
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received October 25, 2007
Manuscript revised December 05, 2007

Mobile Agent Computation Results Protection with
Head Sealing

Abid KHAN, Xia-Mu NIU and Yong ZHANG
1Information Security Technique Research Center, Harbin Institute of Technology, Shenzhen Graduate School,

Shenzhen, P. R. China abidkhan_hit@yahoo.com, xiamu.niu@hit.edu.cn, zhangyong@hitsz.edu.cn

Abstract: Mobile agent technology offers many solutions to various problems faced by traditional client/server technology.
However some unique and challenging security problems are also introduced. One such security problem is the protection
of the mobile agent from malicious hosts. Providing integrity of execution for mobile agents is the most difficult problem to
address. This paper presents a new idea of “seal head protection” for mobile agents. We aim to protect the computation
results of mobile agent by using a graph or list based dynamic data structure. We first convert the results of the agent’s
computation into a form that can be represented by a graph or list structure. Then we seal (encrypt) the head of this
dynamic data structure. The cryptographic algorithm like DES or AES can be used to protect the confidentiality of this head
object. The only overhead is the transfer of the secret key used for Symmetric Encryption/Decryption however, by using a
stronger key transfer protocol like ElGamal or Diffie-Hellmann this problem can be solved efficiently. Experimental results
suggest that the proposed scheme can be used by mobile agents against malicious host tampering in an e-commerce
application.

Key words: mobile agent security, malicious host, object sealing, secure computation, symmetric DES/AES encryption
decryption.

1. INTRODUCTION

A Mobile agent (MA) is a program that can act in a computer
network on behalf of a user or an application. MA has already
been employed in a variety of applications with great effect
such as information retrieval, workflow management
systems, e-commerce applications and Network
Management [1-4]. Despite their application in such diverse
areas there are still some issues which need to be addressed
before mobile agents can be used widely; security being the
most serious and challenging issue among others needs a
lot of attention. Security in mobile agent system can be
divided into two major types. The first one is security of the
platform from malicious mobile agents, and the second one
is the security of the mobile agent from a malicious platform.
The second type of security is the focus of this paper. The
security of the mobile agent from malicious host can further
be divided into two types: (1) security of the static code and
data (2) security of the dynamic execution state of the agent.

In this paper we present a new idea we call this as “seal
head protection”. We have combined the ideas of pointer
aliasing and object sealing for mobile agent security. Because
of the aliasing effect it is difficult to analyze objects that
may refer to same memory location. Aliasing occurs when
two objects refer to same memory location. Since our
dynamic data structure representation will use a lot of

reference so we believe that it is difficult to analyze such
structure. We use object sealing to seal the head of the head
of the structure which represents the computation results of
a mobile agent at a host. Additionally the strength of our
proposed method can be increased by using some opaque
predicates [16, 17]. An opaque predicate is a predicate which
has a value only known prior to the obfuscator. Obfuscation
is a technique of transforming a program into a form that is
more difficult to understand. The behavior of the obfuscated
program should be identical to the original program which
is being obfuscated.

This paper is organized as follow: in section 2 we discuss
related work. Section 3 discusses the proposed idea. Section
4 discusses implantation and performance evaluation. In
section 5 a conclusion is given.

2. RELATED WORK

Mobile agent’s execution environment is responsible for
providing necessary environment and resources in order to
successfully execute an agent. Methods that have been
devised to protect the computation results of a mobile agent
include Partial Results Authentication Code (PRAC) [11],
Hash Chaining [10], Set Authentication code [12], and Ring
Signature [13]. Yee proposed the idea of PRAC in which
the results of an agent’s computation at each host is
encapsulated using MAC (Message Authentication Code).
The result of an agent’s execution combined with MAC of
the results is called PRAC. This method requires the agent

Journal of Information Technology and Engineering
Vol. 1 No. 1 (June, 2016)

 Received: 13th March 2016 Revised: 24th April 2016 Accepted: 29th April October 2016

