INDEPENDENT SET POLYNOMIALS I(G; x) AND INDEPENDENCE POLYNOMIALS $I_{\alpha}(G; x)$ (Series 3)

Liming Yang

RECEIVED: January 13, 2018. Revised April 27, 2018

ABSTRACT: In graph theory, independent set polynomials I(G; x) and independence polynomials $I_{\alpha}(G; x)$ are NP-hard (see [1] and [2]). In this paper, our ways are combinatorial counting methods. In the use of counting theory of $S^{(n)}$ -factors with exactly k components, the author gains the representing formula of independent set polynomials I(G; x) and independence polynomials $I_{\alpha}(G; x)$, where let $b_k(G)$ be exactly k-independent sets of G, and presents the explicit formulas of independent set polynomials I(G; x) and independence polynomials $I_{\alpha}(G; x)$ for a great deal of graphs.

Keywords: Component; N(G; k), independent set polynomials, independence polynomials.

AMS(2000) SUBJECT CLASSIFICATION: 05A18 05C10.

1. INTRODUCTION

In this paper, the author will solve independent set polynomials I(G; x) and Independence polynomials $I_{\alpha}(G; x)$ by means of counting theory of $S^{(n)}$ -factors.

Definition 1.1: For $S^{(n)} = \{K_i : 1 \le i \le n\}$; $n \ge 1$, K_i is a complete graph with *i* vertices, if *M* is a subgraph of any graph *G*, and each component of *M* is all isomorphic to some element of $S^{(n)} = \{K_i : 1 \le i \le n\}$, then *M* is called one $S^{(n)}$ -subgraph, if *M* is a spanning subgraph of *G*, then *M* is called one $S^{(n)}$ -factor of *G*.

Let N(G, k) denote the number of $S^{(n)}$ -factors with exactly k components. A(G) is

the number of all $S^{(n)}$ -factors, namely, $A(G) = \sum_{k=1}^{n} N(G, k)$.

Definition 1.2: Independent set polynomials I(G; x) are defined as

$$I(G; x) = \sum_{k=1}^{n} b_{k}(G) x^{k} = \sum_{I \subset \nu(G)} \prod_{\nu \in I} x,$$

where let $b_k(G)$ be exactly k-independent sets of G.

Complexity: It is easy to see that I(G; x) is NP-hard to compute. (see [1])

Definition 1.3: If s_k denotes the number of stable sets of cardinality k in graph G, and $\alpha(G)$ is the size of a maximum stable set, then

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} s_k x^k,$$

is called the independence polynomial of G. (Also see[2])

In the paper [8], LiMin Yang gived the recurrence relation of A(G). In the paper [9], LiMin Yang derived the recurrence formula of regular *m*-furcating tree. So far, we have solved counting problems of N(G, k) (see [10]), involving the representing formula of N(G, k) and counting formulas of a great deal of graphs, for examples, any path, cycle, complete graph, $O \odot C_n$, windgraph K_n^d , complete d-partite graph, n - 2-regular graph and n - 3-regular graph. In the paper [3], we have solved the number of exactly k independent sets of graphs. In the paper [4], we have completed enumeration of all independent sets of graphs. In this paper, the author present independent set polynomials I(G; x) and independence polynomials and the explicit formulas of classes of graphs by means of counting theory of $S^{(n)}$ -factors.

2. LEMMAS

Here we will denote that $\alpha(G, k)$ is the number of partitions of V(G) into exactly k non-empty independent sets of any graph G.

Lemma 2.1 ([3]): If N(G, k) is the number of $S^{(n)}$ -factors with exactly k components in G, and the chromatic polynomial of graph G is $f(G, t) = \sum_{p=1}^{n} Y_p t^p$, then the representing formula of $\alpha(G, k)$ is the following:

$$\alpha(G,k) = \sum_{p=k}^{n} N(K_p,k) Y_p,$$

where

$$N(K_{p},k) = \sum_{\sum_{i=1}^{p} ib_{i} = p \sum_{i=1}^{p} b_{i} = k} \frac{p!}{b_{1}!} \prod_{i\geq 2}^{p} \frac{1}{b_{i}!(i!)^{b_{i}}}.$$

Lemma 2.2 ([3]): There exists the equality $\alpha(G, k) = N(\overline{G}, k)$.

