� � � �

 and 1
1 5

2
� �

� � , �
2
 =

1 5
2

� �
, ( )

1 1
1 2 1 2

1
( )

( ) ( )
k

k k

k k
G t

t t� �

� �� �
� �� �� � � � � � �� �

, k � 1.

When G(t) = 
2

0

1

1
k

k
k

F t
t t

�

�

� �
� �

� F
k
 is any k–th Fibonacci number, k � 1, then

g(k) = F
k
, k � 1, 

1 1 1 5 1 5
2 25

k k

kF
� �� �� � �

� �� � �� � �

By Lemma 2, then we have the relation equality

1 1
1 21 11 2

1 1
( )

( ) ( )

n
k k

kk k
k k

k k k
n k t F t

k nt t

� �

� �
� �

� �� �
� � � � �� �� � � � �� � � �� �

� �
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1 1
1 11 2

1 1
( ) 5

( ) ( )

n
k k

kk k
k k

k
n k t F t

nt t

� �

� �
� �

� �
� � � � �� � �� � � �� �

� �

where 1 2
1 5 1 5

2 2
� � � �

� � � � � �

Corollary 8: If F
n
 is the n–th Fibonacci number, then there exists the recurrence

relation

1 1
1 3

( 1) 2 ( 1) ( 1) 1
5 5

l l
n n n

l m n

m F n F n F� �
� �

� �� � � � � � �� �
� �

�

Proof:

2 2

1

(1 )x x� �
=

2
0 0

1 1
( 2)

1 2 1
n n n

n
n n

x F x
x x x

� �

� �

�� � �� � � � � �� �� � �� � � �
� �

= 1

0 1

( 1) 2n n n n
n

n n

x nF x
� �

�

� �

�� �

= 1
0 0

( 1) 2 ( 1)n n n n
n

n n

x n F x
� �

�
� �

� �� �

= 1
0

( 1) 2 ( 1)l l k
m

k l m k

m F x
�

�
� � �

� �
� �� �

� �
� �

= 1
0

( 1) 2 ( 1)l l n
m

n l m k

m F x
�

�

� � �

� �
� � �� �

� �
� �

and

12 2
0

1 1 1 3
1 ( [5])

5 5 5(1 )
n

n n
n

n F n F x see
x x

�

�
�

� �� � � �� � � � �� � � �� �� � � � � �� �
�

Then there exists the recurrence relation

1 1
1 3

( 1) 2 ( 1) ( 1) 1
5 5

l l
m n n

l m n

m F n F n F� �
� �

� �� � � � � � �� �
� �

�
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The proof is completed.

Theorem 8: Suppose T
k
(x) is Chebishev polynomial of the first kind, and

2
0

1
( )

1 2
k

k
k

tx
T x t

tx t�

�
� �
� ��

then

2 2
1 1 1

1 21 12 1 2

1 (1 ) ( 1)
( ) ( )

( ) ( ) ( )

n
k k

kk k k
k k

x x x k
n k t T x t

nt t t

� �

� � �
� �

� �� �� � � �� �� � � � � �� �� �� � � �� � � � � �� �� �� �
� �

where 2 2
1 21 1 ( 1) (1 )x x x x x� � � � � � � � � � � ���� ��� ��

Proof: Let 1–2tx + t2 = 0, �
1
 = x+ 2 1x � , �

2
 = x– 2 1x � ,

 
x � (–�, –1)���(1, + �),

21 2

tx

tx t� �
= 1 1

1 2 1 2

( )
( )( ) ( )( )

xt x t

t t t t

� � � �
�

� � � � � � � �

= 1

1 2 2 1 2

1 1x x
t t t

� ��
� � �� �� � � � � � � � �� �

2

1

1 2tx t� �
=

1 2

1
( )( )t t� � � �

= 
1 2 2 1

1 1 1
then

t t

� �
� �� �� � � � � � �� �

2

1

1 2

tx

tx t

�
� �

= 
2 2

1

1 2 1 2

tx

tx t tx t
�

� � � �

= 1

1 2 2 1 1 2 2 1 2

1 1 1 1 1x x
t t t t t

� � � ��
� � � � �� � � �� � � � � � � � � � � � � � � �� � � �

Let 
2

1
( )

1 2

tx
G t

tx t

�
� �
� �

 then
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1
1 1 1 1 1

1 2 1 22 1 2 1 2

1
( )

( ) ( ) ( ) ( ) ( )
k k k k k k

k k x k k xk
G t

t t t t t� � � � �

� � � �� � � � � �
� � � � � �� � � �� � � � � �� � � � � � � � � �� � � �

On the other hand, T
k
(x) is the Chebishev polynomial of the first kind, its

generation function 
2

0

1
( ) ( )

1 2
k

k
k

tx
T x t G t

tx x

�

�

�
� � �
� �

�  then g(k) = T
k
(x), k � 1.

