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ABSTRACT: In graph theory, independent set polynomials /(G; x) and independence
polynomials I (G; x) are NP-hard (see [1] and [2]). In this paper, our ways are combinatorial
counting methods. In the use of counting theory of S“-factors with exactly k components,
the author gains the representing formula of independent set polynomials /(G; x) and
independence polynomials I (G; x) ,where let b,(G) be exactly k-independent sets of G,
and presents the explicit formulas of independent set polynomials /(G; x) and independence
polynomials I (G; x) for a great deal of graphs.
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1. INTRODUCTION

In this paper, the author will solve independent set polynomials I(G; x) and
Independence polynomials / (G; x) by means of counting theory of S*-factors.

Definition 1.1: For §” = (K. : 1 <i<n};n > 1, K, is a complete graph with
i vertices, if M is a subgraph of any graph G, and each component of M is all
isomorphic to some element of S = { K : 1 <i<n}, then M is called one S*-subgraph,
if M is a spanning subgraph of G, then M is called one S™-factor of G.

Let N(G, k) denote the number of $*-factors with exactly k components. A(G) is

the number of all S™-factors, namely, A(G) = ZZ=1 N(G, k).

Definition 1.2: Independent set polynomials /(G; x) are defined as

I(G; x) = Zn:bk(G)x" = > II~

Icv(G) vel
where let b,(G) be exactly k-independent sets of G.
Complexity: It is easy to see that I(G; x) is NP-hard to compute. (see [1])

Definition 1.3: If s, denotes the number of stable sets of cardinality & in graph
G, and o(G) is the size of a maximum stable set, then
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a(G)

[,(G;x)= Z skxk,
k=1

is called the independence polynomial of G. ( Also see[2])

In the paper [8], LiMin Yang gived the recurrence relation of A(G). In the
paper [9], LiMin Yang derived the recurrence formula of regular m-furcating tree.
So far, we have solved counting problems of N(G, k) (see [10]), involving the
representing formula of N(G, k) and counting formulas of a great deal of graphs, for
examples, any path, cycle, complete graph, OOC , windgraph K¢, complete d-partite
graph, n — 2-regular graph and n — 3-regular graph. In the paper [3], we have solved
the number of exactly £ independent sets of graphs. In the paper [4], we have
completed enumeration of all independent sets of graphs. In this paper, the author
present independent set polynomials /(G; x) and independence polynomials and the
explicit formulas of classes of graphs by means of counting theory of S*-factors.

2. LEMMAS

Here we will denote that a(G, k) is the number of partitions of V(G) into exactly k&
non-empty independent sets of any graph G.

Lemma 2.1 ([3]): If N(G, k) is the number of S"™-factors with exactly k

components in G, and the chromatic polynomial of graph G is f(G,1)= z Y,

p=1

then the representing formula of (G, k) is the following:
a(G.k)=Y N(K,.k)Y,,
p=k

where

Py 1
N(K,. k)= p! |
( : ) Zflibf%fl b=k b, !1:2[ b !(!)"

Lemma 2.2 ([3]): There exists the equality o(G, k) =N (G, k).

Lemma 2.3: If S(n, k) is the Stirling number of the second kind, then N(K , k) =
S(n, k), where K is a complete graph with n vertices.
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Lemma 2.4: [fGN H=¢,then N\GUH, k)= Z N(G,)N(H, m).

l+m=k

3. MAIN THEOREMS

Theorem 3.1: If the chromatic polynomial of any graph Gis f(G, )= z Y t" then
p=1
independent set polynomial 1(G; x)

1G0=3 N(K,.k)Yx".

k=1 p=k

Proof: Because b (G) is exactly k-independent sets of G and (G, k) is the number
of partitions of V(G) into exactly k non-empty independent sets of any graph G, then
b (G) = a(G; k). By Lemma 2.1

MQM=§N@?@%
p=k

where Y are coefficients of the chromatic polynomial of f{G, 7). Then independent
set polynomial I(G, x)

n n

I(Gix)=Y. > N(K,. k)Y x*".

k=1 p=k

Theorem 3.2: There exists the equality independent set polynomials
I(G;x)=) N(G.k)x",
k=1
where N (G, k) is the number of S™-factors with exactly k components in the
complementary graph G of G.

Proof: By Lemma 2.2 o(G,k)=N (G, k), SO we gain

HQ@:iN@Jﬁ%
k=1

where N (G, k) is the number of S™-factors with exactly k components in the

complementary graph G of G.
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4. CLASSES OF GRAPHS INDEPENDENT SET POLYNOMIALS I(G; x)
In the section, we will obtain classes of graphs independent set polynomials I(G; x),
for examples, any (n — 2)-regular graph, (n — 3)-regular graph and complete d-partite
graph, tree.