Lemma 2.3: If S(n, k) is the Stirling number of the second kind, then $N(K_n, k) = S(n, k)$, where K_n is a complete graph with *n* vertices.

INDEPENDENT SET POLYNOMIALS I(G, x) and INDPENDENCE POLYNOMIALS...

Lemma 2.4: If
$$G \cap H = \phi$$
, then $N(G \cup H, k) = \sum_{l+m=k} N(G, l)N(H, m)$.

3. MAIN THEOREMS

Theorem 3.1: If the chromatic polynomial of any graph *G* is $f(G, t) = \sum_{p=1}^{n} Y_p t^p$ then

independent set polynomial I(G; x)

$$I(G; x) = \sum_{k=1}^{n} \sum_{p=k}^{n} N(K_{p}, k) Y_{p} x^{k}.$$

Proof: Because $b_k(G)$ is exactly k-independent sets of G and $\alpha(G, k)$ is the number of partitions of V(G) into exactly k non-empty independent sets of any graph G, then $b_k(G) = \alpha(G; k)$. By Lemma 2.1

$$\alpha(G,k) = \sum_{p=k}^{n} N(K_p,k) Y_p,$$

where Y_p are coefficients of the chromatic polynomial of f(G, t). Then independent set polynomial I(G, x)

$$I(G; x) = \sum_{k=1}^{n} \sum_{p=k}^{n} N(K_{p}, k) Y_{p} x^{k}.$$

Theorem 3.2: There exists the equality independent set polynomials

$$I(G; x) = \sum_{k=1}^{n} N(\overline{G}, k) x^{k},$$

where $N(\overline{G}, k)$ is the number of $S^{(n)}$ -factors with exactly k components in the complementary graph \overline{G} of G.

Proof: By Lemma 2.2 $\alpha(G, k) = N(\overline{G}, k)$, so we gain

$$I(G; x) = \sum_{k=1}^{n} N(\overline{G}, k) x^{k},$$

where $N(\overline{G}, k)$ is the number of $S^{(n)}$ -factors with exactly k components in the complementary graph \overline{G} of G.

4. CLASSES OF GRAPHS INDEPENDENT SET POLYNOMIALS I(G; x)

In the section, we will obtain classes of graphs independent set polynomials I(G; x), for examples, any (n-2)-regular graph, (n-3)-regular graph and complete *d*-partite graph, tree.

Theorem 4.1: If G is a (n - 2)-regular graph with n (even 2m) vertices, then independent set polynomial

$$I(G; x) = \sum_{k=m}^{2m} \binom{m}{k-m} x^k.$$

Proof: Let G be a (n-2)-regular graph with n (even 2m), then \overline{G} is a 1-regular graph, namely, $\overline{G} = K_2 \cup K_2 \cup ... \cup K_2$, and the number of K_2 is m. We have

$$N\left(\overline{G},k\right) = \begin{cases} 0, & 1 \le k < \frac{n}{2}, \\ \left(\frac{n}{2} \\ k - \frac{n}{2}\right), & \frac{n}{2} \le k \le n. \end{cases}$$

Finally, by Theorem 3.2 then independent set polynomial

$$I(G; x) = \sum_{k=1}^{n} \begin{pmatrix} \frac{n}{2} \\ k - \frac{n}{2} \end{pmatrix} x^{k} = \sum_{k=m}^{2m} \begin{pmatrix} m \\ k - m \end{pmatrix} x^{k}.$$

Theorem 4.2: If G is a (n-3)-regular graph with n vertices, $n \ge 6$ and $\overline{G} \cong C_n$, then

$$I(G; x) = \sum_{k=\left[\frac{n}{2}\right]}^{n} \frac{n}{k} \binom{k}{n-k} x^{k}.$$

Proof: Let G be a n - 3-regular graph with n vertices, $n \ge 6$ and $\overline{G} \cong C_n$, because