14 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

to produce a secret key for each host, using one way function,
from the initial secret key given by the originator. This
method makes sure to provide forward integrity which means
“None of the results calculated prior to a malicious host can
be tampered”. In Hash Chaining method the partial results
are chained to the identity of the next host in itinerary. This
method allows the originator to determine where exactly the
chaining is broken if a host behaves maliciously by tampering
with the partial results. Although this method provides
stronger security, it is not flexible enough. Hohl [7] gave
the idea of a time limited black box security using
obfuscation as a protection technique. The problem with this
technique was the unknown length of the protection time
interval. The idea of using watermarking as a protection
mechanism was presented by [8, 9]. This method attempts
to detect manipulation attacks performed during agent’s
execution. The agent’s execution creates marked results.
When the agent returns to the origin host, these results are
examined in order to locate the watermark. If the mark has
been changed this proves a manipulation of results and
malicious behavior of the host. But according to their work
manipulation attacks performed by a malicious host are
difficult to detect and expensive [6]. In [18] the idea of
cryptographic traces was presented based on the execution
tracing and cryptography. It allows the “Detection of attacks
against the code, state and execution flow for mobile agents.
These facts can be used to punish the attackers. However
this method has some limitation e.g. mobile agent code is
executed again only in case of suspicion although there is
suspicion detection protocol but its cost is too high. In [19]
Roth proposed the idea of transferring commitments to other
cooperating agent. This agent can do tasks like storing,
gathering and verifying the information. The underlying
principle is the generalization of the trusted third party. These
cooperating agents share secrets and decisions and have a
disjoint itinerary. Each cooperating agent record the itinerary
of other cooperating agent. This makes collusion attacks
difficult but not impossible. However this technique is only
effective if this requirement can be realistically met. [20]
Proposed the idea of reference state. A reference state is a
state that is produced by a non-attacking host or reference
host. In this model the execution on one host is checked
unconditionally and immediately on the next host, regardless
of whether this host is trusted or untrusted. [21] Proposed
the notion of data lockers. It is a service provided for mobile
users to keep their data in secure and safe locations. In [14]
the idea of Ring Signature was proposed by Rivest. A Ring
Signature, in which no prior setup process and no group
manager are necessary. It is a special form of generalized
group signature. In [12] an original cryptographic technique
called Set Authentication Code is proposed. In this technique
each host exchanges a secret key with the agent owner. This
key is used to calculate MAC on its results. When the mobile
agent returns to the home platform this integrity proof can
be verified. Roth [22] pointed out some flows in some of

the proposed protocols of [23, 24, 10]. According to Roth
these protocols failed because they were unable to bind the
collected data by agent with its static code. He proposed
fixing these protocols by binding confidential data and
acquired data via constructing an agent kernel and
ciphertexts. This allows authorized hosts to detect whether
a ciphertext brought by an agent actually belongs to the agent.
In [25] the idea of using multi-agent architecture was
proposed. They used different classes of agents like task
agent, data collection agent and data computation agent. The
task agents are responsible for the completion of job the
user wants to complete. Computation agents perform the
desired computation in single hop or multi-hop fashion. Data
collection agents responsible for data state collection.

2.1 Security Properties

In [10] Karjoth have defined a set of security properties
which are considered as the basic guidelines for the data
integrity mechanism. Here we took the liberty of modifying
the original text slightly. While defining these properties
Karjoth assumed that a malicious host has captured the agent

containing a set of encapsulated offers 1 2, ,...., mO O O where

m � n and O
m
 is the last host visited by the agent before

being captured.
Forward Integrity: According to Yee [11], “None of

the partial results collected prior to a malicious host can be
modified without detection”. If a mobile agent visits a

number of hosts 1 2, ,..., nS S S and the first malicious host

that it encounter is S
m
 where 1 1m n� � � then none of the

partial results collected at hosts ()iS i m� can be

undetectably modified by a malicious host.
Strong Forward Integrity: If a mobile agent visits a

number of hosts 1 2, ,..., nS S S and the first malicious host it
encounters is S

m
 then none of the encapsulated offer O

k
 where

k > m can be modified.
Insertion Resilience: Only hosts that are authorized to

insert offers can add the offers.
Truncation Resilience: None of the encapsulated offer

can be removed from the chain O
1
, O

2
,...., O

n
 without being

detected.
Non-Repudiation: No hosts can deny the offers that it

made to a visiting host.