Theorem 4.1: If G is a (n — 2)-regular graph with n (even 2m) vertices, then
independent set polynomial

G =3 [k '_”m]xk.

k=m

Proof: Let G be a (n — 2)-regular graph with n (even 2m), then G is a 1-regular
graph, namely, G = K, UK, U ... UK,, and the number of K, is m. We have

0, 1§k<£,
2

N(G.k)= g )
<k<n.

b

P
2

NSNS

Finally, by Theorem 3.2 then independent set polynomial
- m
1(G; x) = x* = x*.
G=3, z[k m]

Theorem 4.2: If G is a (n — 3)-regular graph with n vertices, n> 6 and G = C.,
then

n

1(G: x) = %%(nkk}ck'

Proof: Let G be an — 3-regular graph with n vertices, n>6 and G = C , because
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G is a 2-regular graph, the graph would be able to join the disjoint cycles, thus
assume that C , say. Then we have

0, 1£k<g,
NERNER )

— —<k<

k[k—kj’ 2"

By Theorem 3.2, then the result is given the following

k 2m n k
1(G; x K= — x*.
ao-FRl L - 2l
“)
Corollary 4.3: If G is a (n — 3)-regular graph with n vertices, and
G=c,Uc,U--uc,,

no+n,+..+n =n, Cc. NC =¢ foranyiandj,iij,?»énjén;léjﬁq,qZI,n

> 6, the number of n, = 3 is [, then independent set polynomial is gained as the
following

.
J
X7

1 n; l
I(G, x) = (x+3° +x3)l]q_[ 3 %[nil‘
= l’{nﬂ T

q-1
ijl n;=n =131,

Proof: For (_;zC,,1 uc,u--uc,, n+n,+..+n=n,C, NC, =¢ foranyi
andj,i#j,3<nj<n,1<j<q,q>1,n2>6,by Lemma 2.4 then

N(G.k) = N(c, uc, u-uC, k)

N(c,.L)N(C, . L)N(C, .1, )

n, > %q
L+l 4+, =k

_ Y TIN(e,).

L+l 4+l =k j=1
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By Theorem 3.2 we have

1G)=Y NG K=Y li[N(Cnl,l])xk,
k=1 k=1 li+h+-+l,=k j=1
when
1, =1,
n;=3,N(C;,1)=43, =2,
1, =3,
when
n.
0, 1<l <L,
2
24 N(CLL)=1,
—J[ ! J —+ <1, <n,
L) 2
Finally,

and Z;ii n,=n-3l

Theorem 4.4: If G is a complete d-partite graph K

ny, Ny, n

sandn +n,+..+n,

= n, then independent set polynomial /(G; x) = H; .S (nj, l; )xl’ , Where S(n, k)
lf:I
is the Stirling number of the second kind, n, k € N.

Proof: Suppose G = K

ny,ny, -, Ny >

andn +n,+...+n,=n, then 5:1(,,1 UK, U--
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UK, ,n +n,+..+n,=n, K, NK, =0 foranyiandj,i#j,3<nj<n,1<j<d,

ng?

d >?2, we have

N(G.k) = N(K, UK, UUK, k)

N(K,.L)N(K,.L)N(K,.1L)

L+l + -+l =k

D f[N(an,zj).

L+l ++l=k j=1

With Lemma 2.3 N(K , k) = S(n, k), then

N(G.k) = N(K, UK, UUK, k)

L+l + -+l =k

D f[N(an,zj).

L+l ++l=k j=1

By Theorem 3.2, then we have

n n

I(G;x) = N((_lk)xk= > H;S(”wlj)xk

k=1 k=1 L+l +-+l;=k

n;

= HlezS("j’lf)xlf’

1;=1

where S(n, k) is the Stirling number of the second kind, n, k € N.

Corollary 4.5: If G is a complete tri-partite graph K,

ny,ny,ny’

andn +n,+n,=n,
then I(G; x) = H; Z S (nj, l; ) x” , where S(nj, lj) is the Stirling number of the second
l/:1

kind, n, [ € N,j=3.
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Proof: 1t is easily proved by Theorem 4.1. Here we omit the proof.

Corollary 4.6: If G is a complete tri-partite graph K . then / (G;x) = H;

n
I,

S("’ L ) X" where S(n, ) is the Stirling number of the second kind, n € N, j = 3.

