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INDEPENDENT SET POLYNOMIALS I(G; x) AND
INDEPENDENCE POLYNOMIALS I (G; x) (Series 3)

Liming Yang

ABSTRACT: In graph theory, independent set polynomials I(G; x) and independence
polynomials I�(G; x) are NP-hard (see [1] and [2]). In this paper, our ways are combinatorial
counting methods. In the use of counting theory of S(n)-factors with exactly k components,
the author gains the representing formula of independent set polynomials I(G; x) and
independence polynomials I�(G; x) ,where let b

k
(G) be exactly k-independent sets of G,

and presents the explicit formulas of independent set polynomials I(G; x) and independence
polynomials I�(G; x) for a great deal of graphs.
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1. INTRODUCTION

In this paper, the author will solve independent set polynomials I(G; x) and
Independence polynomials I�(G; x) by means of counting theory of S(n)-factors.

Definition 1.1: For S(n) = {K
i
 : 1 � i � n}; n � 1, K

i
 is a complete graph with

i vertices, if M is a subgraph of any graph G, and each component of M is all
isomorphic to some element of S(n) = {K

i
 : 1 � i � n}, then M is called one S(n)-subgraph,

if M is a spanning subgraph of G, then M is called one S(n)-factor of G.

Let N(G, k) denote the number of S(n)-factors with exactly k components. A(G) is

the number of all S(n)-factors, namely, 
1

( ) ( )
n

k
A G N G k

�
� �� .

Definition 1.2: Independent set polynomials I(G; x) are defined as

� � �

� �� � �
1 ( )

( ; ) ( ) ,
n

k
k

k I v G v I

I G x b G x x

where let b
k
(G) be exactly k-independent sets of G.

Complexity: It is easy to see that I(G; x) is NP-hard to compute. (see [1])

Definition 1.3: If s
k
 denotes the number of stable sets of cardinality k in graph

G, and �(G) is the size of a maximum stable set, then
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�

�
�

� �
( )

1

( ; ) ,
G

k
k

k

I G x s x

is called the independence polynomial of G. ( Also see[2])

In the paper [8], LiMin Yang gived the recurrence relation of A(G). In the
paper [9], LiMin Yang derived the recurrence formula of regular m-furcating tree.
So far, we have solved counting problems of N(G, k) (see [10]), involving the
representing formula of N(G, k) and counting formulas of a great deal of graphs, for
examples, any path, cycle, complete graph, O�C

n
, windgraph K

n
d, complete d-partite

graph, n – 2-regular graph and n – 3-regular graph. In the paper [3], we have solved
the number of exactly k independent sets of graphs. In the paper [4], we have
completed enumeration of all independent sets of graphs. In this paper, the author
present independent set polynomials I(G; x) and independence polynomials and the
explicit formulas of classes of graphs by means of counting theory of S(n)-factors.

2. LEMMAS

Here we will denote that �(G, k) is the number of partitions of V(G) into exactly k
non-empty independent sets of any graph G.

Lemma 2.1 ([3]): If N(G, k) is the number of S(n)-factors with exactly k

components in G, and the chromatic polynomial of graph G is 
1

( , )
n

p
p

p

f G t Y t
�

� � ,

then the representing formula of �(G, k) is the following:

� �( , ) , ,
n

p p
p k

G k N K k Y
�

� ��

where

� �
1 1

21

! 1
, .

! !( !) i
p p

i ii i

p

p b
i iib p b k

p
N K k

b b i
� �

�� �

�
� �

� �

Lemma 2.2 ([3]): There exists the equality � �( , ) , .G k N G k� �

Lemma 2.3: If S(n, k) is the Stirling number of the second kind, then N(K
n
, k) =

S(n, k), where K
n
 is a complete graph with n vertices.
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Lemma 2.4: If G � H = �, then ( ) ( ) ( )
l m k

N G H k N G l N H m
� �

� � � � ���

3. MAIN THEOREMS

Theorem 3.1: If the chromatic polynomial of any graph G is 
1

( , )
n

p
p

p

f G t Y t
�

� �  then

independent set polynomial I(G; x)