 \overline{G} is a 2-regular graph, the graph would be able to join the disjoint cycles, thus assume that C_n , say. Then we have

$$N\left(\overline{G},k\right) = N\left(C_{n},k\right) = \begin{cases} 0, & 1 \le k < \frac{n}{2}, \\ \frac{n}{k} \binom{k}{k-k}, & \frac{n}{2} \le k \le n. \end{cases}$$

By Theorem 3.2, then the result is given the following

$$I(G; x) = \sum_{k=1}^{n} \frac{n}{k} \binom{k}{n-k} x^{k} = \sum_{k=\left[\frac{n}{2}\right]}^{2m} \frac{n}{k} \binom{k}{n-k} x^{k}.$$

Corollary 4.3: If G is a (n - 3)-regular graph with n vertices, and

$$\overline{G} = C_{n_1} \bigcup C_{n_2} \bigcup \cdots \bigcup C_{n_q},$$

 $n_1 + n_2 + ... + n_q = n$, $C_{n_i} \cap C_{n_j} = \phi$ for any *i* and *j*, $i \neq j$, $3 \le n_j \le n$; $1 \le j \le q$, $q \ge 1$, $n \ge 6$, the number of $n_j = 3$ is *l*, then independent set polynomial is gained as the following

$$I(G, x) = (x + 3x^{2} + x^{3})^{l} \prod_{j=1}^{q-l} \sum_{l_{j} = \left[\frac{n_{j}}{2}\right]}^{n_{j}} \frac{n_{j}}{l_{j}} {l_{j} \choose n_{j} - l_{j}} x^{l_{j}},$$

 $\sum_{j=1}^{q-l} n_j = n - 3l.$

Proof: For $\overline{G} = C_{n_1} \bigcup C_{n_2} \bigcup \cdots \bigcup C_{n_q}$, $n_1 + n_2 + \dots + n_q = n$, $C_{n_i} \cap C_{n_j} = \phi$ for any i and $j, i \neq j, 3 \le nj \le n, 1 \le j \le q, q \ge 1, n \ge 6$, by Lemma 2.4 then

$$\begin{split} N\left(\overline{G},k\right) &= N\left(C_{n_1} \cup C_{n_2} \cup \dots \cup C_{n_q},k\right) \\ &= \sum_{l_1+l_2+\dots+l_q=k} N\left(C_{n_1},l_1\right) N\left(C_{n_2},l_2\right) \cdots N\left(C_{n_q},l_q\right) \\ &= \sum_{l_1+l_2+\dots+l_q=k} \prod_{j=1}^q N\left(C_{n_j},l_j\right). \end{split}$$

By Theorem 3.2 we have

$$I(G; x) = \sum_{k=1}^{n} N(\overline{G}, k) x^{k} = \sum_{k=1}^{n} \sum_{l_{1}+l_{2}+\dots+l_{q}=k} \prod_{j=1}^{q} N(C_{n_{j}}, l_{j}) x^{k},$$

when

$$n_{j} = 3, N(C_{3}, l) = \begin{cases} 1, & l = 1, \\ 3, & l = 2, \\ 1, & l = 3, \end{cases}$$

when

$$n_{j} \geq 4, N(C_{n_{j}}, l_{j}) = \begin{cases} 0, & 1 \leq l_{j} < \frac{n_{j}}{2}, \\ \frac{n_{j}}{l_{j}} \binom{l_{j}}{n_{j} - l_{j}}, & \frac{n_{j}}{2} \leq l_{j} \leq n_{j}. \end{cases}$$

Finally,

$$I(G; x) = \prod_{j=1}^{q} \sum_{l_j=1}^{n_j} N(C_{n_j}, l_j) x^{l_j} = (x + 3x^2 + x^3)^l \prod_{j=1}^{q-l} \sum_{l_j=1}^{n_j} N(C_{n_j}, l_j) x^{l_j}$$
$$= (x + 3x^2 + x^3)^l \prod_{j=1}^{q-l} \sum_{l_j=\lfloor \frac{n_j}{2} \rfloor}^{n_j} \frac{n_j}{l_j} \binom{l_j}{n_j - l_j} x^{l_j}$$

and $\sum_{j=1}^{q-l} n_j = n-3l$.

