
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received August 25, 2007
Manuscript revised November 30, 2007

A New Structural Summary for Graph-Structured
XML Data

Jia-Dong REN and Rui MA
College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

E-mail: jdren@ysu.edu.cn ma_rui508@163.com

Abstract: With the growing popularity of XML data, research on query processing over XML data is a hot topic. Therefore,
many methods based on structural summary have been proposed, which only contain all the path information from the data
graph and have less nodes and edges than the original data graph. However, to answer all path queries accurately, the
existing structural summaries have large size which blocks the query performance. In this paper, we introduce S(k)-index.
Building on the previous works such as D(k)-index and M*(k)-index, our approach is also based on the concept of bisimilarity
and allows different index nodes to have different local similarity requirements. S(k)-index also avoids over-refinement and
overqualified parent problems from the D(k)-index, and reforms the sequence structure of M*(k)-index with a single structure
which avoids not only storage of nodes and edges in components from sequence, but also links between components.
Furthermore, efficient update algorithms are also proposed. Experiment results show better performance on size and the
query efficiency than the previous structural summaries. In addition, update operations on the S(k)-index can be performed
more efficiently.

Keywords: XML data, S(k)-index, D(k)-index

1. INTRODUCTION

With the rapidly increasing popularity of XML [1] for data
exchanging and representation, there is a lot of interest in
query processing over XML data that conforms to a labeled
tree or labeled graph model.

Standard query languages such as Xpath[2] and Xquery[3]

for XML and semistructured data have been proposed. Path
expressions are the basic building blocks of XML queries.
To speed up query processing, structural summary is
constructed to summarize the structure of a data graph. Then,
we can process path expressions without referring to the
original data graph, which may be much bigger than the index
structure.

Existing structural summaries are based on the notion
of bisimilarity[8]. Two nodes are bisimilar if all label paths
into them are the same. Structural summaries consist of the
collection of equivalence classes. Nodes in each equivalence
class are bisimilar. The 1-index[4] is an accurate structural
summary that considers incoming paths up to the root of the
whole graph. Path expressions can be directly evaluated in
the index graph and can retrieve label-matching nodes
without referring to the original data graph. Unfortunately,
1-index structure is usually quite large and is considered not
efficient enough to speed up the evaluation. The A(k)-index[5]

relaxes the equivalence condition and considers only

incoming paths whose lengths are no longer than k. By taking
advantage of the similarity of short paths, the A(k)-index
has been shown to have a substantially small index size.
However, the A(k)-index becomes only approximate for
paths longer than k and a validation process on original data
graph is introduced to extract exact answers.

The D(k)-index[6] gives us a new view. It can adjust
the structure according to the different queries, and allows
different nodes to have different local similarity. The dynamic
property not only controls the size, but also keeps the
accuracy. However, there is over-refinement problem which
makes the size of index to increase unnecessarily and has an
adverse effect on query performance.

M*(k)-index[7] overcomes the limitation above from
D(k)-index. It consists of a sequence of component indexes
I

0
, I

1
…, I

k
with different similarity, where I

0
is the simplest

index graph constructed by label splitting, and I
K
 maintains

the finest partitioning information and is able to answer the
relevant query of length up to k accurately. Each index node
in component is possibly partitioned in the next component
I

i+1
 further into a set of index nodes.

The M*(k)-index uses special links to connect relevant
nodes in the components in order to evaluate the short path
expressions. Figure 1 is an example of M*(k)-index, where
the extents of index nodes are shown in brackets, and the
dashed lines represent the special links across components.
M*(k)-index has fewer nodes and edges than D(k)-index.
But, because of sequence structure, we not only have to store
the nodes and edges from each of the components, but also

Journal of Information Technology and Engineering
Vol. 1 No. 2 (December, 2016)

 Received: 23rd July 2016 Revised: 14th October 2016 Accepted: 15th November 2016

42 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

Figure 1: An Example of the M*(k)-index.(//b/a/c)

{6, 7}
c

{4, 5}

2
I 0

b

{4, 6, 7}

{5}
c

{3} {2} a {1} a

{0} r

c
c

{3}
b

{2} a {1} a

r

a
a

{4, 5, 6, 7}

c

{3} b

{1, 2}

{0} r

7 c 6 c 5 c

3 b 2 a 1 a

0 r {0}

I 1 I 2

the links between two components. These storage
requirements reduce query performance.

