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1. INTRODUCTION

From ancient times, people have used Cryptography, especialy to send secret
messages in coded form during war communications. Since the seventies, there has
been a lot of interest in the construction of Public Key Cryptosystems (PKC) ever
since the idea was introduced by Diffie and Hellman [1]. In 1995, Koblitz proposed
a general Public Key Cryptosystems called Polly Cracker, which is combinatorial
and algebraic in nature [3].

Petri nets are one of the most popular models for the representation and analysis
of parallel processes. It has a wide range of applications including information
systems, operation systems, databases, communication protocols, computer hardware
architectures, security systems, manufacturing systems, defence command and
control, business processes, banking systems, chemical processes, nuclear waste
systems and telecommunications [4].

This can be represented as a particular kind of bipartite graph consisting of two
kinds of nodes called places and transitions. Directed arcs are used to connect places
to transitions (output of places) and to connect transitions to places (input of places) [5].
One of the subclass of Petri nets namely marked graphs has been defined as an
ordinary Petri net in which each place has exactly one input transition and one output
transition. The study of structural properties and behavioral properties for marked
graphs has been made utilizing siphons and traps [6]. A nonempty subset of places
J is called a siphon if every transition having an output place in J has an input place
in J. A nonempty subset of places Q is called a trap if every transition having an
input place in Q has an output place in Q [7].

In this paper, we construct certain special cases of Polly Cracker Public Key
Cryptosystems on the domain of marked graphs namely, (i). The subset of places of
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a marked graph which is both siphon and trap whose input transitions equal to output
transitions and both of them equal the set of all transitions of a marked graph (ii)
The subset of places of a marked graph whose removal makes the resulting marked
graph not to have subsets which are both siphon and trap [2].

2. PRELIMINARIES

In this section, we present some basic definitions relevant to this paper:

Definition 2.1: A Petri net is a triple N = (P, T, F) where P is a finite set of
places, T is a finite set of transitions, such that

(i) P � T � �

(ii) P � T = �

(iii) F � (P � T) � (T � P) is a set of directed arcs.

Definition 2.2: For all p � P,
�p = {t � T | (t, p) � F}, p� = {t � T | (p, t) � F}

are the pre and post sets of p respectively. Similarly, For all t � T,
�t = {p � P | (p, t) � F}, t� = {p � P | (t, p) � F}

are the pre and post sets of t respectively.

Definition 2.3: A Petri net is said to be a marked graph if |
 
�p

 
| = |

 
p�

 
| = 1 for all

p � P.

Definition 2.4: A non empty subset of places J in a marked graph is called a
siphon if �J � J �. That is every transition having an output place in J has an input
place in J.

Definition 2.5: A nonempty subset of places Q in a marked graph is called a trap
if Q � � �Q. That is every transition having an input place in Q has an output place in
Q.

Definition 2.6: A non empty subset Z of places in a marked graph is said to be
both siphon and trap if �Z = Z�. That is, every transition having an input place in Z
has an output place in Z and vice versa.

Definition 2.7: A Polly Cracker Public Key Cryptosystem is described as follows:

• K is a finite field.

• X = {x
i
} is a set of variables.

• Alice wants to be able to receive a message � � K from Bob.
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• Her Private Key is a random vector Y � Kn.

• Her Public Key is a set of polynomials F = {q
j
} which vanish on Y.

• To send a message �, Bob generates an element � = g
i 
q

j
 of the ideal I

 
(F)

and sends her the Ciphertext polynomial C = � + �.

• Alice finds � by evaluating the Ciphertext polynomial C on Y as C
 
(Y ) =

� (Y) + � = �.

In this note, for convenience, we take the field K as K
2
 and messages as single

bits either 0 or 1.

3. MAIN RESULT

In this section, we construct certain special cases of Polly Cracker Public Key
Cryptosystems on the subsets of places of marked graphs.

Theorem 3.1: There exists a PKC on a marked graph N = (P, T, I, O), where the
place set P of N has a subset W, which is both siphon and trap whose input transitions
equal to output transitions and both of them equal the set of all transitions T of N.