3. PROPOSED IDEA

We have combined the idea of object sealing with pointer
aliasing for mobile agent’s computation results protection.
When a mobile agent visits a host it performs some.
computation on the host and as a result it produces some
data. The results produced by a mobile agent at host can be
represented by a dynamic data structure like a graph or link
list or a PPCT (Planted Planer Cubic Tree). After
representing the results in the form of a data structure we
seal (encrypt) the head of Link List or graph or PPCT using

Mobile Agent Computation Results Protection with Head Sealing 15

java’s object sealing ability. Given any Serializable object
one can create a SealedObject that encapsulates the original
object in a serialized format and seals its serialized contents
using a cryptographic algorithm like AES or DES to protect
its confidentiality [5]. Dynamic data structures have a special
property that we can traverse the whole structure from the
head of structure e.g. all the nodes in a link list can be traverse
by a single node called the head of the link list. So if we are
able to represent the results of a mobile agent by a data
structure like a Link list or graph or PPCT we can use java
ability of sealing objects to protect the results of a mobile
agent. Sealing or Encryption of objects in java is achieved
by the existence of special purpose classes like SealedObject.
Once the head is encrypted it is not available to anyone who
does not posses the correct decryption key. One important
step is to be able to represent the results with a dynamic
data structure. Since mobile agent results can be converted
into ASCII values and later these ASCII values can be
converted to binary values. We use this idea of first
converting the results into ASCII values and then from ASCII
values to binary values. Once we have the binary values we
can use any data structure to represent it by a dynamic data
structure. For that purpose we first convert the results of the
agent’s computation into a form that can be represented by
a dynamic graph structure. After this all we need is to seal
(encrypt) the head of that graph. The cryptographic algorithm
like DES or AES can be used to protect the confidentiality
of this head object. The only overhead is the transfer of the
secret key used for Symmetric Encryption/Decryption.
Figure 1 & 2 illustrate our idea. As we can see at each host
the head of the dynamic structure is sealed using symmetric
encryption algorithm. We can recover the whole graph by
just having the head of the graph. This is the property of any
data structure that you can recover the whole structure just
from head. But if the head is deleted or modified you can
not traverse the graph. So the head of the graph must be
protected from any modifications. For that reason we need
to seal the head of the graph. One of the shortcomings of
this idea is the exchange of the secret key used by each host
for sealing the results representation head. For key transfer
there are many efficient key transfer algorithms available
like ElGamal or Diffie-Hellmann Key Exchange algorithm
[15]. Here we don’t consider how actually the key is being
transferred rather assumed that home platform knows the
secret key of each host.

3.1 Sealing an Object

The encrypted content can later be unsealed/decrypted and
de-serialized, giving us the original object. The decryption
process requires the corresponding algorithm with the correct
decryption key. First of all the Cipher object must be
initialized with the correct algorithm used for sealing object
like AES/DES, key and the padding scheme, etc. After this
we can apply this to seal the object. The original object that
was sealed can be recovered in two different ways [5]. (1)

By using the get Object method that takes a Cipher object.
This method requires a fully initialized Cipher object,
initialized with the exact same algorithm, key, padding
scheme, etc., that were used to seal the object. This approach
has the advantage that the party who unseals the sealed object
does not require knowledge of the decryption key. (2) By
using one of the get Object methods that take a Key object.
In this approach, the getObject method creates a cipher
object for the appropriate decryption algorithm and
initializes it with the given decryption key and the algorithm
parameters (if any) that were stored in the sealed object.

public SealedObject(Serializable object, Cipher
c);

public final Object getContent(Cipher c);

KeyGeneratorKeyGen=KeyGenerator.getInstance(“AES”);
SecretKey aesKey=keyGen.generateKey();
Cipher cipher= Cipher.getInstance(“AES”);
cipher.init (Cipher.ENCRPT_MODE, aesKey);

Figure 1: Computation Results Represented as a Graph.