To overcome the problems caused by M*(k)-index, S(k)-
index is proposed. As an improvement of M*(k)-index, it has
a single structure which not only avoids over-refinement and
overqualified parent, but also has small storage requirement.
We also present efficient algorithms to process the update
operations including addition and deletion of edge and subtree.

The rest of this paper is organized as follows. In Section
2, we review some background knowledge. In Section 3,
we represent S(k)-index and its construction algorithm.
Update operation occurs in Section 4. In Section 5, we report
our experiment result. Finally, we conclude the paper in the
section 6.

2. BACKGROUND

An XML document can be represented as a labeled direct

graph G = { GGGG rootEV �,,, }. The node from the vertex set

GV has an unique identifier id and a literal label from G� .
The root node is denoted Groot . The edge from graph is in

the edge set GE .
A path is a sequence of nodes, such that an edge exists

between adjacent nodes. There are two families of paths,

label path and node path. A node path 0 1()V nP V V V� � is

unique, and is an instance of a label path 0 1()l nP l l l� � , if

label (V
i
) = l

i
 for each i. There are usually multiple node

paths that correspond to a given label path. The set of last
nodes of the node paths is target set of corresponding label
path. For example, the path expression syntax r/a/c from
Figure 1returns target set {4, 5}. A complicated path
expression such as //b/* involving wildcards * and //, returns
target set {2, 6, 7}. Based on the notion of bisimulation[8],
summary structure is constructed. The structure is also a

labeled directed graph, () ()(, (), ,)G I G I I G GI V E G root� � ,
which preserves all the label paths in the data graph, and
has much fewer nodes and edges. The node in the index graph
represents a set of data nodes being bisimilar, which is
denoted by the extent of an index node. There is an index
edge (u

i
, v

i
) in E

I(G)
 if and only if a data edge (u

d
, v

d
) exists in

G and u
d
 � u

i
. exent, v

d
 � v

i
. exent.

Definition 1. (Bisimulation) Let G be a data graph in
which the symmetric, binary relation �, the bisimulation, is
defined as: we say that two data nodes u and v are bisimilar
(u � v), if

1. u and v have the same label;
2. if u’ is a parent of u, then there is a parent v’ of v

such that u’ � v’, and vice versa;

3. S (K)-INDEX

In this section, we present the S(k)-index structure, which
has a single structure and also supports different local
similarity requirements on different index nodes. The S(k)-
index has the same basic property as pervious structures,
where v.k is the local similarity, and v.extent is the set of
data nodes associated with v.

Property 1 All data nodes in v.extent are v.k-bisimilar.
Property 2 (v, v’)�E

I(G)
 if and only if ��o v.extent and

�� 'o v’.extent, such that (o, o’)�E
G
.

Property 3 For all parent v
p
 of v in V

I(G)
, v

p
.k � v. k–1.

The properties above guarantee S(k)-index is precise
for a label path expression of length k

3.1 Construction Algorithm

Now, we present the S(k)-index construction algorithm. We

also begin with the coarsest index structure 0I , built by label
splitting. The input l, the path expression to be supported;
S, the target set of l in the index structure; and T, the target
set of l in the data graph. Succ(s) returns all data nodes that
are children of data nodes in a set s. Unlike the M*(k)-index,
in the REFINE**procedure, we only build a single structure.