Proof: Suppose K be a finite field and let the given marked graph has m places
and n transitions, namely, P = {p

1
, p

2
, ..., p

m
} and T = {t

1
, t

2
, ..., t

n
}. Let X =

{x
i 
| 1 � i � m} be a set of variables corresponding to the places in the place set

P of N. Assume that the set W has r elements. Then r � m. Let us construct a private
key Y as a random vector over Km such that the ith component of Y, y

i
 = 1 if the place

p
i
 � W and y

i
 = 0 if the place p

i
 � W. Let F

 
(N) denote a basis of polynomials in the

variables {x
i
}. To construct a Public Key let us define

F
1
 = �

m

i
i

x  if m is even and F
1
 = � � �� �
� �
� 1
m

i
i

x  if m is odd

Denote the polynomial in F
1
 as f �

1 
(x).

For all t
s
 � T define,

F
2
 = � �� �

� � �� �
� �

( ) | ( ) (1 ) (1 )
i s j s

s s i j
x t x t

f x f x x x

Let F
 
(N) = F

1
 � F

2
. This F

 
(N) will be served as a Public Key of the required PKC

system. To encript the message define a set of polynomials G = {g
j 
(x

i
)}, for j � 1.

The Ciphertext polynomial is obtained by

C =
�

�� � �� 1
, 1

( ) ( ) ( ) ( )
n

i j j
i j

f x g x f x g x
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Since f
1
�(x) and f

i 
(x) for i = 1, 2, ..., n, vanish on Y, we will get � at decription. Hence

the theorem.

Note 1: In [6], the problem of obtaining the set W satisfing the requirement of
the above theorem was transformed as the problem of obtaining a directed
Hamiltonion circuit in a digraph, which is a NP-COMPLETE problem. So, breaking
the private key is difficult even though the Public Key is known to the public and
hence the constructed PKC is a secured one.

Figure 1: Marked Fraph

Example 3.1: Consider the marked graph shown in Fig. 1.

This marked graph has 11 places and 5 transitions. Clearly the set W = {p
1
, p

4
, p

6
,

p
7
, p

9
} satisfies the requirement of the theorem. For convenience let us take the field

K as K
2
 and messages as single bits either 0 or 1.

Private Key: Define Y = (y
1
, y

2
, y

3
, y

4
, y

5
, y

6
, y

7
, y

8
, y

9
, y

10
, y

11
) � K

2
(11). Define

y
i
 = 1 if p

i
 � W and 0 otherwise. Hence, Y = (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0) and r = 5

which is an odd number.

Public Key: The marked graph N and the basis F = F
1
 � F

2
, where

F
1
 = x

1
 + x

2
 + x

3
 + x

4
 + x

5
 + x

6
 + x

7
 + x

8
 + x

9
 + x

10
 + x

11
 – 1.

F
2
 = {f

1
(x), f

2
(x), f

3
(x), f

4
(x), f

5
(x)} where

f
1
(x) = (1 + x

11
)

 
(1 + x

2
)

 
(1 + x

4
)

 
(1 – x

3
)

 
(1 – x

9
)

 
(1 – x

11
)
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f
2
(x) = (1 + x

3
)

 
(1 + x

5
)

 
(1 + x

1
)

 
(1 – x

2
)

 
(1 – x

6
)

f
3
(x) = (1 + x

7
)

 
(1 – x

4
)

 
(1 – x

5
)

 
(1 – x

8
)

f
4
(x) = (1 + x

10
)

 
(1 + x

6
)

 
(1 – x

7
)

f
5
(x) = (1 + x

8
)

 
(1 + x

9
)

 
(1 – x

1
)

 
(1 – x

10
)

Encryption: Let � = 1.