� �
� �

���
1

( ; ) , .
n n

k
p p

k p k

I G x N K k Y x

Proof: Because b
k
(G) is exactly k-independent sets of G and �(G, k) is the number

of partitions of V(G) into exactly k non-empty independent sets of any graph G, then
b

k
(G) = �(G; k). By Lemma 2.1

� �( , ) , ,
n

p p
p k

G k N K k Y
�

� ��

where Y
p
 are coefficients of the chromatic polynomial of f(G, t). Then independent

set polynomial I(G, x)

� �
� �

���
1

( ; ) , .
n n

k
p p

k p k

I G x N K k Y x

Theorem 3.2: There exists the equality independent set polynomials

� �
�

��
1

( ; ) , ,
n

k

k

I G x N G k x

where � �,N G k  is the number of S(n)-factors with exactly k components in the

complementary graph G  of G.

Proof: By Lemma 2.2 � �( , ) ,G k N G k� � , so we gain

� �
�

��
1

( ; ) , ,
n

k

k

I G x N G k x

where � �,N G k  is the number of S(n)-factors with exactly k components in the

complementary graph G  of G.
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4. CLASSES OF GRAPHS INDEPENDENT SET POLYNOMIALS I(G; x)

In the section, we will obtain classes of graphs independent set polynomials I(G; x),
for examples, any (n – 2)-regular graph, (n – 3)-regular graph and complete d-partite
graph, tree.

Theorem 4.1: If G is a (n – 2)-regular graph with n (even 2m) vertices, then
independent set polynomial

�

� �
� � ��� �
�
2

( ; ) .
m

k

k m

m
I G x x

k m

Proof: Let G be a (n – 2)-regular graph with n (even 2m), then G  is a 1-regular

graph, namely, G  = K
2
 ��K

2
 ��... �K

2
, and the number of K

2
 is m. We have

� �

0, 1 ,
2

,
2 , .

2
2

n
k

n
N G k

n
k n

n
k

� � ��
�
�� �� �� �
� � �� �
�� ��� ��� ��

Finally, by Theorem 3.2 then independent set polynomial

� �

� �
� � � �

� �� � � ��� � � ��� �
� �

� �
2

1

2( ; ) .

2

n m
k k

k k m

n
m

I G x x x
n k m

k

Theorem 4.2: If G is a (n – 3)-regular graph with n vertices, n � 6 and G  � C
n
,

then

� ��� �� �

� �
� � ��� �
�

2

( ; ) .
n

k

n
k

kn
I G x x

k n k

Proof: Let G be a n – 3-regular graph with n vertices, n � 6 and G  � C
n
, because
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G  is a 2-regular graph, the graph would be able to join the disjoint cycles, thus
assume that C

n
, say. Then we have

� � � �
0, 1 ,

2
, ,

, .
2

n

n
k

N G k N C k
kn n

k n
k k k

� � ���� � � � �� � �� �� �� ��

By Theorem 3.2, then the result is given the following

� � ��� �� �

� � � �
� �� � � �� �� � � �
� �

2

1
2

( ; ) .
n m

k k

nk
k

k kn n
I G x x x

k n k k n k

Corollary 4.3: If G is a (n – 3)-regular graph with n vertices, and

1 2
,

qn n nG C C C� � ���

n
1
 + n

2
 + ... + n

q
 = n, 

i jn nC C � ��  for any i and j, i � j, 3 � n
j
 � n; 1 � j � q, q � 1, n

� 6, the number of n
j
 = 3 is l, then independent set polynomial is gained as the

following

2 3

1

2

( , ) ( 3 ) ,
j

j

j
j

nq l
ljjl

nj j jj
l

ln
I G x x x x x

n ll

� ��
� �
� �
� �� �� � � � ��� �

� �

� � �
���

1
3

q l

jj
n n l

�

�
� �� .