REFINE** (l, S, T)

1: Create a new structure I 0

2: for each v in S do
3: REFINENODE** (v, k, v.extent � T)

4: while ��v I)(llength such that v has l as an incoming path

and v .k < length(l) do
5: PROMOTE*(v, length (l))

A New Structural Summary for Graph-Structured XML Data 43

Similar to REFIENODE* of M*(k)-index, in
REFIENODE**procedure, we use the relevant data nodes
in v.extent to avoid over-refinement, and recursively refine
relevant parent nodes.

REFIENODE** (v, k, relevantData)

1: // Lines 2–7: recursively refine parent nodes:
2: if v.k � k then
3: Return
4. for each parent u of v do
5: predData = Pred(relevantData)� u.extent
6: if predData � � then
7: REFINENODE** (u, k – 1, predData)
8: SPLITNODE** (v, k, relevantData)

SPLITNODE**procedure is the key of our algorithm.
Instead of Succ(u), we use relevantData to partition the index
node v. We reduce the partitioning scope with relevant nodes
from query expression. When constructing I

1
, we extract the

relevant nodes from index nodes in I
0
, and get the desired

structure on I
1
, which appears on I

2
 in M*(k)-index. Figure

2 shows the change of Figure 1 based on the procedure.
After the partitioning operation, in order to limit the

increase of size caused by continuously querying the XML
document, we need merge the relevant nodes. For example,
in Figure 3, when path expression “// a / b” is evaluated,

a
1
､ a

2
and c

4
､c

5
 in '

2I are two pairs of relevant nodes

respectively, so we can merge them into two nodes a
{1,2}

 and

c
{4,5}

 in ''
2I .

SPLITNODE** (v, k, relevantData)

1: // split v:

2: k old = v.k

3: V = {v}
4: for each w in V do
5: Replace w (in both V and I

1
) with w

1
and w

2
, where:

6: w
1
.extent = w.extent � relevantData,

7: w
2
.extent = w.extent – relevantData,

8: w
1
.k = k

9: w
2
.k = k

old

10: // merge relevant nodes:
11: remainderExtent = �
12: for each w in V do
12: if relevantData �w.extent � � then
13: remainderExtent = remainderExtent� w.extent
14: Remove w

15: Add v new rest to I
k
, where:

16: v new .k = k, and

17: v new .extent = remainderExtent

After partition operation in SPLITNODE**procedure,
the sequence structure of M*(k)-index only contains two
components, and the single structure produced by merge
operation can efficiently process the short path expressions.
So, we can use the single structure instead of original
sequence structure to finish the query processing. Figure 4
shows the new structure, which is improvement of Figure 1.

Figure 2: The Result of Partition

a

I 2 I 1

{4, 6, 7}

{0}

a

{4, 5, 6, 7}
{4, 6, 7}

{1}

{0} r

{5}

{2}

a

c

{3}

I 0

c

{1}

{2}

{5}

a

c

c
c

bb b

r r

{3}

{3}

{0}

Figure 3: Merge of Relevant Nodes

'
2I

{5}

c
{6, 7}

c c

{3}

{4}
{1}

{2} a a
b

r {0}

c

{1, 2} {3}

{4, 5}

''
2I

c
{6, 7}

a
b

r {0}

Figure 4: S(k)-Index of Data Graph in Figure 1

c
{5}

{3}

{4，6, 7}

{1}
{2} a a

c

b

r {0}

3.2 Processing Overqualified Parent Problem

The S(k)-index preserves the properties of the M*(k)-index,
which allows different index nodes to have different local
similarity requirements, and ensure query processing precise.
It also avoids overqualified parent problem, which makes
the size large.

In Figure 5, I
1
 is a resulting index structure by processing

some queries in data graph, where the similariy of b
2
and b

3

are 2. When we continue evaluating query “// b / c”, we
need to increase the local similarity of the index node c from
0 to 1 and get the structure I

2
 where similarity of c is 1.

However, in I
1
, their corresponding data nodes c

4
 and c

5
are

actually 1-bisimilar, and should have stayed together in one
index node with local similarity of 1.