Theorem 4.4: If *G* is a complete *d*-partite graph K_{n_1, n_2, \dots, n_d} , and $n_1 + n_2 + \dots + n_d$ = *n*, then independent set polynomial $I(G; x) = \prod_{j=1}^d \sum_{l_j=1}^{n_j} S(n_j, l_j) x^{l_j}$, where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Proof: Suppose
$$G = K_{n_1, n_2, \dots, n_d}$$
, and $n_1 + n_2 + \dots + n_d = n$, then $\overline{G} = K_{n_1} \cup K_{n_2} \cup \dots$

 $\bigcup K_{n_d}, n_1 + n_2 + \ldots + n_d = n, K_{n_i} \cap K_{n_j} = \phi \text{ for any } i \text{ and } j, i \neq j, 3 \le nj < n, 1 \le j \le d, d \ge 2, \text{ we have}$

$$N\left(\overline{G},k\right) = N\left(K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_d},k\right)$$
$$= \sum_{l_1+l_2+\dots+l_d=k} N\left(K_{n_1},l_1\right) N\left(K_{n_2},l_2\right) \cdots N\left(K_{n_d},l_d\right)$$
$$= \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d N\left(K_{n_j},l_j\right).$$

With Lemma 2.3 $N(K_n, k) = S(n, k)$, then

$$\begin{split} N\left(\overline{G},k\right) &= N\left(K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_d},k\right) \\ &= \sum_{l_1+l_2+\dots+l_d=k} N\left(K_{n_1},l_1\right) N\left(K_{n_2},l_2\right) \cdots N\left(K_{n_d},l_d\right) \\ &= \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d N\left(K_{n_j},l_j\right). \end{split}$$

By Theorem 3.2, then we have

$$\begin{split} I(G;x) &= \sum_{k=1}^{n} N(\overline{G},k) x^{k} = \sum_{k=1}^{n} \sum_{l_{1}+l_{2}+\dots+l_{d}=k} \prod_{j=1}^{d} S(n_{j},l_{j}) x^{k} \\ &= \prod_{j=1}^{d} \sum_{l_{j}=1}^{n_{j}} S(n_{j},l_{j}) x^{l_{j}}, \end{split}$$

where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Corollary 4.5: If *G* is a complete tri-partite graph K_{n_1, n_2, n_3} , and $n_1 + n_2 + n_3 = n$, then $I(G; x) = \prod_{j=1}^{3} \sum_{l_j=1}^{n_j} S(n_j, l_j) x^{l_j}$, where $S(n_j, l_j)$ is the Stirling number of the second kind, $n_j, l_j \in N, j = 3$. *Proof:* It is easily proved by Theorem 4.1. Here we omit the proof.

Corollary 4.6: If G is a complete tri-partite graph $K_{n,n,n}$, then $I(G;x) = \prod_{j=1}^{3} I(G;x)$

 $\sum_{l_j=1}^{n} S(n, l_j) x^{l_j}$ where $S(n, l_j)$ is the Stirling number of the second kind, $n \in N, j = 3$.

Proof: It is easily proved by Corollary 4.2. Here we omit the proof.

Corollary 4.7: If G is a complete *bi*-partite graph $K_{n,n}$, then I(G; x) =

$$\left(\sum_{j=1}^n S(n,j)x^j\right)^2$$

Proof: It is easily proved by Corollary 4.3. Here we omit the proof.

Corollary 4.8: Let S(n, k) be the Stirling number of the second kind, $h(K_n, x) = \sum_{i=1}^{n} S(n, i)x^i$ (see Brenti [16]), and G is a complete bi-partite graph $K_{n,n}$. Then $I(G, x) = (h(K_n; x))^2$:

Proof: It is easily proved by Corollary 4.4. Here we omit the proof.