Proof: For 
1 2

,
qn n nG C C C� � ���  n

1
 + n

2
 + ... + n

q
 = n, 

i jn nC C � ��  for any i

and j, i � j, 3 � nj � n, 1 � j � q, q � 1, n � 6, by Lemma 2.4 then

� �,N G k = � �1 2
,

qn n nN C C C k� � ��

= � � � � � �1 2

1 2

1 2, , ,
q

q

n n n q
l l l k

N C l N C l N C l
� � � �
�
�

�

= � �
1 2 1

, .
j

q

q

n j
l l l k j

N C l
� � � � �
� �
�
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By Theorem 3.2 we have

� � � �
� � � � � � �

� �� � � �
�1 21 1 1

( ; ) , , ,
j

q

qn n
k k

n j
k k l l l k j

I G x N G k x N C l x

when

� �3

1, 1,

3 3, 2,

1, 3,
j

l

n N C l l

l

��
�� � � � ��
� ��

when

� �
0, 1 ,

2
4, ,

, .
2

j

j
j

j n j
jj j

j j
j jj

n
l

n N C l
ln n

l n
n ll

� �
� �
� �
� �� �
� �

�
� ��

�� � �
� � �
� ��

Finally,

I(G; x) = � � � � � �2 3

1 1
1 1

, 3 ,
j j

j j

j j

j j

n n
lq q ll l

n j n jj j
l l

N C l x x x x N C l x
�

� �
� �

� � �� �� �

= � �2 3

1

2

3
j

j

j
j

n
l q l ljj

j
n j jj

l

ln
x x x x

n ll

� �
� ��
� �
� �� � �� � � ��� �

� �

� �
���

and 
1

3
q l

jj
n n l

�

�
� �� .

Theorem 4.4: If G is a complete d-partite graph 
1 2, , , dn n nK � , and n

1
 + n

2
 + ... + n

d

= n, then independent set polynomial � ��
�

� �� 1
1

( ; ) ,
j

j

j

n
d l

j jj
l

I G x S n l x , where S(n, k)

is the Stirling number of the second kind, n, k � N.

Proof: Suppose 
1 2, , , dn n nG K� � , and n

1
 + n

2
 + ... + n

d
 = n, then 

1 2n nG K K� � ��
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dnK� , n
1
 + n

2
 + ... + n

d
 = n, 

i jn nK K � ��  for any i and j, i � j, 3 � nj < n, 1 � j � d,

d � 2, we have

� �,N G k = � �
1 2

,
dn n nN K K K k� � ��

= � � � � � �
1 2

1 2

1 2, , ,
d

d

n n n d
l l l k

N K l N K l N K l
� � � �
�
�

�

= � �
1 2 1

, .
j

d

d

n j
l l l k j

N K l
� � � � �
� �
�

With Lemma 2.3 N(K
n
, k) = S(n, k), then

� �,N G k = � �
1 2

,
dn n nN K K K k� � ��

= � � � � � �
1 2

1 2

1 2, , ,
d

d

n n n d
l l l k

N K l N K l N K l
� � � �
�
�

�

= � �
1 2 1

, .
j

d

d

n j
l l l k j

N K l
� � � � �
� �
�

By Theorem 3.2, then we have

I(G; x) = � � � �
1 2

1
1 1

, ,
d

n n
dk k

j jj
k k l l l k

N G k x S n l x
�

� � � � � �

�� � � �
�

= � �1
1

, ,
j

j

j

n
d l

j jj
l

S n l x
�

�
��

where S(n, k) is the Stirling number of the second kind, n, k � N.

Corollary 4.5: If G is a complete tri-partite graph 
1 2 3, ,n n nK , and n

1
 + n

2
 + n

3
 = n,

then � ��
�

� ��3

1
1

( ; ) ,
j

j

j

n
l

j jj
l

I G x S n l x , where S(n
j
, l

j
) is the Stirling number of the second

kind, n
j
, l

j
 � N, j = 3.
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Proof: It is easily proved by Theorem 4.1. Here we omit the proof.

Corollary 4.6: If G is a complete tri-partite graph K
n, n, n

, then 
�

� �3

1
( ; )

j
I G x

� �
1

, j

j

n
l

j
l

S n l x
�

�  where S(n, l
j
) is the Stirling number of the second kind, n � N, j = 3.

Proof: It is easily proved by Corollary 4.2. Here we omit the proof.

Corollary 4.7: If G is a complete bi-partite graph K
n, n

, then I(G; x) =

� �
2

1

,
n

j

j

S n j x
�

� �
� �
� �
�

Proof: It is easily proved by Corollary 4.3. Here we omit the proof.

