
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received October 25, 2007
Manuscript revised December 20, 2007

Browsing Compressed Collection of Semi-Structured
Documents

Ashutosh GUPTA1 and Suneeta AGARWAL2

1 Computer Science and Engineering Department, Institute of Engineering and Rural Technology
Allahabad, UP 211002, India, E-mail:ashutosh333@rediffmail.com

2 Computer Science and Engineering Department, Motilal Nehru National Institute of Technology
Allahabad, UP 211002, India, E-mail: suneeta@mnnit.ac.in

Abstract: Semi-structured document has high redundancy that wastes disk space, bandwidth and disk I/O. To overcome the
verbosity problem, the research is going on to develop efficient compressors for semi-structured data. For the efficiency of
storage and pattern searching, it is necessary to compress document. We describe a compression model for semi-structured
document. The novelties are; pattern searching can be done on the compressed data directly, using any known sequential
pattern-matching algorithm; decompression of any selected portion can also be done very efficiently; insertions, deletions
and modifications in the original XML data can be incorporated directly in earlier compressed XML data. A special feature
of the compressor is that the compressed document retains the structure of the original document. We have compared our
model with the sate-of-art compressors and achieved more than 82% compression ratio. The compression speed is
approximately 67% faster than XMLPPM and bzip2 and decompression speed is 4-2 times faster than XMLPPM and bzip2.

Keywords: Text Compression, Semi-Structured Compression, Compressed documents, Pattern matching

1. INTRODUCTION

In the last twenty years, we have seen a vast explosion of
textual information flow over web through electronic mail,
web browsing and information retrieval systems etc. The
importance of data compression is likely to be enhancing in
the future, as there is continuous increase in amount of data
that need to be transformed or archived. The aim of data
compression is to exploit the redundancies in the data to
reduce its space usage. The most widely used data
compression algorithms are based on the sequential data
compressors of Lempel and Ziv [24, 25]. Statistical modeling
techniques may produce superior compression [34], but are
significantly slower.

Text compression is about finding ways to represent the
text in less space. This is accomplished by substituting the
symbols in the text by equivalent ones that are represented
using a smaller number of bits or bytes. For large text
collection, text compression appears as an attractive option
for reducing costs. The gain obtained from compressing text
is that it requires less storage space, it takes less time to be
read from disk or transmitted over a communication link,
and it takes less time to search. The savings of space obtained
by a compression method is measured by the compression
ratio. There are other important aspects to be considered,
such as compression and decompression speed. In some

situations, decompression speed is more important than
compression speed. For instance, this is the case with textual
databases and documentation systems in which it is common
to compress the text once and to read it many times from
disk

In the field of data compression, Researchers developed
various approaches such as Huffman encoding [9], arithmetic
encoding [23, 33], Ziv-Lempel family [24, 25, 33,], Dynamic
Markov compression, Prediction with partial matching [2]
and Burrows Wheeler Transform [26, 27, 31, 32] based
algorithms, etc. BWT permutes the symbol of a data
sequence that share the same unbounded context by cyclic
rotation followed by lexicographic sort operations. BWT
uses move-to-front and an entropy coder as the backend
compressor. PPM is slow and also consumes large amount
of memory to store context information but PPM achieves
better compression that almost all existing compression
algorithms.

As opposed to the HTML, which is a markup language
for a specific kind of hypertext, SGML and XML [7]
becomes the universal format for structured documents and
data on web. According to [38] Extensible Markup language
is a standardized language that “describes a class of data
objects called XML documents and partially describes the
behavior of computer programs which process them”. XML
language [35] has now become the de facto standard for data
exchange and storage, especially on the Internet, due to its
self-describing and textual nature. The storage, exchange,

Journal of Information Technology and Engineering
Vol. 1 No. 1 (June, 2016)

 Received: 23rd March 2016 Revised: 14th April 2016 Accepted: 10th June 2016

30 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

and manipulation of semi-structured data are spreading
across all kinds of applications, ranging from web-services
and electronic commerce to text database and digital
libraries.