G = {g
1
(x), g

2
(x), g

3
(x), g

4
(x), g

5
(x)} where

g
1
(x) = x5

1
 + x4

1
 – x3

2
 + x2

3
 – x4

g
2
(x) = x5

1 
x3

2
 – x4

1 
x3

5 
x3

4
 – x2

3 
x3

2 
x2

1
 + x2

3
 + x4

g
3
(x) = x5

1
 + x4

1 
x5

2
 – x4

1 
x2

4 
x3

2
 + x6

3 
x2

1
 – x4

5 
x3

4 
x2

5

g
4
(x) = x2

1 
x5

3
 + x3

2 
x4

3
 + x2

4 
x3

5 
x5

3
 – x6

2 
x2

5
 + x3

2 
x2

5

g
5
(x) = x5

4 
x3

2
 – x4

1 
x3

3 
x3

4
 – x2

1 
x3

2 
x2

5
 + x2

5 
x3

2
 + x3

4 
x2

2

The Ciphertext polynomial is:

C(x) = 1 + [x
1
 + x

2
 + x

3
 + x

4
 + x

5
 + x

6
 + x

7
 + x

8
 + x

9
 + x

10
 + x

11
 – 1]

[x5
1
 + x4

1 
x5

2
 – x4

1 
x2

4 
x3

2
 + x6

3 
x2

1
 – x4

5 
x3

4 
x2

5
] + [(1 + x

11
)

 
(1 + x

2
)

 
(1 + x

4
)

(1 – x
3
)

 
(1 – x

9
)

 
(1 – x

11
)]

 
[x5

1
 + x4

1
 – x3

2
 + x2

3
 – x

4
] + [x5

1 
x3

2
 – x4

1 
x3

5 
x3

4

– x2
3 
x3

2 
x2

1
 + x2

3
 + x

4
]

 
[(1 + x

3
)

 
(1 + x

5
)

 
(1 + x

1
)

 
(1 – x

2
)

 
(1 – x

6
)]

– [(1 + x
7
)

 
(1 – x

4
)

 
(1 – x

5
)

 
(1 – x

8
)]

 
[x5

1
 + x4

1 
x5

2
 – x4

1 
x2

4 
x3

2
 + x6

3 
x2

1

– x4
5 
x3

4 
x2

5
]

 
+

 
[x2

1 
x5

3 
+

 
x3

2 
x4

3 
+

 
x2

4 
x3

5 
x5

3 
–

 
x6

2 
x2

5 
+

 
x3

2 
x2

5
]

 
[(1

 
+

 
x

10
)

 
(1

 
+

 
x

6
)

(1
 
–

 
x

7
)]

 
–

 
[(1

 
+

 
x

8
)

 
(1

 
+

 
x

9
)

 
(1

 
–

 
x

1
)

 
(1

 
–

 
x

10
)]

 
[x5

4 
x3

2 
–

 
x4

1 
x3

3 
x3

4 
–

 
x2

1 
x3

2 
x2

5

+ x2
5 
x3

2
 + x3

4 
x2

2
].

Decryption: � will be found by evaluating the polynomial C
 
(x) at Y = (1, 0, 0,

1, 0, 1, 1, 0, 1, 0, 0). This yields � = 1.

Theorem 3.2: There exist a PKC on a marked graph N = (P, T, I, O), where the
place set P of N has a subset W, whose removal makes the resulting marked graph
N� not to have subsets which are both siphon and trap.

Proof: Let us take the sets K, P, T and X as in the previous theorem. Take
r = |

 
P

 
| – |

 
W |. Then r � m. Let us construct a private key Y as a random vector over

Km such that the i th component of Y , y
i
 = 1 if the place p

i
 � W and y

i
 = 0 if the place

p
i
 � W. Let F

 
(N) denote a basis of polynomials in the variables {x

i 
| 1 � i � m}. To

construct a Public Key let us define,
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F
1
 = � � �� �
� �
� 1
m

i
i

x  if m is odd and F
1
 = �

m

i
i

x if m is even,

Denote the polynomial in F
1
 as f �

1 
(x).

For all t
s
 � T define ,

f
s
(x) = � �� � �� � 2

,

(1 ) (1 )i j i
i j i

x x x

where the first part of the above f
s
(x) is �

 
(p

i
, p

j
)

(i � j)
 � �t

s
 � t �

s
 and the second part of

the above f
s
(x) is �

 
p

i
 � �t

s
 � t�

s

Let F
2
 = {f

s
(x)}, �

 
t
s
 � T

Let F
 
(N) = F

1
 � F

2
. This F

 
(N) will act as a Public Key of the required PKC

system. To encript the message define a set of polynomials G = {g
j 
(x

i
)}, for j � 1.