By Lemma 2, then we derive the identity between �(n, k) and the Chebishev
polynomial T

k
(x) of the first kind as follows

1
1 1 1 1

1 2 1 21 2 1 2 1

1 1
( )

( ) ( ) ( ) ( )k k k k
k

k k x k k
n k

k t t t t

�

� � � �
�

� � � �� � � � � �
� � � � �� � � � �� � � � � � �� � � � � � � �� � � � �

�

1
12

( )
( )

n
k k

kk
k

xk k
t T x t

nt

�

�
�

�� �� � �� �� � ��
�

2 2
1 1 1

1 21 12 1 2

1 1 1
( ) ( )

( ) ( ) ( )

n
k k

kk k k
k k

x x x k
n k t T x t

nt t t

� �

� � �
� �

� �� �� � � �� �� � � � �� �� �� � � �� � � � � �� �� �� �
� �

2
1 1 1

1 21 12 1 2

1 1 1( ) ( )
( ) ( ) ( )

n
k k

kk k k
k k

x x kn k t T x t
nt t t

� �� �� �
� �� �� �� �� � �� �� �� �� �� �

� �� � � � �
� � � �� � � � � �� �

where �
1
 = x + 2 1x � , �

2
 = x – 2 1x � .

Corollary 9: If T
n
(x) is the Chebishev polynomial of the first kind, then T

n
(x) =

1 2

2

n n� � �
, �

1
 = x + 2 1x � , �

2
 = x – 2 1x � , x � (–�, –1) � (1, + �), n � N.

Proof: Here we give a method to prove the Corollary 9 by the course of Theorem
8. By Theorem 8,

1
2

1 2 2 1 1 2 2 1 2

1 1 1 1 1 1
( )

1 2

tx x x
G t

t t t t ttx t

� � � �� �
� � � � � � �� � � �� � � � � � � � � � � � � � � �� � � � � �

�
1
�

2
 = 1 and �

1
 – �

2
 = 2 2 1x � , then
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G(t) =
1 2 2 10 02 1

1 1 1k k

k k
k k

t t� �

� �

� �
�� �� � � � �� �� �

� �

1

1 2 2 1 20 0 02 1 2

1 1k k k

k k k
k k k

x t t x t� � �

� � �

� ��
� � �� �� � � � � �� � �� �

� � �

= 1 1
1 1 1 1 1

1 2 0 02 1 2 1 2

1 1 1 k
k

k k k k k
k k

x x t
t x

� �

� � � � �
� �

� �� �
� � � �� �

� � � � � � � �� �
� �

= 1
1 1 1

1 2 0 02 1 2

1 1 1 k
k

k k k
k k

x t
t x

� �

� � �
� �

� �� �
� �� �

� � � � � �� �
� �

= 2 1
1 1

1 2 1 20 2 1

1 1 1 1 k
k k

k

x x
t

�

� �
�

� �� � � �
�� �

� � � � � �� �� �
�

=
1 1

2 1 1 2
1

0 1 2 1 2

(1 ) (1 )

( )( )

k k

k
k

x x� ��

�
�

� � � � � � �
� � � � �

�

=
1 1

2 1 1 2

2
0

(1 ) (1 )

2 1

k k
k

k

x x
t

x

� ��

�

� � � � � � �
�

�
�

and G(t) = 0k
�
�� T

k
(x)tk, so that

1 1
2 1 1 2

2

(1 ) (1 )
( )

2 1

k k

k
x x

T x
x

� �� � � � � � �
� �

�

Finally, we derive the Chebishev polynomial of the first kind

T
n
(x) =

1 1
2 1 1 2 1 1 2 2

2 2

(1 ) (1 ) ( ) ( )

2 1 2 1

n n n nx x x x

x x

� �� � � � � � � � � � � � � �
�

� �

=
2 2

1 2 1 2

2
1

1 1
22 1

n n n n

n

x x

x

� � � � � � � �
� �

� �
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where �
1
 = x + 2 1x � , �

2
 = x – 2 1x � , n � N.