=1

Proof: 1t is easily proved by Corollary 4.2. Here we omit the proof.
Corollary 4.7: If G is a complete bi-partite graph K, .. then I(G; x) =
" 2
Z S (n, j ) x’/
j=1
Proof: 1t is easily proved by Corollary 4.3. Here we omit the proof.
Corollary 4.8: Let S(n, k) be the Stirling number of the second kind, h(Kn, X) =
Z S(n, i)x' (see Brenti [16]), and G is a complete bi-partite graph Kn,n. Then I(G, x)

i=1

= (h(K ; x))*
Proof: 1t is easily proved by Corollary 4.4. Here we omit the proof.

Theorem 4.9: If G is a tree with n vertices, then

n n

1Gx) =YY (-1 (" ) DN(KP X,
.

k=1 p=k

where

! 1
N(K,.k)= Y %Hb!(”)h,zgpkﬁn.

2 2 i>2

Y ib=p. Y b=k
i=1

i=1

Proof: 1f G is a tree with n vertices, then the chromatic polynomial of G is AT, ¢) =

n—1

aa(n-1)
H(t—1)"'= Z GV [ K jl “! Coefficients of the chromatic polynomial of G

k=0

_1 . n n
are Yp:(—l)np[n J’ISpSn. By Theorem 3.1 1(G; x)=ZZN(Kp’k)Yp,

k=1 p=k
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then we have

z -1
I(G:x) = ZZ( 1)”( j (K, k)x",

k=1 p=k

where

_ p! 1
N(K,.k)= p zﬁ EE{ Sy RSPk
Z{:ibﬁp,;bi:k -

Corollary 4.10: If P_is any path with length n, and has n + 1 vertices, then

n+l n+l

n+ n
1(G; x) = Z Z( n" p( J S(p, k)x* , where S(p, k) is the Stirling number of

k=1 p=k
the second kind.
Proof: Because P is a special tree with n + 1 vertices, by Theorem 6 we derive

n+l n+l

n+l- n
the result HG;X):ZZ(_D lp[p_JN(Kp’k)xk. By Lemma 2.3, then

k=1 p=k

n+l n+l

n+ n
I(G; x) = Z Z( )" p[ J S(ps k)x* , where S(p, k) is the Stirling number of

k=1 p=k

the second kind.

5. INDEPENDENCE POLYNOMIALS I (G; x) OF GRAPHS

In the section, the author discusses independence polynomials  (G; x) of graphs.

Because s, denotes the number of stable sets of cardinality k in graph G, and
oG, k) is the number of partitions of V(G) into exactly k non-empty independent
sets of any graph G, then s = (G, k).

But in this paper o(G) is the size of a maximum stable set, in [3]o(G)is the
number of all partitions of V(G) into exactly k non-empty independent sets of any
graph G, here the two concepts is not the same.

Theorem 5.1: If G is a (n — 2)-regular graph with n (even 2m) vertices, o(G) is
the size of a maximum stable set, then independence polynomial of G

a(G)
I,Gx)=) (k'_”m]xk.

k=m
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Proof: Let G be a (n — 2)-regular graph with n (even 2m). Then G is a 1-regular
graph, namely, G = K, UK, U--- UK, , and the number of K is m. We have

0, 1£k<£,
2

N(G.k)=

IA
bl
IA
S

>~ o=
NS

NS

Finally, s, =a(G, k)zN(G,k) and by definition 3, then independence
polynomial

| S

Theorem 5.2: If G is a n — 3-regular graph with n vertices, n > 6, and G = C,,
o(G) is the size of a maximum stable set, then independence polynomial of G

Sl

Proof: Let G be an—3-regular graph with n vertices, n>6 and G = C,, because

g5

1,(G;x)=

G is a 2-regular graph, the graph would be able to join the disjoint cycles, thus
assume that C , say. Then we have

N(G.k)=N(C,.k)=

n?
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Finally, s, =o(G, k)zN((_?,k) and by definition 3, then independence

polynomial of G is given the following:

a(G)n k a(G) n k
1,(G;x)=) — F= — L
(G x) kzz; k[n—ij Z,;}k[n—ij

AL

Corollary 5.3: If G is a (n — 3)-regular graph with n vertices, and

G=C,UC, U--UC,,

n+n,+ .. +n =n, C,NC, =¢ foranyiandj,i#j,3<n<n;1<j<q;q>1,n

> 6, the number of n = 3is /, then independence polynomial of G is given as follows

a(G)
q
LGn=Y > TI.N(c,.1)
k=1 li+l+-+1,=k
when
I, =1,
n,=3,N(C;,1)=43, [=2,
1, 1=3,
when
n.
0, 1<, <=,
n. >4 N(c 1)—
i n? (1 4
L) o J ﬂéljénj
lj nj_l] 2

Proof: For (_;zCn1 UC,U-—-UC, .n+n,+..+n =n,C NC, =¢ foranyi

andj,i;tj,3£nj£n,1Sjéq,qz1,n26,byLemma4then

N(G.k) = N(c, uc, u--uC, k)

- I+ ;z =kN(Cnl’ll)N(an’lz)“.N(C"tf’l‘f)
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- > ﬁN(an,lj).