Corollary 4.8: Let S(n, k) be the Stirling number of the second kind, h(K
n
, x) =

1

( , )
n

i

i

S n i x
�
�  (see Brenti [16]), and G is a complete bi-partite graph K

n, n
. Then I(G, x)

= (h(K
n
; x))2:

Proof: It is easily proved by Corollary 4.4. Here we omit the proof.

Theorem 4.9: If G is a tree with n vertices, then

�

� �

�� �
� � � ��� �

��
1

1
( ; ) ( 1) ( , ) ,

1

n n
n p k

p
k p k

n
I G x N K k x

p

where

� �
1 1

21
,

! 1
, , 2 .

! !( !) i
p p

i i
i i

p b
i i

ib p b k

p
N K k p k n

b b i
� �

�
� �

� � �

� �
� �

Proof: If G is a tree with n vertices, then the chromatic polynomial of G is f(T, t) =

t(t – 1)n–1 = 
1

1 1

0

1
( 1)

n
n k k

k

n
t

k

�
� � �

�

�� �
� � �

� �
� . Coefficients of the chromatic polynomial of G

are 
1

( 1) ,1 .
1

n p
p

n
Y p n

p
� �� �

� � � �� ��� �
 By Theorem 3.1 � �

� �

� ��
1

( ; ) ,
n n

p p
k p k

I G x N K k Y ,
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then we have

�

� �

�� �
� � � ��� �

��
1

1
( ; ) ( 1) ( , ) ,

1

n n
n p k

p
k p k

n
I G x N K k x

p

where

� �
1 1

21
,

! 1
, ,2 .

! !( !) i
p p

i i
i i

p b
i i

ib p b k

p
N K k p k n

b b i
� �

�
� �

� � �

� �
� �

Corollary 4.10: If P
n
 is any path with length n, and has n + 1 vertices, then

� �
� �

� �

� �
� � � ��� �

� �
1 1

1

1

( ; ) ( 1) ( , )
1

n n
n p k

k p k

n
I G x S p k x

p , where S(p, k) is the Stirling number of

the second kind.

Proof: Because P
n
 is a special tree with n + 1 vertices, by Theorem 6 we derive

the result � �
� �

� �

� �

� �
� � � ��� �

� �
1 1

1

1

( ; ) ( 1) ,
1

n n
n p k

p
k p k

n
I G x N K k x

p . By Lemma 2.3, then

I(G; x) = 
1 1

1

1

( 1) ( , )
1

n n
n p k

k p k

n
S p k x

p

� �
� �

� �

� �
� � ��� �

� � , where S(p, k) is the Stirling number of

the second kind.

5. INDEPENDENCE POLYNOMIALS I (G; x) OF GRAPHS

In the section, the author discusses independence polynomials I�(G; x) of graphs.

Because s
k
 denotes the number of stable sets of cardinality k in graph G, and

�(G, k) is the number of partitions of V(G) into exactly k non-empty independent
sets of any graph G, then s

k
 = �(G, k).

But in this paper �(G) is the size of a maximum stable set, in [3]�(G)is the
number of all partitions of V(G) into exactly k non-empty independent sets of any
graph G, here the two concepts is not the same.

Theorem 5.1: If G is a (n – 2)-regular graph with n (even 2m) vertices, �(G) is
the size of a maximum stable set, then independence polynomial of G

�

�
�

� �
� � ��� �

�
( )

( ; ) .
G

k

k m

m
I G x x

k m
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Proof: Let G be a (n – 2)-regular graph with n (even 2m). Then G  is a 1-regular

graph, namely, 
2 2 2G K K K� � � �� , and the number of K

2
 is m. We have

� �

0, 1 ,
2

,
2 , .

2
2

n
k

nN G k
n

k n
n

k

� � ��
�
�� �� �� �
� � �� �
�� ��� ��� ��

Finally, � �( , ) ,ks G k N G k� � �  and by definition 3, then independence

polynomial

� �

�
� �

� �
� � � �

� �� � � ��� � � ��� �
� �

� �
( ) ( )

1

2( ; ) .

