Journal of Information Technology and Engineering
Vol. 1 No. 2 (December, 2016)

A New Structural Summary for Graph-Structured
XML Data

Jia-Dong REN and Rui MA

College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
E-mail: jdren@ysu.edu.cn ma_rui508@163.com

Recelved: 23rd July 2016 Revised: 14th October 2016 Accepted: 15th November 2016

Abstract: Wth the growing popularity of XML data, research on query processing over XML data is a hot topic. Therefore,
many methods based on structural summary have been proposed, which only contain all the path information from the data
graph and have less nodes and edges than the original data graph. However, to answer all path queries accurately, the
existing structural summaries have large size which blocks the query performance. In this paper, we introduce S(k)-index.
Building on the previousworks such as D (K)-index and M* (k)-index, our approach isalso based on the concept of bisimilarity
and allows different index nodes to have different local similarity requirements. Sk)-index also avoids over-refinement and
overqualified parent problems fromthe D(k)-index, and reformsthe sequence structure of M* (k)-index with a single structure
which avoids not only storage of nodes and edges in components from sequence, but also links between components.
Furthermore, efficient update algorithms are also proposed. Experiment results show better performance on size and the
query efficiency than the previous structural summaries. In addition, update operations on the S(k)-index can be performed

more efficiently.
Keywords: XML data, S(k)-index, D(k)-index

1. INTRODUCTION

With the rapidly increasing popularity of XML [1] for data
exchanging and representation, thereisalot of interest in
guery processing over XML datathat conformsto alabeled
treeor labeled graph mode.

Standard query languages such as Xpath!? and Xquery™®
for XML and semistructured data have been proposed. Path
expressions are the basic building blocks of XML queries.
To speed up query processing, structural summary is
constructed to summarizethe sructure of adatagraph. Then,
we can process path expressions without referring to the
original datagraph, which may bemuch bigger than theindex
structure.

Existing structural summaries are based on the notion
of bisimilarity!®. Two nodes are bisimilar if all label paths
into them are the same. Structural summariesconsist of the
collection of equivalence classes. Nodesin each equivalence
class are bisimilar. The 1-index™ is an accurate structural
summary that considersincoming paths up totheroot of the
whole graph. Path expressions can be directly evaluated in
the index graph and can retrieve label-matching nodes
without referring to the original data graph. Unfortunately,
1-index structureisusually quitelarge and is considered not
efficient enough to speed up theevaluation. The A (k)-index®
relaxes the equivalence condition and considers only

incoming pathswhoselengthsarenolonger than k. By taking
advantage of the similarity of short paths, the A(k)-index
has been shown to have a substantially small index size.
However, the A(k)-index becomes only approximate for
paths longer than k and avalidation processon original data
graph isintroduced to extract exact answers.

The D(k)-index[6] gives us a new view. It can adjust
the structure according to the different queries, and all ows
different nodesto havedifferent local similarity. Thedynamic
property not only controls the size, but also keeps the
accuracy. However, thereisover-refinement problem which
makesthe size of index toincrease unnecessarily and hasan
adverse effect on query performance.

M* (k)-index!? overcomes the limitation above from
D(k)-index. It consists of asequenceof component indexes
[, 1,..., 1, with different smilarity, where | jis the simplest
index graph constructed by label splitting, and I, maintains
thefinest partitioning information and isableto answer the
relevant query of length up to k accurately. Each index node
in component ispossibly partitioned in the next component
l,,, further into a set of index nodes.

The M* (k)-index uses special linksto connect rel evant
nodesin thecomponentsin order to eval uate the short path
expressions. Figure 1 isan example of M* (k)-index, where
the extents of index nodes are shown in brackets, and the
dashed lines represent the special links across components.
M* (k)-index has fewer nodes and edges than D(k)-index.
But, because of sequence structure, we not only haveto store
the nodes and edges from each of the components, but also

42

Figure 1: An Example of the M* (k)-index.(//b/alc)

the links between two components. These storage
requirementsreduce query performance.

To overcomethe problems caused by M* (k)-index, S(k)-
index ispropased. Asan improvement of M* (k)-index, it has
asinglestructurewhich not only avoids over-refinement and
overqualified parent, but al so hassmall storage requirement.
We also present efficient algorithms to process the update
operationsincluding addition and de etion of edge and subtree.