44 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

In fact, in I
2
 from Figure 5, based on the similarity, b

2
､b

3

and c
4
､c

5
 are two pairs of relevant nodes in the query above.

So, we can merge them respectively, and get a smaller size.
The structure after merging operation avoids Figure 6 shows
the result.

of a new file into the XML document, and the addition of a
new edge represents the insertion of a new element. All other
update operations on the S(k)-index can be built on these
two basic cases.

As in [10], update operation consists of a split phase
and a merge phase. However, in our algorithms, we only
process the relevant nodes from the current query, and
guarantee the structure minimal and precise.

4.1 Edge Addition and Deletion

We use a running example to demonstrate the process of
update. Firstly, we describe the case of edge addition.

Figure 7(a) is the data graph, where the new edge to be
inserted is shown with a dashed line. The index structure
before the update is shown in Figure 7 (b). The split phase
first checks if there is an index edge in Figure 7 (b) between
the two index nodes containing source and end of new data
edge. Although there is not the index edge, {1}､{2}in Figure
7(b) are two single nodes, and we don’t need to split any
index node and only add an edge between {1}and {3}
(Figure 7(c)). Because of the unbisimulation caused by
addition of edge, we have to spilt node {4, 6, 7} into {4}
and {6, 7} (Figure 7(d)). Now, after the split, any two data
nodes in extent of an index node are besimilar.

Merge phase begins in Figure 7(e) by looking for an
index nodes among the siblings of {1}, which have the same
label and the same set of index parents. Here, we find {2},
and then merge {1}､{2}together. Next, we iteratively
consider the possible merges among the children of newly
generated index nodes from previous merges. In this
example, we will merge index nodes {4} and {5} together.
The final result of the update is shown in Figure 7(f).

Figure 5: Overqualified Parent Problem

1 a

Data Graph

2 b

4 c

3 c

0 r

{4} c {5} c

{0} r

{1} a

{3} b {2} b

{4, 5} a

{3} b {2} b

{1} a

I 2 I 1

5 c

{0} r

Figure 6: Processing Overqualified Parent

{2, 3} b

{0} r

{4, 5} c

4. S(K)-INDEX UPDATING

Similar to previous theory in [9, 10], we research two kinds
of updates, the additions and deletions of a subtree and a
new edge. The addition of a subtree represents the insertion

Figure 7: An Example of Edge Insertion

{5}

a
{1, 2}

b

c

c

a

b b b

{5}

{2}
a {2}

{1, 2} {1} {1}

{3} {3} {3} {3}
a

a
a

a

{6, 7}
{4, 6, 7} {6, 7}

{6, 7} {4, 5}

{5}

{4}
{4}

c
c c

c c

c

c c

{0} {0} {0} {0} r r r r

{3}

c
{5}

a {1} b

{4, 6, 7}

c

{2} a

{0} r

7 c 6 c 5 c

3
b 2

0 r

In general, we first checks if the new edge (u, v) makes
v not bisimilar with the rest of the data nodes in v.extent. If
yes, we split v.extent into one index node only containing v
itself and the other that contains the rest of the data nodes.
Then, we continue split other unbisimilar index nodes
containing relevate nodes in the query.

The merge phase starts from I[v]. We first look for an
index node with the same label and index parents as I[v]

and merge them together iteratively until no more merges
can be made, then tries to process the descendants iteratively
with the same method.

Our algorithm is described below. In this algorithm, we
use I[v] to denote the index node whose extent contains data
node v, and define ISucc[I]={J|(I, J)�E

I
}, the index

successors of I.