This completes the proof.

5. SERIES OF COMBINATORIAL IDENTITIES ON C
k
(n)

Theorem 9: There exists the combinatorial identity

1 1
1 1

( ) 2 2
( ) ( )

k n k
k kk k

k k

C n t P k t
t t

� �

� �
� �

� �� �
� � �� �

� � ��� �
� �

where P
k
(k � 1) are Pell numbers, � = –1 + 2  and � = –1 – 2 .

Proof: Because of �(n, k) = k
n
�
� S(n, k) = 1

n�Ck
(n) and by Theorem 4, then

1 1
1 1

( ) 2 2
( ) ( )

k n k
k kk k

k k

C n t P k t
t t

� �

� �
� �

� �� �
� � �� �

� � ��� �
� �

where P
k
(k � 1) are Pell numbers, � = –1 + 2  and � = –1 – 2 .

Theorem 10: There exists the combinatorial identity

2
1 1

1 12 1

1 1
( ) 2 1 ( )

( ) ( )
k n k

k kk k
k k

C n t x U x k t
t t

� �

� �
� �

� �
� � � �� �

� � � �� �
� �

where U
k
(x) = 

1 1
1 2

22 1

k k

x

� �� ��

�
�  �

1
 = x+ 2 1x � , �

2
 = x– 2 1x � , and x � (–�, –1)�(1, �).

Proof: Because of �(n, k) = 1
n�Ck

(n) and by Theorem 7, then

2
1 1

1 12 1

1 1
( ) 2 1 ( )

( ) ( )
k n k

k kk k
k k

C n t x U x k t
t t

� �

� �
� �

� �
� � � �� �

� � � �� �
� �

where U
k
(x) = 

1 1
1 2

22 1

k k

x

� �� ��

�
� k � N, �

1
 = x + 2 1x � , �

2
 = x – 2 1x � , and x ��(–�, –1)��

(1, �).
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Corollary 10: There exists the combinatorial identity

1 12

1 0

1
1 ( 1) 2 3

k k ln k l l k

k l

k
k t

l

� � � �� �

� �

�� �� �� � � �� � � �
� �

=
1 1

1

1 1
( )

(2 3 ) (2 3 )
k

k k k
k

C n t
t t

�

� �
�

� �
� �� �

� � � �� �
�

Proof: Because of �(n, k) = 1
n� Ck

(n) and by Corollary 3,then

1 12

1 0

1
1 ( 1) 2 3

k k ln k l l k

k l

k
k t

l

� � � �� �

� �

�� �� �� � � �� � � �
� �

=
1 1

1

1 1
( )

(2 3 ) (2 3 )
k

k k k
k

C n t
t t

�

� �
�

� �
� �� �
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�

Corollary 11: There exists the combinatorial identity

1
2 1

1 0

1
1 ( 1) 3 (2 2)

k
n k l l k l k

k l

k
k t

l

� �
� � � �

� �

�� �� �� � � �� �� �
� �

=
1 1

1

1 1
( )

(3 2 2 ) (3 2 2 )
k

k k k
k

C n t
t t

�

� �
�

� �
� �� �

� � � �� �
�

Proof: Because of �(n, k) = 1
n� Ck

(n), by Corollary 4, then

1
2 1

1 0

1
1 ( 1) 3 (2 2)

k
n k l l k l k

k l

k
k t

l

� �
� � � �

� �

�� �� �� � � �� � � �
� �

1 1
1

1 1
( )

(3 2 2 ) (3 2 2 )
k

k k k
k

C n t
t t

�

� �
�

� �
� � �� �
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�

Theorem 11: There exists the combinatorial identity

1 1

2 2
( ) ( 1 ( ))

1 (1 )

k
n k

k d k
k k

d k d k t
C n t D k a k t

k k t

� �

�
� �

� �� � � �� � � �
� � � � �� �� � � �� �� � � �� �

� �
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where (a) = (1, 1, � , 1), the number of 1 in (a) is d.