The semi-structured documents (e.g. SGML, XML)
have high redundancy due to the repeated nature of tags,
which lend themselves naturally to compression [6, 11, 12,
13]. After getting the compressed document, one still require
query in compressed domain. The more recent work in [12,
20, 21] proposes techniques that allow the query processor
to decompress a small unit of data at a time: one column
value in the table or one row. There are several advantages
of performing query under compressed domain. First, access
to compressed data lead to less disk I/Os and reduce the
query processing time. Second; the memory requirement in
processing compressed data is lower than those for
uncompressed data, finally, the result of compressed query
uses less bandwidth in network while sending the result to
remote machine.

Our contribution in this paper is to combine the text
structure. We take the advantage of the document structure,
while maintaining the homomorphism feature. Our idea is
to make the separate containers for start/end tag, attribute
name / attribute value and textual words. We will show that
this separation will give lower entropy as compared to
without separating the tags.

The paper is organized as follows. In Section 2, we
discuss some basics of general-purpose compression
methods and compression algorithms for XML data. In
Section 3, we present the description of our compressor
model. Section 4 describes how the partial decompression
and searching is performed. The experimental framework
for the compression model is described in section 5. Section
6 describes the performance results. Finally we conclude in
Section 7.

2. BASICS AND RELATED WORK

Text compression [1, 36] is usually categorized into three
groups: First group belongs to static compression, which uses
a fixed statistics or does not use any statistics for
compression. Examples of the static encoding methods are
dictionary encoding, binary encoding, differential encoding
and [4, 5]. Second category belongs to Statistical
compression. This category belongs to estimating source
symbol probabilities and assigning them codes according to
the probability. Examples of this category are: Huffman
coding [9], Arithmetic coding [20] etc. Third category is
dictionary methods, which are, consist in replacing text sub
string by identifiers, so as to exploit repetitions in the text.
Adaptive compression cannot start decompression at
arbitrary file positions, because all the previous text must
be processed so as to learn the model that permits
decompressing the text that follows.

Lempel-Ziv compression is a dictionary method based
on replacing text substrings by previous occurrences thereof.

The two well-known algorithms of this family are called
LZ77 [24] and LZ78 [25]. A well-known variation of the
LZ78 is called LZW [3, 33]. GNU’s gzip is an example LZ77
compression. A well-known representative of LZW is Unix’s
compress. Lempel-Ziv compressed text cannot be
decompressed at random positions, because one must process
all the text from the beginning in order to learn the window
that is used to decompress the desired portion.

XMill[14] is an compressor that make use of the
similarities between the semantically related XML data to
eliminate data redundancy. XGrind and XPRESS [22, 30]
compressor has the ability that it supports queries directly
over the compressed XML data and adopts homomorphic
transformation to preserve the structure of the XML data.
We advised readers to refer [29] or standard textbooks [10,
36] for a general discussion.

3. MODEL FOR COMPRESSOR

Today, the information retrieval is one of the most important
aspects. We propose a compressor model that permits access
and direct searching on the compressed semi-structured
document. In this section, we describe the features of our
compressor. A useful feature of the model is that it retains
the structure of the original XML document in the
compressed format also. The model uses similar technique
as used by XGrind [30] for compressing meta-data but
differing in compressing the element/value and textual
information in document. The working of model is as
follows: Each start-tag of an element is encoded by ‘T’
followed by a uniquely assigned element-ID. All end-tags
are encoded by ‘/’s. The pair (element, element-ID) is stored
in a container (C

1
) except for end-elements. Since each start

element is closed by a corresponding end-element, there is
no need for storing end-element code i.e. ‘/’. Each Attribute
Name/Attribute Value is encoded by a string “AV” followed
by a uniquely assigned element-ID. The pair (attributeName/
AttributeValue, element-ID) is stored in a container (C

2
).