Therest of thispaper isorganized asfollows. In Section
2, we review some background knowledge. In Section 3,
we represent S(k)-index and its construction algorithm.
Update operation occursin Section 4. In Section 5, wereport
our experiment result. Finally, we conclude the paper in the
section 6.

2. BACKGROUND
An XML document can be represented as a labeled direct
graph G ={ \,Eg.rootg, > }. Thenodefrom thevertex set

Ve hasan uniqueidentifier id and aliteral label from Xg .
Theroot node is denoted rootg . The edge from graph isin
the edge set Eg.

A path isasequence of nodes, such that an edge exists
between adjacent nodes. There are two families of paths,

label path and node path. A node path B, = (V,V,---V,) is

unique, and isan instanceof alabel path B =(Il,--+1,) , if
label (V) = |, for each i. There are usually multiple node
pathsthat correspond to a given label path. The set of last
nodes of the node pathsistarget set of corresponding label
path. For example, the path expression syntax r/a/c from
Figure 1returns target set {4, 5}. A complicated path
expression such as//b/* involving wildcards* and//, returns
target set {2, 6, 7}. Based on the notion of bisimulation(®,
summary structure is constructed. The structure is also a
labeled directed graph, lg = (V) E (G),root, ¢, %),
which preserves all the label paths in the data graph, and
hasmuch fewer nodes and edges. Thenodein theindex graph
represents a set of data nodes being bisimilar, which is
denoted by the extent of an index node. There is an index
edge (u, v)) in Eo if and onlyif adataedge (u,, v,) existsin
Gandu, € u. exent, v, € v, exent.

Definition 1. (Bisimulation) Let G be a data graph in
which the symmetric, binary relation =, thebisimulation, is
defined as: we say that two data nodes u and v are bisimilar
(u=v), if

1. uandv havethesamelabd;

2. if U isaparent of u, then thereisaparent v’ of v

suchthat u’ ~Vv', and viceversa;

3. S (K)-INDEX

In this section, we present the S(k)-index structure, which
has a single structure and also supports different local
similarity requirements on different index nodes. The S(k)-
index has the same basic property as pervious structures,
where v.k is the local similarity, and v.extent is the set of
data nodes associ ated with v.

Property 1 All datanodesin v.extent arev.k-bisimilar.
Property 2 (v, V') < E, if and only if Joev.extent and
Jo'e V.extent, such that (0,0’) < E..
Property 3 For all parent v, ofvinV, oV K>v. k=1
The properties above guarantee S(k)-index is precise
for alabel path expression of length k

3.1 Construction Algorithm

Now, we present the S(k)-index construction algorithm. We
also begin with the coarsest index structure Iq, built by 1abel
splitting. Theinput I, the path expression to be supported;
S thetarget set of | in theindex structure; and T, the target
set of | in the data graph. Succ(s) returnsall datanodes that

arechildren of datanodesin aset s. Unlikethe M* (k)-index,
in the REFINE* * procedure, we only build asingle structure.

REFINE** (I, S T)

1: Createanew structurel g

2: for eachvin Sdo
3: REFINENODE** (v, k, v.extent ~\T)

4: while 3v € | jenginy Such that vhasl asan incoming path

andV .k < length(l) do
5: PROMOTE* (v, length (1))

A New Structural Summary for Graph-Structured XML Data

Similar to REFIENODE* of M*(k)-index, in
REFIENODE** procedure, we use the relevant data nodes
in v.extent to avoid over-refinement, and recursively refine
relevant parent nodes.