L+l 4+, =k j=1

Finally, s, =o(G, k)zN((_?,k) and by definition 3, then independence

polynomial of G is given the following:

I %G a
1,(G;x)=Y N(G.k)x* = > TIn(C, 1)«
k=1 k=1 ll+12+-~-+lq=k j=1
when
L, I=1,
n;=3,N(C;,1)=43, 1=2,
L, 1=3,
when
n.
0, 1<, <?’,
n.=24,NC, ,l)=
j 2 n| I ’ ﬂgl.gn
LinL) 27

Remark: (Reviewing the size of maximum independent set)

Because it is NP-hard that o(G) is the size of a maximum stable set (the size of
maximum independent set), so far there exact not the explicit formula, a number of
mathematicians have studied ou(G) is the size of a maximum stable set (the size of
maximum independent set).

Theorem 5.4: If G is a complete d-partite graph Knl,nz’_._’nd, and n+n,+..+n,
= n, then independence polynomial of G

a(G)

LGo=Y ¥ [Is(0)e

k=l L+l +-+l,=k j=1

where S(n, k) is the Stirling number of the second kind, n, k € N.
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Proof: Suppose G = K, andn +n,+...+n,=n,then G= K, UK, U--

UK, .n +n+..+n, =n, Kniﬂan = foranyiandj,iij,3£nj<n,léjéd,

ng?

d >?2, we have

N(G.k) = N(K, UK, U-UK, k)

N(K,.L)N(K,.L)-N(K,.1L)

- L+l -+l =k

QN(an,zj).

With Lemma 3 N(K ; k) = S(n, k), then

L+l +-+l,=k

N(G.k) = N(K, UK, U-UK, k)

N(K,.L)N(K,.L)N(K,.1L)

L+l + -+l =k

3 ljS(nj,lj)

L+l ++ly=k j

a(G) a(G)

Then 1,(G,x)= > N(G.k)x* =% > [T S(n.L)x" where S(n, b
k=1

k=1 L+l +-+l;=k

is the Stirling number of the second kind, n, k € N.

Corollary 5.5: If G is a complete tri-partite graph K . then independence

a(G)
polynomial of I (G; x) = Z Z H; S(n, lj)xk , where S(n, k) is the Stirling

k=1 L+, +;=k
number of the second kind, n, kK € N.

a(G)
Proof: Letn =n,d=3,1<j<3and by Theorem9. Then [ (G:x)= >, >,

k=1 L+l,+l3=k

H; S (n, [ i )xk, where S(n, k) is the Stirling number of the second kind, n, k € N.
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Corollary 5.6: If G is a complete bi-partite graph K, then independence

a(G)
polynomial of G =1 (G; x) = Z z H i ( )x where S(n, k) is the Stirling

k=1 1+, =k
number of the second kind, n, kK € N.
a(G)

Proof: Let n.=n, d=2,1<j<2and by Theorem 9. Then I (G; x) = Z Z

k=l I+l,=k
H; S (n, [ : )x", where S(n, k) is the Stirling number of the second kind, n, k € N.

Theorem 5.7: If G is a tree with n vertices, then independence polynomial of G
a(G) n . 1 ‘
1,(Gx)= kZ‘ Z;,( )" ol N(K,.k)x
p=

Proof: If G is atree with n vertices, then the chromatic polynomial of Gis AT, t) =

t(t— 1)1 = Z( D" . k( j **' . Coefficients of the chromatic polynomial of G

k=0

(n-1 & &
are ¥, =(-1) "(p_J, 1 <p<n. By Theorem3.1 I,(G;x)=> Y N(K,.k)Y,

k=1 p=k

then we have

a(G) n 1
1(G;x)=Y > (-D" "[ JN(Kp,k)x",

k=1 p=k

where

! 1
N(K,. k)= Y %Hb!(“)bi,Zépkén.

2 © 22

Zp: ib=p, Y b=k
i=1 i=1

Theorem 5.8: If P is any path with length n, and has n + 1 vertices, then
independence polynomial of P

o(P) n+l
)= 21 [ " 1jS(p, o)x,

k=1 p=k
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where S(p, k) is the Stirling number of the second kind, p, k, n € N.

[1]

Proof: The formula from the proving course of Theorem 5.3. Omitted.
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