We use a novel approach for compressing the text. The text
is seen as an alternating sequence of words and separators,
where a word is a maximal sequence of alphanumeric
characters and a separator is a maximal sequence of non-
alphanumeric characters. Each word from the document is
extracted and is stored in a separate container. In first phase,
the frequency distributions for all the words in text are
gathered. In second phase, we actually assign the codes to
the words in a sequential manner. If container contains m
words, then the ith word w

i
 together with its code i is stored

in another container for all 0<= i <m.
In first phase, the routine gather_statistics computes the

frequency for each word of text. The Attribute Name/
Attribute Value pair is encoded by av_routine. These routines
create C

1
 and C

2
 containers. In second phase, the output of

gather_statistics routine is used for encoding the textual
information in document with the help of text_coding routine.
The text_coding routine produces another container, which

Browsing Compressed Collection of Semi-Structured Documents 31

we called text container (C
3
). The resulting containers are

independently compressed with gzip producing Compressed
Container Repository. These compressed containers can be
regarded as a compressed index. During second pass, start/
end element, attribute name, attribute value and textual words
as fetched and their corresponding codes are written the the
output file. The final compressed document is consists of
Compressed Container Repository (Index) and the code
assignment of document tags, attribute Name/Attribute Value
and textual words.

The important feature of the compressor is that its output
is similar to input in nature i.e. it is in semi-structured format.
The compressed XML document can be viewed as the
original XML document with its tags, attribute Name/
Attribute Value and textual words replaced by their
corresponding codes.

Proposition 1: The compressed XML document
generated by compressor is homomorphism with respect to
original XML document.

3.1 Estimation of Entropy

Assume we have a text T of m terms partitioned into M texts
T

1
 . . .T

M
, so that T

c
 has m

c
 terms. The idea is that each T

c

corresponds to the text will be encoded using its own
container. We define the raw frequency relative to a given
container c.

Definition 1 (Frequency) The frequency fc(j) of term j
is given by

c

c
c m

jnoc
jf

)(
)(�

where noc
c
(j) is the number of occurrences of term j in Tc.

Definition 2 (Estimating Zero-order entropy) Let W
c

be the number of word terms for text T
c
. The zero-order

entropy H
c
 of text T

c
 is estimated as

)(

1
ln)(

1
2 jf

jfH
c

Wc

j
cc �

�

� (1)

We can now define the overall entropy of a text T
partitioned into multiple texts. This is a lower bound to the
average codeword length obtained by applying any zero-
order compressor to the text under each container.

Definition 3: (Estimating Zero-order entropy with
multiple containers) The zero-order entropy H for text
T = {T

1
, . . . , T

M
} is computed as the weighted average of

zero-order entropies H
c
 contributed by each text T

c
:

H=
m

Hm c

M

c
c�

�1 (2)

Definition 4: (Estimating container size contribution)
Let W

c
 be the size, in bits of the text words that forms

containers c, and H
c
 its estimation of zero-order entropy.

Then the estimation of container(c) size contribution is
given by

J
c
= W

c
 + m

c
H

c
(3)

3.2 Example

Figure 1 shows an example XML file. Let us consider a single
model for compressing all the words. The text has W

all
 = 44

different words and m
all

 = 69 total words. The words and
their frequencies follow:
nutrition(1), daily-values(1), total-fat(2), units(8), g(6),
20(1), cholesterol(2), saturated-fat(2), 65(1), mg(2), 300(2),
sodium(2), 2400(1), carb(2), fiber(2), 25(1), protein(2),
50(1), food(1), name(1), Avocado(1), Dip(1), mfr(1),
Sunnydale(1), serving(1), 29(1), calories(1), total(1), 110(1),
fat(1), 100(1), 11(1), 3(1), 5(1), 210(1), 2(1), 0(5), 1(1), a(1),
c(1), vitamins(1), minerals(1), ca(1), fe(1).

Following Eq. (1) the entropy of this text is H
all

 = 5.14
bits per word. To account for the cost of encoding the
container, let us assume that we need 8 bits per different
container word, thus W

all
 = 8·W

all
. According to Eq. (3), the

overall number of bits to represent the text is
T

all
 = W

all
 + m

all
H

all
 = 8· 44 + 69 · 5.14 = 707 bits.

Let us now separate the elements, attribute name/
attribute value, textual words and compute the raw
frequencies of the words within each container.

<element>: nutrition(1), daily-values(1), total-fat(2),
cholesterol(2), saturated-fat(2), sodium(2), carb(2), fiber(2),
protein(2), food(1), name(1), mfr(1), serving(1), calories(1),
a(1), c(1), vitamins(1), minerals(1), ca(1), fe(1).