Figure 2: Seal Head Per Host.

3.2 Graph Representation

The data structure shown in the figure.3 is a very simple. It
can be used to represent the results collected by a mobile
agent at a remote host. This data structure has three fields.
The first field self Reference is of type integer and it is used
to represent the number of ‘0’. For every ‘1’ in the result we
draw a new node. The nextNode is a reference to the next
node in the graph structure. The nextNode Null value
represent that we have reached to the end of the input. The
third field is the head and it used to keep track of the head
of the graph. The figure 3 shows how such graph will look
like.

16 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

The graph above encodes the binary value of 100100010

3.3 Mathematical Model

R
i
 � Result at host S

i

G
i
 � Graph representation of results at host S

i

G
i
 = �(R

i
)

��� Function for converting results to graph representation

�
i
� head of the dynamic structure at S

i

�
i
� Encrypted Head after applying SEAL Function at host

S
i

�
i
 = SEAL (�

i
)

�
i
 = �

i–1
 �{�

i
}

�
i
= Decrypt (�

i
)

3.4 Security Model

In order to test the proposed idea we have implemented a
simple Ticket Booking Agent. The primary goal is to make
sure that the partial results collected by mobile agent are in
contact and any modification or tampering can be detected
by the originator. The owner of the agent wants to take a
flight say from Beijing to Hong Kong on next weekend. The
owner of the agent wants to buy the cheapest ticket. The
owner sends his mobile agent to various airline agencies
which are providing the ticket service. The owner sends his
agent with his desired preferences to various airlines servers
to check the availability of the ticket, the price as well as
other relevant information e.g. departure time, arrival time,
flight is direct or number of stops etc. The agent queries the
servers and return to the originator with the results of its
computation. In order to get the best suitable price of tickets
for its owner the agent must keep the prices/data collected
at all the hosts. When a mobile agent collects price from
one host say S

i
 and move to the next host S

i+1
, the price of

the former host S
i
 must be kept secret from the later sever

otherwise the later host may take advantage e.g. offering a
false offer or modifying previously stored offers. The host
S

i+1
 may offer a price that is not the actual price offered by it

or in worst case it can modify the price collected prior to
visiting S

i+1
 in order to get unfair advantage. Mobile agent

must be protected against such attacks. Our main objectives
are confidentiality and integrity of the data carried by mobile
agent. Confidentiality here means to reveal cleartext only at
trusted hosts. Integrity means the agent must be protected
such that it can collect new data set at each host they visit

but also any tampering with the pre-existing collected data
set must be detected by any trusted host.

4. IMPLEMENTATION AND PERFORMANCE
EVALUATION

We have implemented the proposed idea using IBM Aglets
frameworks. For cryptographic primitives we have used the
bouncy castle provider. Our experimental results were
performed in a window based environment with 3 PCs each
having Pentium IV 3.01GHZ processor, 512MB RAM for
agent home and remote hosts. There are several factors in
performance evaluation of the proposed scheme such as the
size of the dynamic graph, how fast the underlying symmetric
encryption algorithm runs and how fast object serialization
is performed. Object serialization gives us the ability to read
or write a whole object to or from a byte stream. As we can
see that the object serialization time is very small even for
large objects. The time for symmetric encryption for both
AES and DES are also listed. The table 1 below suggests
that symmetric encryption of dynamic structure head does
not introduce very serious performance issue.

Table 1
Performance with AES/DES Symmetric Encryption

Object Serialization DES AES Sealing
Size Sealing 128bits 192bits 256bits

10 Bytes 0ms 40ms 8ms 10ms 14ms

100Bytes 0ms 45ms 21ms 23ms 26ms

10KB 5ms 120ms 48ms 50ms 54ms

100KB 10ms 900ms 100m 105ms 120ms

Figure 3: Graph Representation of the Results

2 3 1

Figure 4: Comparison of Execution Time of Graph Head Sealing
with Simple Agent Execution

We have also compared execution of graph head sealing
with the simple agent execution. This is shown in figure 4
above. Although graph head sealing put some extra execution
burden on the executing platform as we can see this burden
is not very large. At the cost of some extra burden we are
providing more security to the agent. We believe that this

Mobile Agent Computation Results Protection with Head Sealing 17

overhead is not a serious concern when compared with the
critical nature of application in which mobile agents are used.