The Ciphertext polynomial is obtained by

C =
�
�
, 1

n

i j

f
i 
(x) g

j 
(x) + � + f

1
�(x) g

j 
(x)

Since f
1
�(x) and f

i 
(x) for i = 1, 2, ..., n, vanish on Y, we will get � at decription. Hence

the theorem.

Proof: Note 2: In [5], the problem of obtaining the set W satisfing the requirement
of the above theorem was transformed as the problem of obtaining a minimal feed
back set in a digraph, which is a NP-COMPLETE problem.

So, breaking the private key is difficult even though the Public Key is known to
the public and hence this PKC is also a secured one.

Example 3.2: Consider the marked graph shown in Fig. 1.

Here m = 11 and n = 5. Clearly the set W = {p
2
, p

7
, p

11
} satisfies the requirement

of this theorem. Here also, for convenience let us take the field K as K
2
 and messages

as single bits either 0 or 1.

Private Key: Let Y = (y
1
, y

2
, y

3
, y

4
, y

5
, y

6
, y

7
, y

8
, y

9
, y

10
, y

11
) � K

2
(11). Define y

i
 = 1

if p
i
 � W and 0 otherwise. Hence, Y = (1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0) and r = 8 which

is an even number.

Public Key: The marked graph N and the basis F = F
1
 � F

2
, where

F
1
 = x

1
 + x

2
 + x

3
 + x

4
 + x

5
 + x

6
 + x

7
 + x

8
 + x

9
 + x

10
 + x

11
.

F
2
 = {f

1
(x), f

2
(x), f

3
(x), f

4
(x), f

5
(x)} where
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f
1
(x) = (1 – x

11
)

 
(1 – x

4
) + (1 – x

3
)

 
(1 – x

4
) + (1 – x

9
)

 
(1 – x

4
)

+ (1 – x
11

)
 
(1 – x

3
) + (1 – x

11
)

 
(1 – x

9
) + (1 – x

11
)

 
(1 – x

2
)

+ (1 – x
3
)

 
(1 – x

2
) + (1 – x

9
)

 
(1 – x

2
) + x2

11

f
2
(x) = (1 – x

2
)

 
(1 – x

3
) + (1 – x

1
)

 
(1 – x

2
) + (1 – x

6
)

 
(1 – x

3
)

+ (1 – x
1
)

 
(1 – x

6
) + (1 – x

2
)

 
(1 – x

5
) + (1 – x

6
)

 
(1 – x

5
)

f
3
(x) = (1 – x

5
)

 
(1 – x

7
) + (1 – x

4
)

 
(1 – x

7
) + (1 – x

8
)

 
(1 – x

7
)

f
4
(x) = (1 – x

7
)

 
(1 – x

6
) + (1 – x

10
)

 
(1 – x

7
)

f
5
(x) = (1

 
–

 
x

1
)

 
(1

 
–

 
x

8
)

 
+

 
(1

 
–

 
x

10
)

 
(1

 
–

 
x

8
)

 
+

 
(1

 
–

 
x

1
)

 
(1

 
–

 
x

9
)

 
+

 
(1

 
–

 
x

10
)

 
(1

 
–

 
x

9
)

Encryption: Let � = 1.

G = {g
1
(x), g

2
(x), g

3
(x), g

4
(x), g

5
(x)} where

g
1
(x) = x5

10 
x8

4
 + x4

11 
x6

3
 – x3

9
 + x2

5 
x7

2
 – x9

4
 – x8

9 
x3

6 
x5

7

g
2
(x) = x5

9 
x6

3
 – x7

1 
x7

2 
x4

9
 – x4

8 
x5

6 
x3

1
 + x8

3
 + x6

2

g
3
(x) = x8

11
 + x14

10 
x5

4
 – x5

1 
x7

4 
x3

5
 + x6

7 
x6

1
 – x4

6 
x7

4 
x4

7

g
4
(x) = x8

1 
x8

7
 + x9

2 
x4

1
 + x6

4 
x3

5 
x5

10
 – x16

2
 x9

5
 + x3

1 
x6

5

g
5
(x) = x15

4 
x3

10
 – x9

1 
x8

7 
x7

3
 – x6

1 
x3

11 
x7

5
 + x8

10 
x9

2
 + x3

4 
x7

1

The Ciphertext polynomial is:

C(x) = 1 + [x
1
 + x

2
 + x

3
 + x

4
 + x

5
 + x

6
 + x

7
 + x

8
 + x

9
 + x

10
 + x

11
]

[x15
4
 x3

10 
– x9

1 
x8

7 
x7

3 
– x6

1 
x3

11 
x7

5
 + x8

10 
x9

2
 + x3

4 
x7

1
] + [(1 – x

11
)(1 – x

4
)

+
 
(1

 
–

 
x

3
)

 
(1

 
–

 
x

4
)

 
+

 
(1

 
–

 
x

9
)

 
(1

 
–

 
x

4
)

 
+

 
(1

 
–

 
x

11
)

 
(1

 
–

 
x

3
)

 
+

 
(1

 
–

 
x

11
) (1

 
–

 
x

9
)

+
 
(1

 
–

 
x

11
)

 
(1

 
–

 
x

2
)

 
+

 
(1

 
–

 
x

3
)

 
(1

 
–

 
x

2
)

 
+

 
(1

 
–

 
x

9
)

 
(1

 
–

 
x

2
)

 
+

 
x2

11
]

 
[x5

10 
x8

4

+ x4
11 

x6
3
 – x3

9
 + x2

5 
x7

2
 – x9

4
 – x8

9 
x3

6 
x5

7
] + [x5

9 
x6

3
 – x7

1 
x7

2 
x4

9
 – x4

8 
x5

6 
x3

1
 + x8

3

+
 
x6

2
]

 
[(1

 
–

 
x

2
)

 
(1

 
–

 
x

3
)

 
+

 
(1

 
–

 
x

1
)

 
(1

 
–

 
x

2
)

 
+

 
(1

 
–

 
x

6
)

 
(1

 
–

 
x

3
)

 
+

 
(1

 
–

 
x

1
)

 
(1

 
–

 
x

6
)

+
 
(1

 
–

 
x

2
)

 
(1

 
–

 
x

5
)

 
+

 
(1

 
–

 
x

6
)

 
(1

 
–

 
x

5
)]

 
+

 
[(1

 
–

 
x

5
)

 
(1

 
–

 
x

7
)

 
+

 
(1

 
–

 
x

4
)

 
(1

 
–

 
x

7
)

+ (1 – x
8
)

 
(1 – x

7
)]

 
[x8

11
 + x14

10 
x5

4
 – x5

1 
x7

4 
x3

5
 + x6

7 
x6

1
 – x4

6 
x7

4 
x4

7
] + [x8

1 
x8

7

+ x9
2 
x4

1
 + x6

4 
x3

5 
x5

10
 – x16

2
 x9

5
 + x3

1 
x6

5
]

 
[(1 – x

7
)

 
(1 – x

6
) + (1 – x

10
)

 
(1 – x

7
)]

+ [(1 – x
1
)

 
(1 – x

8
) + (1 – x

10
)

 
(1 – x

8
) + (1 – x

1
)

 
(1 – x

9
)

+ (1 – x
10

)
 
(1 – x

9
)] [x15

4 
x3

10 
– x9

1 
x8

7 
x7

3
 – x6

1 
x3

11 
x7

5
 + x8

10 
x9

2
 + x3

4 
x7

1
]

Decryption: � will be found by evaluating the polynomial C
 
(x) at

Y = (1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0). This yields � = 1.
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4. CONCLUSION

We have constructed certain special cases of Polly Cracker Public Key Cryp- to
systems on the domain of marked graphs namely, (i). The subset of places of a
marked graph which is both siphon and trap whose input transitions equal to output
transitions and both of them equal the set of all transitions of a marked graph (ii)
The subset of places of a marked graph whose removal makes the resulting marked
graph not to have subsets which are both siphon and trap. It is shown that this system
is a secured one.
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