A New Structural Summary for Graph-Structured XML Data 45

Algorithm Edge Insertion and Deletion
insert_edge(u, v)

1: //our structure is defined by path expression Q;

2: add an edge from u to v in data graph;
3: if there is an index edge from I[u] to I[v]

then return;
4: /*replace the 2 lines above with the following for

deletions:
delete the data edge from(u, v)
if there exist u’� I[u], v’�I[v] and there is a data
edge from u to v or the edge in irrelevant to Q
then return; */

5: //Split phase;
6: if |I[v]|>1 then
7: split I[v] into I

1
={v} and I

2
=I-{v}:

8: SplitNode(I
1
)

SplitNode(I)
1: For each index node K�ISucc[I] do

2: if K �Q� �
3: split K into K

1
= K� Succ[I] and K

2
=K- K

1
;

4: SplitNode(K
1
);

// Merge phase;
MergeNode(I[v])
1: Look for an index node J with the same label as v among
I[v]’s siblings that have the same set of index parents as I[v];
2: if such an index node J exists then
3: merge I[v] and J into M=J� I[v];

4: M.k =J.k;
5: for each index node K ��ISucc[I]
6: if K�Q� � then
7: MergeNode(K);

For edge deletion, we also have split phase and merge
phase. We only need modify the edge insertion algorithm
slightly.

In the algorithm above, split phase guarantees the
structure correct, and merge phase makes the index structure
minimal, which brings in high query performance.

4.2 Subtree Insertion

Because addition of subtree is tantamount to consecutive
insertions of all the nodes and edges in the subtree, addition
of subtree can be processed in the similar way as addition
of edge. Here, because addition of new node, we don’t need
to split any index node and only carry out merge operation.

We give a simple example in the Figure 8, which shows
the process of subtree addition. We begin this process by
adding the root of the subtree and corresponding edge. The
algorithm is briefly shown below. Based on the analysis of
the case of edge addition, we still guarantee the structure
minimal and precise.

Algorithm Subtree Addition

add_subtree(r)
1: Add r, the root of the subtree T and the corresponding

edge to the index graph;
2: MergeNode*(r)
3: for each index node K�Succ[r]

4: add_subtree (K);
MergeNode*(I)

1: Look for an index node J with the same label as I among
I’s siblings that have the same set of index parents as I;

2: if such an index node J exists then
3: merge I and J into M = J� I;
4: M.k =J.k;

For subtree deletion, this is the process of consecutive
deletions of all the edges in the subtree, we can process it in
the same way as the case of node deletion.

Figure 8: An Example of Subtree Insertion

c

a

c
{5}

{3}

{4，6, 7}

{1}
{2} a a

c

b

r {0}

c
{5}

{3}

{4，6, 7}

{1}
{2} a a

c

b

r {0}

8 a

c
{5}

{3}

{4，6, 7}

{1, 8}
{2} a a

c

b

r {0}

{2}

c {9}
c

{5}

{3}

{4，6,
7}

a

c

b

r {0}

c
{5}

{3}

{4，6, 7,
9}

{1, 8}
{2} a a

c

b

r {0}

(a) (b)

(c) (d)

46 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

5. ANALYSIS AND EXPERIMENT

In this section, extensive experiments are conducted to
demonstrate effectiveness of the S(k)-index, and we describe
these experiments and present the experiment results.

5.1 Experiment Setup

Experiments are implemented in Java with JDK 1.5.0. We
conduct the experiments on the AMD Athlon XP 1.83G with
256MB main memory running on Windows XP (sp2) with
80G hard disk.

We carried out our experiments on real XML database
DBLP (http://uni-trier.de/XML). DBLP is a popular
computer science bibliography database and each record of
DBLP accords to a publication. The part we downloaded
has size of 11M with tree structure of maximum depth 4.
The document trees in the DBLP dataset have good similarity
in structure.

5.2 Index Size

We measure the size of index structure with the number of
edges and nodes from index structure. Similar to [7], we
show the different numbers of edges and nodes on size after
a large number of queries are carried out.

For M*(k)-index, we count the total number of nodes
across all component indexes except duplicate nodes such
as those labeled r and b in I

1
 and I

2
 in Figure 1. The edges in

all component indexes and across-component links are
counted except duplicates edges that connect duplicate
nodes.