Theorem 4.9: If G is a tree with n vertices, then

$$I(G; x) = \sum_{k=1}^{n} \sum_{p=k}^{n} (-1)^{n-p} \binom{n-1}{p-1} N(K_p, k) x^k,$$

where

$$N(K_{p},k) = \sum_{\substack{\substack{p \\ i=1 \\ j=1 \\ i=1 \\ i=1 \\ j=1 \\ j=1$$

Proof: If G is a tree with n vertices, then the chromatic polynomial of G is f(T, t) =

$$t(t-1)^{n-1} = \sum_{k=0}^{n-1} (-1)^{n-1-k} \binom{n-1}{k} t^{k+1}.$$
 Coefficients of the chromatic polynomial of G

are
$$Y_p = (-1)^{n-p} \binom{n-1}{p-1}, 1 \le p \le n$$
. By Theorem 3.1 $I(G; x) = \sum_{k=1}^n \sum_{p=k}^n N(K_p, k) Y_p$.

then we have

$$I(G; x) = \sum_{k=1}^{n} \sum_{p=k}^{n} (-1)^{n-p} \binom{n-1}{p-1} N(K_p, k) x^k,$$

where

$$N(K_{p},k) = \sum_{\substack{\sum \\ i=1}^{p} ib_{i}=p, \sum_{i=1}^{p} b_{i}=k} \frac{p!}{b_{1}!} \prod_{i\geq 2} \frac{1}{b_{i}!(i!)^{b_{i}}}, 2 \leq p k \leq n.$$

Corollary 4.10: If P_n is any path with length n, and has n + 1 vertices, then $I(G; x) = \sum_{k=1}^{n+1} \sum_{p=k}^{n+1} (-1)^{n+1-p} \binom{n}{p-1} S(p,k) x^k$, where S(p, k) is the Stirling number of the second kind

the second kind.

Proof: Because P_n is a special tree with n + 1 vertices, by Theorem 6 we derive

the result
$$I(G; x) = \sum_{k=1}^{n+1} \sum_{p=k}^{n+1} (-1)^{n+1-p} \binom{n}{p-1} N(K_p, k) x^k$$
. By Lemma 2.3, then

 $I(G; x) = \sum_{k=1}^{n+1} \sum_{p=k}^{n+1} (-1)^{n+1-p} \binom{n}{p-1} S(p,k) x^k$, where S(p,k) is the Stirling number of

the second kind.

5. INDEPENDENCE POLYNOMIALS $I_{\alpha}(G; x)$ OF GRAPHS

In the section, the author discusses independence polynomials $I_{\alpha}(G; x)$ of graphs.

Because s_k denotes the number of stable sets of cardinality k in graph G, and $\alpha(G, k)$ is the number of partitions of V(G) into exactly k non-empty independent sets of any graph G, then $s_k = \alpha(G, k)$.

But in this paper $\alpha(G)$ is the size of a maximum stable set, in [3] $\alpha(G)$ is the number of all partitions of V(G) into exactly k non-empty independent sets of any graph *G*, here the two concepts is not the same.

Theorem 5.1: If G is a (n - 2)-regular graph with n (even 2m) vertices, $\alpha(G)$ is the size of a maximum stable set, then independence polynomial of G

$$I_{\alpha}(G; x) = \sum_{k=m}^{\alpha(G)} \binom{m}{k-m} x^{k}.$$

Proof: Let G be a (n-2)-regular graph with n (even 2m). Then \overline{G} is a 1-regular graph, namely, $\overline{G} = K_2 \cup K_2 \cup \cdots \cup K_2$, and the number of K_2 is m. We have

$$N\left(\overline{G},k\right) = \begin{cases} 0, & 1 \le k < \frac{n}{2}, \\ \left(\frac{n}{2}, k - \frac{n}{2}\right), & \frac{n}{2} \le k \le n. \end{cases}$$

Finally, $s_k = \alpha(G, k) = N(\overline{G}, k)$ and by definition 3, then independence polynomial