5. CONCLUSION

Mobile agent technology offers many advantages but their
use is limited mainly because of the security problems
associated with them. Security in mobile agent system can
be divided into two types (1) security of host from malicious
mobile agent (2) security of mobile agent from malicious
host. The second type of security can further be divided into
two subtypes (1) Security of static code (2) Security of
dynamic data state. The security of the dynamic data state is
still an open problem of research. In this paper we have
proposed a new method for protection of mobile agent’s
computation results. First we represent the computation
results of a mobile agent with a dynamic data structure and
then we used object sealing to protect the computation results
of the mobile agent. A symmetric encryption algorithm like
AES or DES can be used to seal the objects. Later we can
unseal the object provided we have the secret key. The ability
to represent the results an agent computation in a graph shape
which is hard to analyze for an attacker thus providing agent
owner with enough protection. Our experimental results
suggest that the method can be implemented efficiently by
mobile agent programmer. At the cost of some extra
execution time we can make the computation of the agent
more secure and the owner of the agent can be more certain
about the results collected by the agent.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (60703011), the Chinese national 863
high-tech projects (2007AA01Z458, the Foundation for the
Author of National Excellent Doctoral Dissertation of China
(FANEDD-200238), the Scientific Research Foundation of
Harbin Institute of Technology (HIT.2003.52), the Research
Fund for the Doctoral Program of Higher Education (RFDP):
2007 021307, and the Program for New Century Excellent
Talents in University (NCET-04-0330).The author of the
paper is also grateful to COMSATS Institute of Information
Technology(CIIT), Pakistan for their generous support.

REFERENCES

[1] Dag Johansen, “Mobile agent Applicability”, In
Proceedings of the Second Workshop on Mobile Agents
1998, Berlin, Springer-Verlag LNCS; Vol. 1477, ISBN
3-540-64959-X, (1998), pp. 9-11 September, 1998.

[2] Pattie Maes, Robert H.Guttman and Alexandros G.
Moukas, “Agents That Buy and Sell”, Communication
of the ACM, Vol, 42, No. 3, pp. 81-91, March 1999.

[3] Stavros Papastavrou, George Samaras and Evaggelia
Pitoura, “Mobile Agent for WWW Distributed Database
Access”, In Proceedings of IEEE International
Conference on Data Engineering (ICDE99), 1999.

[4] Gian Pietro Picco and Mario Baldi, “Evaluating
Tradeoffs of Mobile Code Design Paradigms in Network
Management Applications”, In Proceedings of 20th
ICSE98, Kyoto, Japan IEEE CS Press, 1998.

[5] Gong, L., and Schemers, “Signing, Sealing, and
Guarding Java Objects”. Mobile Agents and Security
LNCS, Vol. 1419. pp. 206-216, 1998.

[6] O. Esparza, M. Soriano, J. L. Munoz, and J. Forn¡äe,
“Host Revocation Authority: A Way of Protecting Mobile
Agents from Malicious Hosts”, International Conference
on Web Engineering (ICWE 2003), LNCS. Springer-
Verlag, 2003.

[7] Fritz Hohl, “Time Limited Black box Security: Protecting
Mobile Agents from Malicious Hosts” Mobile Agents
and Security, LNCS, Vol. 1419, Springer-Verlag London,
UK 1998.

[8] O. Esparza, M. Fernandez, M. Soriano, J. L. Munoz, and
J. Forne, “Mobile Agent Watermarking and
Fingerprinting: Tracing Malicious Hosts”, In (DEXA
2003), Vol. 2736 of LNCS, Springer-Verlag, 2003.