Because of the single structure, of S(k)-index, we avoid
storing not only the nodes and edges from each of the
components, but also the links between two components.
Moreover, the merging operation of relevant nodes does well
in controlling numbers of nodes and edges.

The dataset we selected from DBLP contains about
18,000 nodes. Table 1 and 2 show the number of nodes and
edges based on the two index structures respectively. For
this dataset, the number of nodes in S(k)-index is about 60%
of that in M*(k)-index, and the number of edges in S(k)-
index is about 20% of that in M*(k)-index where there are a
lot of links.

Table 1
The Number of Nodes

Num. of query M*(k)-index S(k)-index

50 4250 2550
100 4750 2802
200 5250 3150

Table 2
The Number of Edges

Num. of query M*(k)-index S(k)-index

50 8700 4422
100 9052 4500
200 10032 5809

5.3 Query Performance

In this section, we investigate the query performances of
the two different index structures. Table 3 lists four queries
with ascending complexity. These queries from XML
documents in DBLP represent four kinds of queries
respectively and have different characteristics in terms of
selectivity, presence of values and twig structure. Q

1
 is a

single path expression query with two nodes and there is no
attribute values involved. Q

2
 has one branch structure which

involves an attribute value. Q
3
 and Q

4
 are twig patterns with

three nodes and one branch respectively, and use wild cards
which increase query scope.

Table 3
Sample Queries over DBLP

Query Path Expressions Dataset

Q
1

/mastersthesis/title DBLP

Q
2

/article/Journal/IWBS Report DBLP

Q
3

/*/author/Frank Manola DBLP

Q
4

//author/Klaues Jansen DBLP

Figure 9 shows the performance results of the two
different index structures. The S(k)-index outperforms the
M*(k)-index. For M*(k)-index, the queries are processed
by traversing components from the sequence structure. The
process needs visit plenty of nodes and edges, so it takes
much more time to complete the queries. S(k)-index which
is a single structure has smaller size, and processes the
queries more efficiently. For query Q

1
 whose length is very

short, the slight difference between the two index structures
makes their running times close. The length of Q

2
 is 2, so a

sequence including three components should be built for
M*(k)-index to finish the query. Because of the single
structure, S(k)-index has better performance on query Q

2
.

For Q
3
and Q

4
, wildcards, “//” and “*” are involved, which

enlarge the search scope. For M*(k)-index, in order to
process the queries, components in the sequence must be
traversed through the “links”, and the cost is expensive. In
construction of S(k)-index, merging relevant nodes makes
the index structure succinct, and the structure can process
the queries more efficiently.

Figure 9: S(k)-index VS M*(k)-index

0

1000

2000

3000

Q1 Q2 Q3 Q4

query

Running Time(msec)

S(k)-index
M*(k)-index

A New Structural Summary for Graph-Structured XML Data 47

5.4 Updating Performance

The idea of update operation is from [10], which contains
two phases, splitting and merging. But our approach is more
flexible, which only processes the nodes from the current
query. In this section, we analyze the impact on size of index
structure after update operations.

5.4.1 Edges Insertion and Deletion

In order to generate edge insertions in a meaningful way,
we first remove a sequence of edges from the data graph.
These deleted edges become the “source” of insertion. Using
the resulting data graph as the starting point, we perform
one edge insertion followed by one edge deletion in each
step: first a randomly selected edge is removed from the
source and inserted into the data graph, and then another
randomly selected edge is deleted from the data graph and
put back into the source.

The split/merge algorithm [10] guarantees the index
structure minimal and precise, but it processes all the relevant
nodes in the structure. Since our insertion algorithm (I-split/
merge algorithm) only processes the nodes from the current
query, it takes less time to construct the resulting index
structure, and the storage requirement of the resulting index
structure is smaller. Figure 10 shows the ratio of augment of
document after the insertion of nodes. In Figure 10, the I-
split/merge algorithm maintains the size very well, never
exceeding 2%, while the split/merge algorithm makes the
ratio of augment much larger.