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \begin{pmatrix} \frac{n}{2} \\ k - \frac{n}{2} \end{pmatrix} x^{k} = \sum_{k=m}^{\alpha(G)} \begin{pmatrix} m \\ k - m \end{pmatrix} x^{k}.$$

Theorem 5.2: If *G* is a n - 3-regular graph with *n* vertices, $n \ge 6$, and $\overline{G} \cong C_n$, $\alpha(G)$ is the size of a maximum stable set, then independence polynomial of *G*

$$I_{\alpha}(G; x) = \sum_{k=\left[\frac{n}{2}\right]}^{\alpha(G)} \frac{n}{k} \binom{k}{n-k} x^{k}.$$

Proof: Let G be a n-3-regular graph with n vertices, $n \ge 6$ and $\overline{G} \cong C_n$, because \overline{G} is a 2-regular graph, the graph would be able to join the disjoint cycles, thus assume that C_n , say. Then we have

$$N(\overline{G}, k) = N(C_n, k) = \begin{cases} 0, & 1 \le k < \frac{n}{2}, \\ \frac{n}{k} \binom{k}{n-k}, & \frac{n}{2} \le k \le n. \end{cases}$$

Finally, $s_k = \alpha(G, k) = N(\overline{G}, k)$ and by definition 3, then independence polynomial of G is given the following:

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \frac{n}{k} \binom{k}{n-k} x^{k} = \sum_{k=\left\lfloor\frac{n}{2}\right\rfloor}^{\alpha(G)} \frac{n}{k} \binom{k}{n-k} x^{k}.$$

Corollary 5.3: If G is a (n - 3)-regular graph with n vertices, and

$$\overline{G} = C_{n_1} \cup C_{n_2} \cup \cdots \cup C_{n_q}$$

 $n_1 + n_2 + ... + n_q = n$, $C_{n_i} \cap C_{n_j} = \phi$ for any *i* and *j*, $i \neq j$, $3 \le n_j \le n$; $1 \le j \le q$; $q \ge 1$, $n \ge 6$, the number of $n_j = 3$ is *l*, then independence polynomial of *G* is given as follows

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2+\dots+l_q=k} \prod_{j=1}^{q} N(C_{n_j}, l_j) x^k$$

when

$$n_{j} = 3, N(C_{3}, l) = \begin{cases} 1, & l = 1, \\ 3, & l = 2, \\ 1, & l = 3, \end{cases}$$

when

$$n_{j} \geq 4, N(C_{n_{j}}, l_{j}) = \begin{cases} 0, & 1 \leq l_{j} < \frac{n_{j}}{2}, \\ \frac{n_{j}}{l_{j}} \binom{l_{j}}{n_{j} - l_{j}}, & \frac{n_{j}}{2} \leq l_{j} \leq n_{j}. \end{cases}$$

Proof: For $\overline{G} = C_{n_1} \cup C_{n_2} \cup \cdots \cup C_{n_q}$, $n_1 + n_2 + \ldots + n_q = n$, $C_{n_i} \cap C_{n_j} = \phi$ for any i and $j, i \neq j, 3 \le n_j \le n, 1 \le j \le q, q \ge 1, n \ge 6$, by Lemma 4 then

$$N\left(\overline{G},k\right) = N\left(C_{n_1} \cup C_{n_2} \cup \dots \cup C_{n_q},k\right)$$
$$= \sum_{l_1+l_2+\dots+l_q=k} N\left(C_{n_1},l_1\right)N\left(C_{n_2},l_2\right)\cdots N\left(C_{n_q},l_q\right)$$

$$= \sum_{l_1+l_2+\dots+l_q=k} \prod_{j=1}^q N(C_{n_j}, l_j).$$

Finally, $s_k = \alpha(G, k) = N(\overline{G}, k)$ and by definition 3, then independence polynomial of G is given the following:

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} N(\overline{G}, k) x^{k} = \sum_{k=1}^{\alpha(G)} \sum_{l_{1}+l_{2}+\dots+l_{q}=k} \prod_{j=1}^{q} N(C_{n_{j}}, l_{j}) x^{k}$$

when

$$n_{j} = 3, N(C_{3}, l) = \begin{cases} 1, & l = 1, \\ 3, & l = 2, \\ 1, & l = 3, \end{cases}$$

when

$$n_{j} \geq 4, N(C_{n_{j}}, l_{j}) = \begin{cases} 0, & 1 \leq l_{j} < \frac{n_{j}}{2}, \\ \frac{n_{j}}{l_{j}} \binom{l_{j}}{n_{j} - l_{j}}, & \frac{n_{j}}{2} \leq l_{j} \leq n_{j}. \end{cases}$$

Remark: (Reviewing the size of maximum independent set)

Because it is NP-hard that $\alpha(G)$ is the size of a maximum stable set (the size of maximum independent set), so far there exact not the explicit formula, a number of mathematicians have studied $\alpha(G)$ is the size of a maximum stable set (the size of maximum independent set).

Theorem 5.4: If *G* is a complete *d*-partite graph K_{n_1, n_2, \dots, n_d} , and $n_1 + n_2 + \dots + n_d = n$, then independence polynomial of *G*

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d S(n_j, l_j) x^k,$$

where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Proof: Suppose $G = K_{n_1, n_2, \dots, n_d}$, and $n_1 + n_2 + \dots + n_d = n$, then $\overline{G} = K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_d}$, $n_1 + n_2 + \dots + n_d = n$, $K_{n_i} \cap K_{n_j} = \phi$ for any i and j, $i \neq j$, $3 \leq n_j < n$, $1 \leq j \leq d$, $d \geq 2$, we have

$$\begin{split} N\left(\overline{G},k\right) &= N\left(K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_d},k\right) \\ &= \sum_{l_1+l_2+\dots+l_d=k} N\left(K_{n_1},l_1\right) N\left(K_{n_2},l_2\right) \cdots N\left(K_{n_d},l_d\right) \\ &= \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d N\left(K_{n_j},l_j\right). \end{split}$$

With Lemma 3 $N(K_n; k) = S(n, k)$, then

$$N(\overline{G}, k) = N(K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_d}, k)$$
$$= \sum_{l_1+l_2+\dots+l_d=k} N(K_{n_1}, l_1)N(K_{n_2}, l_2) \cdots N(K_{n_d}, l_d)$$
$$= \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d S(n_j, l_j)$$

Then $I_{\alpha}(G, x) = \sum_{k=1}^{\alpha(G)} N(\overline{G}, k) x^k = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2+\dots+l_d=k} \prod_{j=1}^d S(n_j, l_j) x^k$ where S(n, k)

is the Stirling number of the second kind, $n, k \in N$.

Corollary 5.5: If *G* is a complete tri-partite graph $K_{n, n, n}$, then independence polynomial of $I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2+l_3=k} \prod_{j=1}^{3} S(n, l_j) x^k$, where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Proof: Let
$$n_j = n, d = 3, 1 \le j \le 3$$
 and by Theorem 9. Then $I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2+l_3=k}$

 $\prod_{j=1}^{3} S(n, l_j) x^k$, where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Corollary 5.6: If *G* is a complete bi-partite graph $K_{n,n}$, then independence polynomial of $G \to I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2=k} \prod_{j=1}^{2} S(n, l_j) x^k$, where S(n, k) is the Stirling number of the second kind, $n, k \in N$.

Proof: Let $n_j = n$, d = 2, $1 \le j \le 2$ and by Theorem 9. Then $I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{l_1+l_2=k} \prod_{j=1}^{2} S(n, l_j) x^k$, where S(n, k) is the Stirling number of the second kind, $n, k \in N$. **Theorem 5.7:** If G is a tree with n vertices, then independence polynomial of G

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{p=k}^{n} (-1)^{n-p} \binom{n-1}{p-1} N(K_p, k) x^k.$$