<attribute name/attribute value>: units/g(6), 20(1), units/
mg(2), total/110(1), fat/100(1).

<textual words>: 20(1), 65(1), 300(2), 2400(1), 25(1),
50(1), Avocado(1), Dip(1), 29(1), 110(1), 100(1), 11(1),
3(1), 5(1), 210(1), 2(1), 0(5), 1(1).

The entropies for each container are computed using
Eqs. (1) and (3).

Containers Entropy Number Different Total bits
(bits / of words in
word) Words container

Element (C
1
) H

element
m

element
= V

element
 = J

element
 =

= 4.03 29 20 276

Attribute H
an/av

= m
an/av

= V
an/av

 = 4 J
an/av

 = 48
name/attribute 1.56 10
value (C

2
)

textual H
textword

= m
textword

= V
textword

 = J
textword

 =
words (C

3
) 3.83 22 17 221

If we consider the text words in separate form we obtain,
a total entropy of H = 3.53 bits per word (using Eq. 2). This
is much improved (31% less) than if we consider all text

32 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

words together. This is not unexpected, as the entropy is
always lower when we divide a text. However, we must also
consider the cost of maintaining separate containers for each
text word. In this case, even if we consider the container
storage, we obtain a total of 545 bits when we sum the values
in the last column of the previous table. This is still lower
(23% less) than the 707 bits used when the text words are
not separated.

The above result shows that our heuristic for combining
the attribute name with attribute value reduces the entropy.
The important feature of the model is that it retains the
structure of original document. This feature permits for faster
decompression as attribute name and attribute value are
coded by single code.

<nutrition>
<daily-values>

<total-fat units="g">65</total-fat>
<saturated-fat units="g">20</saturated-fat>
<cholesterol units="mg">300</cholesterol>
<sodium units="mg">2400</sodium>
<carb units="g">300</carb>
<fiber units="g">25</fiber>
<protein units="g">50</protein>

</daily-values>
<food>

<name>Avocado Dip</name>
<mfr>Sunnydale</mfr>
<serving units= "g">29</serving>
<calories total= "110" fat="100"/>
<total-fat>11</total-fat>
<saturated-fat>3</saturated-fat>
<cholesterol>5</cholesterol>
<sodium>210</sodium>
<carb>2</carb>
<fiber>0</fiber>
<protein>1</protein>
<vitamins> <a>0 <c>0</c>
</vitamins>
<minerals> <ca>0</ca> <fe>0</fe>
</minerals>

</food>
</nutrition>

Figure 1: Example XML file.

4. SEARCHING AND RANDOM ACCESS

The method we suggested for compression permits local
decompression of the text from random positions, as well
as efficient direct search of the compressed text. In this
section we show how these tasks can be carried out.

4.1 Searching

The search for a pattern on a compressed text is made in
two phases. In the first phase we compress the pattern using

the same structures used to compress the input data. In the
second phase we search for the compressed pattern. In an
exact pattern search, the first phase generates a unique code
word for pattern that can be searched with any conventional
searching algorithm. In a set of pattern search, the first phase
generates all the code words that match with the original
patterns in the Text container (C

3
). In the second phase we

obtain the list of code words that match the pattern set and
use a multi-pattern search algorithm.

4.2 Partial Decompression

The partial decompression of compressed text in this scheme
is very simple. The Algorithm 1 is used for decompression
from given position pos. As the compressed document
generated by compressor is homomorphism with respect to
original document, this property permits one to perform
partial decompression from any given position in compressed
text. Once we wish to start decompression at some position
of the compressed text, we check three things. First, if the
compressed code starts with ‘T’, then we switch to container
C

1
 and retrieve the corresponding start-tag and push the start-

tag to the stack. This way we generate corresponding start-
tag, attribute name/attribute value and textual words.
Whenever a ‘/’ is seen, we pop the start-tag, prepend “</”
and append “>” to the start-tag (i.e. forming end-tag). In
this way we continue to decompress the rest of the
compressed text. Second, if the compressed code starts with
‘AV’, then we switch to container C

2
 and retrieve the

corresponding attribute name/attribute value. Next time if
‘T’ appears in compressed text, we do in the same way, as
we did in first case. At last, if position in compressed text
starts with code of textual word, then we decompress using
container C

3
 and rest of the decompression is performed

using case first and second.