Figure 10: The Different Ratio of Augment on Edges Insertion
and Deletion

0

0.01

0.02

0.03

50 100 150 200

T
he

 r
at

io
 o

f
au

gm
en

t

I-split /merge
split /merge

No. of (inertion, deletion)

5.4.2 Subtree Addition

We also construct the experiments on subtree addition.
According to DBLP DTD[11], we build 50 XML documents,
with an average size of 50 nodes. Addition of subtree is
tantamount to consecutive insertions of all the nodes and
edges in the subtree, addition of subtree can be processed in
the similar way as addition of edge.

10 documents are added into original document tree
once a time. Similar to the case of insertion and deletion of
edges, in Figure 11, the I-split/merge algorithm keeps the
better performance all the time. In terms of running cost,
the I-split/merge algorithm is very fast, about 5sec for each

subtree, which is 2 times faster than the split/merge
algorithm.

Figure 11: The Different Ratio of Augment During a Sequence
of Subgraph Additions

0

0.01

0.02

0.03

0.04

10 20 30 40 50

T
he

 r
at

io
 o

f
au

g
m

en
t

I-split/merge
split /merge

No. of subtree

6. CONCLUSION

In this paper, we introduce a new index structure, S (k)-index.
As an improvement of M*(k)-index, it reserves the adaptive
property that allows different index nodes to have different
local similarity requirements, and its single structure avoids
not only storage of nodes and edges in components from
sequence structure, but also links between components.
Furthermore, we process the update operations on S (k)-
index, including additions and deletions of edge and subtree.
The operations only process the relevant nodes in the query,
and the structure after updating is fit for the current query
process. An experimental studies of the storage requirements
of S (k)-index and M*(k)-index indicate the newly proposed
index structure is more compact than M*(k)-index. The
experiments of performance on query and update show better
efficiency than M*(k)-index.

REFERENCES

[1] Editors: T. Bray, Janguag. Paoli, and C. Sperberg-
McQueen. Extensible Markup l e (XML) 1.0, February
1998. W3C Recommendation available at http://
www.w3.org/TR/1998/REC-xml-19980210.

[2] J. Clark and S.Derose, XML Path Language(XPath)
Version 1.0, World Wide Web Consortium, http:// www.
W3. org/TR/xpath, November 1999.

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Sim´eon. XQuery 1.0: An XML Query
Language. http://www.w3.org/ TR/xquery, August 2002.

[4] T. Milo and D. Suciu. Index Structures for Path
Expressions In ICDT: 7th International Conference on
Database Theory, pages 277-295, 1999.

[5] R. Kaushik, P. Sheony, P. Bohannon, and E. Gudes.
Exploiting Local Similarity for Efficient Indexing of
Paths in Graph Structured Data, In Proc. of the 2002
Intl. Conf. on Data Engineering, pages 129-140,
February 2002.

[6] Q. Chen, A. Lim, and K. W.Ong. D(k)-Index: An
Adaptive Structural Summary for Graph-Structured Data.

48 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, pages 134-144, June, 2003.

[7] H. He and J. Yang. Multiresolution Indexing of XML
for Frequent Queries. In Proc. of the 20th Intl Conf. on
Data Engineering, pages 683-694, 2004.

[8] R.Paige and R. Tarjan. Three Partition Refinement
Algorithms. SIAM Journal of Computing, 16: 973–988,
1987.

[9] R. Kaushik, P. Bohannon, J. F. Naughton, and P. Shenoy.
Updates for Structure Indexes. In VLDB, 2002.

[10] K. Yi, H. He, I. Stanoi, J. Yang, Incremental Maintenance
of XML Structural Indexes, in: Proceedings of the 23th
ACM SIGMOD, pages 491–502, 2004.

[11] DBLP database web site. http://uni-trier.de/X