[9] O. Esparza, M. Soriano, etc. “Detecting and Proving
Manipulation attacks in Mobile Agent System”. In First
International Workshop, MATA 2004, Florianopolis,
Brazil, In Proceedings, Vol. 3284 of LNCS. Springer
Verlag, 2004.

[10] G. Karjoth, N. Asokan, and C. Gulcu, “Protecting the
Computation Results of Free-Roaming Agents”, In
Proceedings of 2nd International Workshop on Mobile
Agents, Vol. 1477 of LNCS, p. 195–207. Springer-Verlag,
1998.

[11] B. Yee. “A sanctuary for Mobile Agents”, In J. Vitek and
C. Jensen, editors, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, Vol.
1603 of LNCS, p. 261–273, Springer-Verlag, 1999.

[12] S. Loureiro, “Mobile Code Protection”, PhD Thesis,
ENST Paris / Institut Eurecom, 2001.

[13] His-Chung Lin, Sung-Ming Yen, and Her-Shu Chen.
“Protection of Mobile Agent Data Collection by Using
Ring Signature”, In Proceedings of 2004 IEEE ICNSC
2004 Taipei, Taiwan, March 21-23, 2004.

[14] Ronal L.Rivest, Adi.Shamir, and Yael. Tauman “How to
leak a secret”, Advances in Cryptology-ASIACRYPT
2001, LNCS, Vol. 2248. Springer-Verlag, pp. 552-565,
2001.

[15] Rolf Oppliger, Contemporary Cryptography, Artech
House Computer Security, April 30, 2005.

[16] Anirban Majumdar and Clark Thomborson, “Securing
Mobile Agents Control Flow using Opaque Predicates”,
Intelligence and Security Informatics LNCS, Springer
Berlin / Heidelberg, Vol. 3495/2005.

[17] Yusuke Sakabe, Masakazu Soshi and Atsuko Miyaji,
“Java Obfuscation with a Theoretical Basis for Building

18 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

Secure Mobile Agents”, Communication and Multimedia
Security (CMS 2003) LNCS, Springer Berlin /
Heidelberg, Vol. 2828/2003.

[18] Vigna J. Vigna J., “Cryptographic Traces for Mobile
Agents”, Mobile Agent and Security, LNCS 1419, 1998,
Springer, pp. 137-153.

[19] V. Roth. “Mutual Protection of Co-operating Agents”
Secure Internet programming: Security Issues for Mobile
and Distributed Objects, LNCS 1603, New York, NY,
USA: Springer-Verlag, pp. 275-285, 1999.

[20] F. Hohl, “A Framework to Protect Mobile Agents by
Using Reference States”. In Proceedings of the 20th
International Conference on Distributed Computing
Systems (ICDCS 2000), 10-13 April 2000 Taipei,
TAIWAN.

[21] Y. Villate, A. Illarramendi, and E. Pitoura, “Data Lockers:
Mobile-Agent Based Middleware for the Security and
Availability of Roaming Users Data”. In the 7th
International Conference on Cooperative Information

Systems (CoopIS 2000), Eilat, Israel, September 6-8,
2000, LNCS 1901, pp 275-286, Springer, 2000.

[22] V. Roth, “On the Robustness of Some Cryptographic
Protocols for Mobile Agent Protection”, In Proc of MA
2001, Vol. 2240 of LNCS. Springer Verlag, December
2001.

[23] N. M. Karnik and A. R. Tripathi, “Security in the Ajanta
Mobile Agent System,” Technical Report TR-5-99,
University of Minnesota, Minneapolis, MN 55455,
U. S. A., May 1999.

[24] A. Corradi, R. Montanari, and C. Stefanelli, “Mobile
Agents Protection in the Internet Environment”, In
COMPSAC ‘99, pp. 80-85, 1999.

[25] J. T. McDonald, Alec Yasinsac, W. C. Thompson.
“Mobile Agent Data Integrity Using Multi-agent
Architecture”, In Proceedings of the International
Workshop on Security in Parallel and Distributed
Systems (PDCS 2004), San Francisco, CA, 14-17
September 2004.