Algorithm 1 (Partial Decompression)

// top is top index of stack. pos is position in compressed
text from where partial decompression starts.

1. S � $ // ‘$’ is used as a marker in stack
2. while (stack not empty)

3. if (symbol is ‘T
pos

’)
4. push T

pos
 to stack

5. retrieve string representing code of T
pos

and write to output file

6. if(symbol is ‘AV
pos

’)
7 retrieve string representing code of AV

pos

and write to output file
8. if (symbol is ‘/’) and (S

top
 !=$)

9. pop top element from the stack (T
top

)
10. retrieve string representing code of T

top
 ,

form end-tag and write to output file
11. end while

Browsing Compressed Collection of Semi-Structured Documents 33

5. EXPERIMENTAL SETUP

To show the efficiency of compressor, we empirically
compared the performance of compressor with variety of
documents ranging from small file size to large file size using
real-life data sets. We used g++ compiler with full
optimization. The experiment was carried out on a 2.6GHZ
Pentium IV machine housing Fedora Core 2.

5.1 Data Sets

The details of the XML documents used in our experiment
are summarized in Table 1. The Size refers to the total disk
space occupied by the document in MBs;

Table 1
Details of XML Documents

Document Size

mondial [18] 1.7

play [19] 7.8

tpc-h [17] 42

treebank [16] 86

xmark [15] 111

dblp [15] 207

The reason for choosing small to large set of document
is to ensure that our compressor framework is well suited
for different document statistics.

5.2 Category of Experiments

We carry out two categories of experiments. We run each
experiment four times and take the average of four runs.
The compression ratio is defined as follows:

data XML original of Size

data XML compressed of Size
 - 1 CR �

Second we measure the compression and decompression
speed for all variety of data.

6. PERFORMANCE RESULTS

The efficiency of our compression method is evaluated with
two measures defined in subsection 5.2. We compare our
heuristic with several classical compression tools: (1) bzip21,
which uses the Burrows Wheeler block sorting text
compression algorithm and Huffman coding; (2) GNU gzip2,
which uses LZ77 and a variant of Huffman algorithm; (3)
LZW algorithm, which is a variant of LZ78; (4) XMLPPM3,
a XML specific compressor based on adaptive PPM over
the structural contexts; (5) XMill4 is an XML specific
compressor based on Huffman and Lempel-Ziv. We used
the maximum compression option whenever possible and
also standard options for all. Compression ratios for each
data set is shown in Figure 2.

Let us compare the compression ratio for each
compressor. The LZW algorithm obtained the worst

Figure 2: Comparison between other Compressors

0

10

20

30

40

50

60

70

80

90

100

Methods Used

C
o

m
p

re
ss

io
n

 r
at

io
 (

%
)

gzip

gzip -9

bzip2

bzip2 -9

lzw

xmill

xmill -9

xmlppm

xmlppm -l 9

Ours

Figure 3: Comparison between Compression Speed (MB/s) for
all Methods

Figure 4: Comparison between Decompression Speed (MB/s)
for all Methods

0

2

4

6

8

10

12

14

Methods Used

C
o

m
p

re
ss

io
n

S

p
ee

d
(M

B
yt

e/
s)

gzip

gzip -9

bzip2

bzip2 -9

lzw

xmill

xmill -9

xmlppm

xmlppm -l 9

Ours

0

10

20

30

40

50

60

70

80

90

Methods used

D
ec

o
m

p
re

ss
io

n
 s

p
ee

d

(M
B

yt
e/

s)

gzip

gzip -9

bzip2

bzip2 -9

lzw

xmill

xmill -9

xmlppm

xmlppm -l 9

Ours

compression ratio, and hence not included in the experiment.
Then gzip compression ratio is still lower, roughly 77%. The
best and default compression options in gzip has nearly no
difference. Next to gzip is, XMill, which obtains average

34 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

compression ratio between 79-82%, and is lower than our
approach. Then bzip2 gives the compression ratio between
82-84% which is nearly same to our approach. Finally the
best standard compressor among the set of compressors is
XMLPPM[8], which achieves 85-88% compression ratio.
We have excluded the XGrind from our experiment, as the
compression ratio achieved by it is lower than XMill.