2

G G
k k

k k m

n
m

I G x x x
n k m

k

Theorem 5.2: If G is a n – 3-regular graph with n vertices, n � 6, and nG C� ,

�(G) is the size of a maximum stable set, then independence polynomial of G

�

�
� ��� �� �

� �
� � ��� �

�
( )

2

( ; ) .
G

k

n
k

kn
I G x x

k n k

Proof: Let G be a n – 3-regular graph with n vertices, n � 6 and nG C� , because

G  is a 2-regular graph, the graph would be able to join the disjoint cycles, thus
assume that C

n
, say. Then we have

� � � �
0, 1 ,

2
, ,

, .
2

n

n
k

N G k N C k
kn n

k n
k n k

� � ���� � � � �� � �� �� �� ��
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Finally, � �( , ) ,ks G k N G k� � �  and by definition 3, then independence

polynomial of G is given the following:

� �

�
� � ��� �� �

� � � �
� �� � � �� �� � � �

� �
( ) ( )

1
2

( ; ) .
G G

k k

nk
k

k kn n
I G x x x

k n k k n k

Corollary 5.3: If G is a (n – 3)-regular graph with n vertices, and

1 2
,

qn n nG C C C� � � ��

n
1
 + n

2
 + ... + n

q
 = n, 

i jn nC C � ��  for any i and j, i � j, 3 � n
j
 � n; 1 � j � q; q � 1, n

� 6, the number of n
j
 = 3 is l, then independence polynomial of G is given as follows

� �
�

� �
� � � � �

� � � �
�1 2

( )

1
1

( ; ) ,
j

q

G
q k

n jj
k l l l k

I G x N C l x

when

� �3

1, 1,

3, , 3, 2,

1, 3,
j

l

n N C l l

l

��
�� � ��
� ��

when

� �
0, 1 ,

2
4, ,

, .
2

j

j
j

j n j
jj j

j j
j jj

n
l

n N C l
ln n

l n
n ll

� �
� �
� �
� �� �
� �

�
� ��

�� � �
� � �
� ��

Proof: For 
1 2

,
qn n nG C C C� � � ��  n

1
 + n

2
 + ... + n

q
 = n, 

i jn nC C � ��  for any i

and j, i � j, 3 � n
j
 � n, 1 � j � q, q � 1, n � 6, by Lemma 4 then

� �,N G k = � �1 2
,

qn n nN C C C k� � ��

= � � � � � �1 2

1 2

1 2, , ,
q

q

n n n q
l l l k

N C l N C l N C l
� � � �

�
�

�
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= � �
1 2 1

, .
j

q

q

n j
l l l k j

N C l
� � � � �

� �
�

Finally, � �( , ) ,ks G k N G k� � �  and by definition 3, then independence

polynomial of G is given the following:

� � � � � �
� �

�
� � � � � � �

� �� � � �
�1 2

( ) ( )

1 1 1

; , ,
j

q

qG G
k k

n j
k k l l l k j

I G x N G k x N C l x

when

� �3

1, 1,

3, , 3, 2,

1, 3,
j

l

n N C l l

l

��
�� � ��
� ��

when

0, 1
2

4 ( )

2

j

j
j

j n j
jj j

j j
j jj

n
l

n N C l
ln n

l n
n ll

� �
� �
� �
� �� �
� �

�
� � ��

�� � � � �
� � � � �
� ��

Remark: (Reviewing the size of maximum independent set)

Because it is NP-hard that �(G) is the size of a maximum stable set (the size of
maximum independent set), so far there exact not the explicit formula, a number of
mathematicians have studied �(G) is the size of a maximum stable set (the size of
maximum independent set).