Proof: Because of �(n, k) = 1
n� Ck

(n) and by Theorem 6, then

1 1

2 2
( ) ( 1 ( ))

1 (1 )

k
n k

k d k
k k

d k d k t
C n t D k a k t

k k t

� �

�
� �

� �� � � �� � � �
� � � � �� �� � � �� �� � � �� �

� �

where (a) = (1, 1, � , 1), the number of 1 in (a) is d.

Theorem 12: There exists the combinatorial identity

1 1
1 11 2

1 1
( ) 5

( ) ( )
k n k

k kk k
k k

C n t F k t
t t

� �

� �
� �

� �
� � �� �

� � � �� �
� �

where F
k
 is the k-th Fibonacci number, 1 5

1 2
� �� � and 1 5

2 2 k N� �� � � � �

Proof: Because of �(n, k) = 1
n� Ck

(n) and by Theorem 7, then

1 1
1 11 2

1 1
( ) 5

( ) ( )
k n k

k kk k
k k

C n t F k t
t t

� �

� �
� �

� �
� � �� �

� � � �� �
� �

where F
k
 is the k-th Fibonacci number, 1 5

1 2
� �� � and 1 5

2 2 k N� �� � � � �

Theorem 13: There exists the combinatorial identity

2 2
1 1 1

1 21 12 1 2

1 1 1
( ) ( )

( ) ( ) ( )
n k

k kk k k
k k

x x x
C n T x k t

t t t

� �

� � �
� �

� �� �� � � �� �� � � �� �� �� � � � � � � � �� �� �� �
� �

where �
1
 = x + 2 1x � , �

2
 = x – 2 1x �  and T

k
(x) = 1 2

2

k k� �� �  k � N.

Proof: Because of �(n, k) = 1
n� Ck

(n) and by Theorem 8, then

2 2
1 1 1

1 21 12 1 2

1 1 1
( ) ( )

( ) ( ) ( )
n k

k kk k k
k k

x x x
C n T x k t

t t t

� �

� � �
� �

� �� �� � � �� �� � � �� �� �� � � � � � � � �� �� �� �
� �
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where �
1
 = x + 2 1x � , �

2
 = x – 2 1x �  and T

k
(x) = 1 2

2

k k� �� � k � N.

Corollary 12: There exists the combinatorial identity

2
[ ]

3 1 2
1 1

1 1 1

5 2 6 15 2 6
2 3 5 ( )

2 (5 2 6 ) (5 2 6 )

k

n l l k l k k
k k k

k l k

k
k t C n t

l t t

� �
� �

� �
� � �

� � � �� � � � �� � � � �� � � �� �
� � � �� �� � � �� �

� � �

Proof: Let x = 5, then �
1
 = 5 + 2 6 , �

2
 = 5 – 2 6 . For x = 5,

T
k
(5) = 

0 0

(5 2 6) (5 2 6) 1
(2 6) 5 ( 2 6) 5

2 2

k k k k
l k l l k l

l l

k k

l l
� �

� �

� �� � � �� � �
� � �� �� � � �

� � � �� �
� �

2
[ ]

2 2

0 0

1 1
[1 ( 1) ] (2 6) 5 2 (2 6) 5

2 2 2

k
k

l l k l l k l

l l

k k

l l
� �

� �

� � � �
� � �� � � �

� � � �
� �

22
[ ]

2 2 3 2

0 0

2 6 5 2 3 5
2 2

kk

l l k l l l k l

l l

k k

l l

� �� �
� �

� �

� � � �
�� � � �

� � � �
� �

2 2
1 1 1

1 2 1 2

1 1 1
2 ( ) ( ) ( )k k k

x x x

t t t� � �

� �� � � �
� �� �� � � � � � � � �� �

1 1 1

1 10 6 24 24 10 6 5

4 6 (5 2 6 ) (5 2 6 ) (5 2 6 )k k kt t t� � �

� �� �
� �� �

� � � � � �� �

1 1

1 5 2 6 15 2 6
2 (5 2 6 ) (5 2 6 )k kt t� �

� �� � �
� �� �

� � � �� �

Then by Theorem 13, there exists the combinatorial identity

2
[ ]