Figure 3 and Figure 4 shows the overall average values
for compression and decompression speed with respect to
the methods described above. We have taken the average
values of all the data collection. The compression speed of
gzip is fastest, followed by LZW and XMill. Our model is
slightly slower than these but faster than bzip2 and
XMLPPM. The possible reason is that our implementation
is in prototype stage and is not fully optimized. The
decompression is faster for gzip followed by XMill and
LZW. This is not surprising, as gzip is known for its faster
decompression. As XMill uses gzip, it also has faster
decompression. Next bzip2 comes and XMLPPM is the
slowest at decompression, as expected from this family. Our
model comes in between bzip2 and XMLPPM.

All the methods described above do not permit direct
access to the compressed document. One of the methods that
permit direct access is MG System. We have excluded the
MG5 System due to two reasons: first, we could not make it
work properly in our machine and second, it does not permit
decompressing the whole collection. In our method, the
partial decompression is possible and described in subsection
4.2 (Algorithm 1). The decompression speed for documents
is low, but this is compensated, if we perform the query
directly over the compressed data instead of decompressing
it. This makes query processing fast as the query processor
has to do process less data.

7. CONCLUSIONS AND FUTURE WORK

We have described a compressor for semi-structured
document based on the idea that by separating the start tag,
attribute name/attribute value and textual words will reduce
the entropy. We also combine the attributes with their values
and use the separate containers for them. The heuristic and
proposed model is useful in the information retrieval system.
One of the applications is XML data archiving, where
compression rate counts alone. The main results are that we
can handle the compressed text throughout the whole process
with improved time. The documents can be compressed to
82% (average) of its original size.

The compression process is considered as a single time
investment. After that one can perform the local
decompression and pattern searching directly over the
compressed data, which reduces the CPU processing time
as CPU has to process less data. Random access of file is
also very low as the disk seek time is depend upon number
of tracks, and is a linear function of size of file.

This method can be applied to meet other requirements.
For example, it is not hard to mix it with the idea of [28] to

allow searching for regular expressions, approximate
patterns, etc.

Notes

1. http://www.bzip.org

2. http://www.gnu.org

3. http://sourceforge.net/projects/xmlppm

4. http://sourceforge.net/projects/xmill

5. http://www.cs.mu.oz.au/mg

REFERENCES

[1] Moffat and A. Turpin. Compression and Coding
Algorithms. Kluwer Academic Publishers. 2002.

[2] Moffat. Implementing the PPM Data Compression
Scheme. IEEE Transactions on Communications, 38(11):
1917-1921, 1990.

[3] Ashutosh Gupta and Suneeta Agarwal. “Block Based
LZW Compression of Dynamic Documents”. In Proc.
of International Conference on Information and
Communication Technology (IICT). p. 261-263, 2007.

[4] Ashutosh Gupta and Suneeta Agarwal. “New Transform
for Improving Compression Performance in Natural
Language Text”. In Proc. of International Multi-
Conference for Engineers and Computer Scientists
(IMECS). p. 564-567, 2007.

[5] Ashutosh Gupta and Suneeta Agarwal. “Word Based Text
Compression Using Encyrption”. In Proc. of
International Multi-Conference for Engineers and
Computer Scientists (IMECS). p. 471-473, 2007.

[6] Iyer and D. Wilhite. “Data Compression Support in
Database”. Proc. of VLDB, 1994.

[7] Charles F. Goldfarb and Paul Prescod. The XML
Handbook. Prentice-Hall, third edition, 2001.

[8] Cheney, J. and I. Witten I. Data Compression using
Adaptive Coding and Partial String Matching. IEEE
Trans. on communication, 32: 396-402.

[9] A. Huffman. A Method for the Construction of Minimum
Redundancy Codes. In Proceedings of the Institute of
Radio Engineers 40, 1098-1101, 1952.

[10] Salomon. “Data Compression”. The Complete Reference.
Springer, New York, 1997.