Proof: If G is a tree with n vertices, then the chromatic polynomial of G is $f(T, t) = t(t-1)^{n-1} = \sum_{k=0}^{n-1} (-1)^{n-1-k} {\binom{n-1}{k}} t^{k+1}$. Coefficients of the chromatic polynomial of G are $Y_p = (-1)^{n-p} {\binom{n-1}{p-1}}$, $1 \le p \le n$. By Theorem 3.1 $I_{\alpha}(G; x) = \sum_{k=1}^{\alpha} \sum_{p=k}^{n} N(K_p, k) Y_p$, then we have

$$I_{\alpha}(G; x) = \sum_{k=1}^{\alpha(G)} \sum_{p=k}^{n} (-1)^{n-p} \binom{n-1}{p-1} N(K_p, k) x^k,$$

where

$$N(K_{p},k) = \sum_{\substack{\sum \\ i=1}^{p} ib_{i}=p, \sum_{i=1}^{p} b_{i}=k} \frac{p!}{b_{1}!} \prod_{i\geq 2} \frac{1}{b_{i}!(i!)^{b_{i}}}, 2 \leq p k \leq n.$$

Theorem 5.8: If P_n is any path with length n, and has n + 1 vertices, then independence polynomial of P_n

$$I_{\alpha}(P_{n};x) = \sum_{k=1}^{\alpha(P_{n})} \sum_{p=k}^{n+1} (-1)^{n+1-p} \binom{n}{p-1} S(p,k)x^{k},$$

where S(p, k) is the Stirling number of the second kind, $p, k, n \in N$.

Proof: The formula from the proving course of Theorem 5.3. Omitted.

REFERENCES

- [1] Makowsky, J.A., Mariño, J.P., Farrell Polynomials on Graphs of Bounded Tree Width, *Adv. in Appl. Math.*, **30(1-2)** (2003), 160-176.
- [2] Vadim E. Levit and Eugen Mandrescu, Independence Polynomials of Well-covered Graphs: Generic Counterexamples for the Unimodality Conjecture, *European Journal of Combinatorics*, **27(6)** (2006), 931-939.
- [3] LiMin Yang and SiHong Nian, The Number of *k* Independent Sets of Graphs and the Mean Colour Numbers of Graphs, *International Journal of Combinatorial Graph Theory and Applications*, **1(1)** (2008), (Series 1).
- [4] LiMin Yang and TianMing Wang, Enumeration of Independent Sets of Graphs, *International Journal of Combinatorial Graph Theory and Applications*, **1**(1) (2008), (Series 2).
- [5] TianMing Wang and LiMin Yang, Enumeration of Ideal Subgraphs, SIAM, 1991, 539-545.
- [6] J. E. Bartels, D. J. A. Welsh, the Markor Chain of Colouring, Lecture Notes in Computer Science, 920 (1995), Springgor, New York/Berlin, 373-387.
- [7] F. M. Dong, Bounds for Mean Colour Numbers of Graphs, J. of Combinatorial Theory, Series B, 87 (2003), 348-365.
- [8] LiMin Yang, The Recurrence Counting Formula of $S^{(n)}$ -factors, *J. of Math. Res. and Expo.*, **11(1)** (1991), 78 (In Chinese).
- [9] LiMin Yang and Hong Yao, A Recurrence Formula of the Number of *S*^(*n*)-factors of a Regular *m*-furcating Tree, *J. of Math. Res. and Expo.*, **23**(2) (2003), 632-636. (In Chinese).
- [10] LiMin Yang and TianMing Wang, The Repersenting Formula of N(G, k) International Journal of Combinatorial Graph Theory and Applications, 1(1) (2008).
- [11] LiMin Yang, Enumeration of Ideal Graph with Applications, J. of Dalian Uni. of Tech., 29(5) (1989), 605-609.
- [12] Louis Comtet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.
- [13] Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997.
- [14] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmil Press, L.T.D, 1976.
- [15] J. Harry, E. Palmer, Graphical Enumeration, New York and London, 1973.
- [16] Brenti. F. Expansions of Chromatic Polyomial and Log-convavity. Trans. Am. Math. Soc., 332 (1992), 729-756.

Liming Yang

School of Mathematics and Computer Dali University, Dali 671000, Yunhan, P. R. China *E-mail: yanglm65@yahoo.com.cn*