3 2
1 1

1 1 0

1 5 2 6 15 2 6
( ) 2 3 5

2 2(5 2 6 ) (5 2 6 )

k

k n l l k l k
k k k

k k l

k
C n t k t

lt t

� �
�

� �
� � �

� � � �� � �
� � �� � � �

� � � � � �� �
� � �
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2
[ ]

3 1 2
1 1

1 0 1

5 2 6 15 2 6
2 3 5 ( )

2 (5 2 6 ) (5 2 6 )

k

n l l k l k k
k k k

k l k

k
k t C n t

l t t

� �
� �

� �
� � �

� � � �� � � � �� � � � �� � � �� �
� � � �� �� � � �� �

� � �

Theorem 14: For any C
k
(n), k, n � N, if G(t) = 1k

�

��  g(k)tk, g(k) is one complex

coefficient, k � 1, then there exists the combinatorial formula

( )

1 1

( ) ( ) ( )
k

k n k
k

k k

t
C n G t g k k t

k

� �

� �

� �
�� �

Proof: Because of C
k
(n) = k!S(n, k) = n!�(n, k), then �(n, k) = 1

n�Ck
(n). By Lemma

2, there exists the equality

( )

1 1

( )
( ) ( )

k
k n k

k k

t g k
n k G t k t

k n

� �

� �

� � � �
� �� �

Then

( ) ( )

1 1 1 1

1 ( )
( ) ( ) ( ) ( ) ( )

k k
k n k k n k

k k
k k k k

t g k t
C n G t k t C n G t g k k t

n k n k

� � � �

� � � �

� � � �
� � � �� � � �

The proof is completed.

Corollary 13: For any C
k
(n), k, n � N, there exists the equality

1
1 1

( )
(1 )

k
n k

k k
k k

t
C n k t

t

� �

�
� �

� �
�

� �

Proof: Let G(t) = 1
1 t� , then G(k)(t) = 1(1 )k

k
t �
�

�
 and G(t) = 1

01 kt
�
�� � � , here g(k) = 1,

k � 1. By Theorem 13 we have the equality

1
1 1

( )
(1 )

k
n k

k k
k k

t
C n k t

t

� �

�
� �

� �
�

� �

Corollary 14: Let C(n) be the total number of chains, then

1
1

( )
2

n

k
k

k
C n (see Corollary 6)

�

�
�

� ��
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Proof: We give another method to prove Corollary 14.

Let t = 1
2  and by Corollary 13. Then we derive the explicit formula as follows

1
2

1 11
1 1 1 12

( ) 1
( ) ( ) ( )

2(1 ) 2

kk nn
n

k kk k
k k k k

k
C n k C n C n

� � �

� �
� � � �

� �� � � � �� �� � �
� � � �

6. THE REPRESENTING FORMULA OF (n)

Theorem 15: If �(n) is the number of all associated numbers, then

1

1
( )

n
k n

k

n O
n �

� � �
��

, where � is the difference operator.

Proof: By Corollary 5, then �(n) = 1
1

1 2

n

k
k

kn �
�
�� � �  On the other hand, by Corollary

7, then 11 1 2

n

k
k n k

k kO �
� �
� �� � � � . Finally, �(n) = 1

1
n k n
kn O�� � � .

Here we solve the representing formula of �(n).

Corollary 15: There exists the combinatorial identity

1
1 0 1

( 1)
2

nn k
k i n

k
k i k

k k
i

i

�
�

�
� � �

� �
� � �� �

� �
�� �

Proof: Because of �kOn = 0 ( 1) kk k i n
i i

i
� �� � �� � �
� �

� � (see[6]) and by the course of

Theorem 15 10 1 2

n

k
n k n k
k kO �

�
� �� � � � �  then

1
1 0 1

( 1)
2

nn k
k i n

k
k i k

k k
i

i

�
�

�
� � �

� �
� � �� �

� �
�� �

7. CONCLUSIONS AND FUTURE WORK

In this paper, we solve the generating function of associated numbers �(n, k), obtain
the explicit formulas of C(n) and �(n), discuss series of combinatorial formulas
involving Lucas number, Pell number, Fibonacci number and Chebishev numbers,
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finally, present the representing formula of �(n) on the difference operator. In future
work, we will give some other results on associated numbers �(n, k).
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