Theorem 5.4: If G is a complete d-partite graph 
1 2, , , dn n nK � , and n

1
 + n

2
 + ... + n

d

= n, then independence polynomial of G

� �
�

�
� � � � � �

� � � �
�1 2

( )

1 1

( ; ) , ,
d

G d
k

j j
k l l l k j

I G x S n l x

where S(n, k) is the Stirling number of the second kind, n, k � N.
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Proof: Suppose 
1 2, , , dn n nG K� � , and n

1
 + n

2
 + ... + n

d
 = n, then 

1 2n nG K K� � ��

dnK� , n
1
 + n

2
 + ... + n

d
 = n, 

i jn nK K � ��  for any i and j, i � j, 3 � n
j
 < n, 1 � j � d,

d � 2, we have

� �,N G k = � �
1 2

,
dn n nN K K K k� � ��

= � � � � � �
1 2

1 2

1 2, , ,
d

d

n n n d
l l l k

N K l N K l N K l
� � � �
�
�

�

= � �
1 2 1

, .
j

d

d

n j
l l l k j

N K l
� � � � �
� �
�

With Lemma 3 N(K
n
; k) = S(n, k), then

� �,N G k = � �
1 2

,
dn n nN K K K k� � ��

= � � � � � �1 2

1 2

1 2, , ,
d

d

n n n d
l l l k

N K l N K l N K l
� � � �
�
�

�

= � �
1 2 1

,
d

d

j j
l l l k j

S n l
� � � � �
� �
�

Then � � � �
1 2

( ) ( )

1
1 1

( , ) , ,
d

G G
dk k

j jj
k k l l l k

I G x N G k x S n l x
� �

� �
� � � � � �

� �� � � �
�

 where S(n, k)

is the Stirling number of the second kind, n, k � N.

Corollary 5.5: If G is a complete tri-partite graph K
n, n, n

, then independence

polynomial of � �
�

� �
� � � �

� � � �
1 2 3

( )
3

1
1

( ; ) ,
G

k
jj

k l l l k

I G x S n l x , where S(n, k) is the Stirling

number of the second kind, n, k � N.

Proof: Let n
j
 = n, d = 3, 1 � j � 3 and by Theorem 9. Then I�(G; x) = 

1 2 3

( )

1

G

k l l l k

�

� � � �
� �

� �3

1
, k

jj
S n l x

�� , where S(n, k) is the Stirling number of the second kind, n, k � N.
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Corollary 5.6: If G is a complete bi-partite graph K
n, n

, then independence

polynomial of � �
�

� �
� � �

� � � � �
1 2

( )
2

1
1

( ; ) ,
G

k
jj

k l l k

G I G x S n l x , where S(n, k) is the Stirling

number of the second kind, n, k � N.

Proof: Let n
j
 = n, d = 2, 1 � j � 2 and by Theorem 9. Then I�(G; x) = 

1 2

( )

1

G

k l l k

�

� � �
� �

� �2

1
, k

jj
S n l x

�� , where S(n, k) is the Stirling number of the second kind, n, k � N.

Theorem 5.7: If G is a tree with n vertices, then independence polynomial of G

� �
�

�
�

� �

�� �
� � � ��� �
� �

( )

1

1
( ; ) ( 1) ,

1

G n
n p k

p
k p k

n
I G x N K k x

p .

Proof: If G is a tree with n vertices, then the chromatic polynomial of G is f(T, t) =

t(t – 1)n–1 = 
1

1 1

0

1
( 1)

n
n k k

k

n
t

k

�
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�

�� �
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� �
� . Coefficients of the chromatic polynomial of G

are 
1

( 1) ,
1

n p
p

n
Y

p
� �� �

� � � ��� �
 1 � p � n. By Theorem 3.1 � �

�

�
� �

���
1

( ; ) ,
n

p p
k p k

I G x N K k Y ,

then we have

�
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�
� �

�� �
� � � ��� �
� �
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1

1
( ; ) ( 1) ( , ) ,

1

G n
n p k
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I G x N K k x
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where
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1 1

21
,
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! !( !) i
p p

i i
i i

p b
i i

ib p b k

p
N K k p k n

b b i
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�
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Theorem 5.8: If P
n
 is any path with length n, and has n + 1 vertices, then

independence polynomial of P
n

� �
� �

� �
�

� �

� �
� � � ��� �
� �
( ) 1

1

1

; ( 1) ( , ) ,
1

nP n
n p k

n
k p k

n
I P x S p k x

p
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where S(p, k) is the Stirling number of the second kind, p, k, n � N.

Proof: The formula from the proving course of Theorem 5.3. Omitted.
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