[11] G. Graefe and L. Shapiro. “Data Compression and
Database Performance”. Proc. of ACM/IEEE CS Symp.
on Applied Computing, 1991.

[12] G. Graefe. “Options in Physical Database”. ACM SIG-
MOD Record, 1993.

[13] G. Ray, J . Haritsa and S. Seshadri. “Database
Compression: A Performance Enhancement Tool”. Proc.
of 7th Intl. Conf. on Management of Data (COMAD),
1995.

Browsing Compressed Collection of Semi-Structured Documents 35

[14] H. Liefke and D. Suciu. XMill: An Efficient Compressor
for XML Data. In Proc. of SIGMOD 2000.

[15] http://cs.washington.edu/research/xmldatasets/www/
repository.html

[16] http://monetdb.cwi/nl/xml/downloads.html

[17] http://www.cs.wisc.edu/niagara/data/tpc-h/

[18] http://www.informatik.uni-freiburg.de/~may/lopix/lopix-
mondial.html

[19] http://www.oasis-open.org/cover/bosakShakespeare200.
html

[20] I. H. Witten, A. Moffat and J. G. Cleary. Arithmetic
Coding for Data Compression. Communications of the
ACM, 30(6): 520-541, 1987.

[21] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compressing Relations and Indexes. In Proc. IEEE Conf.
on Data Engineering, 1998.

[22] J. K. Min, M. J. Park, C. W. Chung. XPRESS: A
Queriable Compression for XML Data. In Proceedings
of SIGMOD, 2003.

[23] J. Rissannen and G. G. Langdon. Arithmetic coding. IBM
Journal of Research and Development, 2 3: 149-162,
1979.

[24] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory. Vol. IT-23, 3: 337–343, 1977.

[25] J. Ziv and A. Lempel. Compression of Individual
Sequences Via Variable-Rate Coding. IEEE Trans. on
Information Theory, IT-24(5): 530-536, 1978.

[26] K. Sadakane. Unifying Text Search and Compresion :
Suffix sorting, Block sorting and Suffix Array. PhD.
Thesis, The university of Tokyo, December 1999.

[27] M. Burrows and D. Wheeler. A Block-Sorting Lossless
Data Compression Algorithm. Technical Report, SRC
Research Report 124, Digital Systems Research Center,
Palo Alto, CA, 1994

[28] M. D. Araujo, G. Navarro and N. Ziviani. Large Text
Searching Allowing Errors. In R. Baeza-Yates, editor,
Proc of WSP’97.

[29] M. A. Roth and S. Van Horn. “Database Compression”.
ACM SIGMOD Record, 22(3): 31-39, 1993.

[30] P. M. Tolani and J. R. Haritsa. XGRIND; A Query-
friendly XML Compressor. In Proceedings of ICDE,
2002.

[31] R. Yugo Kartono Isal and Alistair Moffat and Alwin C.
H. Ngai. Enhanced Word-Based Block-Sorting Text
Compression. Twenty-Fifth Australasian Computer
Science Conference (ACSC2002). Melbourne, Australia,
2002.

[32] S. Grabowski. Text Preprocessing for Burrows-Wheeler
Block Sorting Compression. VII Konferencja “Sieci i
Systemy Informatyczne–teoria, projekty, wdroenia”
�ód, padziernik 1999.

[33] T. A. Welch. A Technique for High Performance Data
Compression. IEEE Computing 17(6): 8-19, 1984.

[34] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for Text
Compression. ACM Computing Surveys, 21(4): 557–589,
1989.

[35] T. Bray, et al. “Extensible Markup Language (XML) 1.0”,
October 2000, http://www.w3.org/TR/REC-xml.

[36] T. C. Bell, J . G. Cleary, and I. H. Witten. Text
Compression. Prentice Hall, Englewood Cliffs, New
Jersy, 1990.

[37] W. K. Ng and C.V. Ravishankar. Block-Oriented
Compression Techniques for Large Statistical Databases.
TKDE, 9(2): 314-328, 1997.

[38] World Wide Web Consortium. Extensible Markup
Language (XML) 1.0 (Seocnd Edition). http://
www.w3.org/TR/2000/REC-xml-20001006.