REFIENODE** (v, k, relevantData)

1: /I Lines 2—7: recursively refine parent nodes:
2:if vk >kthen

3: Return

4. for each parent u of vdo

5: predData = Pred(relevantData) ~ u.extent
6: if predData = ¢ then

7: REFINENODE** (u, k—1, predData)

8: SPLITNODE** (v, k, relevantData)

SPLITNODE**procedure is the key of our algorithm.
Instead of Succ(u), we userelevantData to partition theindex
node v. We reduce the partiti oning scope with relevant nodes
from query expression. When constructing |, weextract the
relevant nodes from index nodesin |, and get the desired
structureon |, which appearson |, in M* (k)-index. Figure
2 shows the change of Figure 1 based on the procedure.
After the partitioning operation, in order to limit the
increase of size caused by continuoudy querying the XML
document, we need merge therel evant nodes. For example,
in Figure 3, when path expression “// a/ b" is evaluated,

a -~ a,and c,.c, in |, are two pairs of relevant nodes
respectively, so we can mergethem into two nodes a and

Crag N3

1,2}

o 1)

Figure 3: Merge of Relevant Nodes

43

SPLITNODE** (v, k, relevantData)

1: /] split v:

2.k, =vk

3 V={v}

4: for eachwinVdo

5: Replacew (in both V and |) with w, and w,, where:
6: w,.extent = wextent relevantData,

7. w,.extent = wextent —relevantData,

8 w.k=k

9 w,k=k

10: // merge relevant nodes:

11: remainder Extent = ¢

12: for eachwin V do

12: if relevantData ~ w.extent » ¢ then

13: remai nder Extent = remainder Extent U w.extent
14: Remove w

15: Add v ey rest to I, where:
16: V pen .k =k, and
17: V ey -€Xtent = remai nder Extent

After partition operation in SPLITNODE**procedure,
the sequence structure of M*(k)-index only contains two
components, and the single structure produced by merge
operation can efficiently processthe short path expressions.
So, we can use the single structure instead of original
sequence structure to finish the query processing. Figure 4
showsthe new structure, which isimprovement of Figure 1.

Figure 4: S(k)-Index of Data Graph in Figure 1

3.2 Processing Overqualified Parent Problem

The S(k)-index preservesthe properties of the M* (k)-index,
which allows different index nodes to have different local
smilarity requirements, and ensure query processing precise.
It also avoids overqualified parent problem, which makes
thesizelarge.

InFigure5, | isaresulting index structure by processing
some queriesin datagraph, wherethe similariy of b,and b,
are 2. When we continue evaluating query “// b/ c”, we
need to increase thelocal similarity of theindex node cfrom
0 to 1 and get the structure |, where similarity of cis 1.
However, in |, their corresponding data nodes ¢, and c are
actually 1-bisimilar, and should have stayed together in one
index nodewith local similarity of 1.

44

Data Graph

0 {0} r ({o}
/
1 {1} {1}
2 {2} {2} {3}
4 é 5 é {4, 5} {4} {5}
I

I2
Figure 5: Overqualified Parent Problem

Infact, in I, from Figure5, based on thesimilarity, b, . b,
andc,. ¢, aretwo pairs of relevant nodesin the query above.
So, we can merge them respectively, and get asmaller size.
The structure after merging operation avoidsFigure 6 shows
theresult.

{0}

{23
{4,5}
Figure 6: Processing Overqudified Parent

4. S(K)-INDEX UPDATING

Similar to previoustheory in[9, 10], weresearch two kinds
of updates, the additions and deletions of a subtree and a
new edge. Theaddition of a subtreerepresentstheinsertion

Figure 7: An Example of Edge Insertion

In general, wefirst checksif the new edge (u, v) makes
v not bisimilar with therest of the data nodesin v.extent. If
yes, we split v.extent into oneindex node only containing v
itself and the other that containstherest of the data nodes.
Then, we continue split other unbisimilar index nodes
containing relevate nodesin the query.

The merge phase starts from I[v]. We first look for an
index node with the same label and index parents as I[v]

of anew fileinto the XML document, and the addition of a
new edge representstheinsertion of anew element. All other
update operations on the S(k)-index can be built on these
two basic cases.

Asin [10], update operation consists of a split phase
and a merge phase. However, in our algorithms, we only
process the relevant nodes from the current query, and
guarantee the structureminimal and precise.

4.1 Edge Addition and Deletion

We use a running example to demonstrate the process of
update. Firstly, we describe the case of edge addition.

Figure 7(a) isthe data graph, wherethe new edgeto be
inserted is shown with a dashed line. Theindex structure
before the update is shown in Figure 7 (b). The split phase
first checksif thereisan index edgein Figure 7 (b) between
the two index nodes contai ning source and end of new data
edge. Although thereisnot theindex edge, {1} - {2} in Figure
7(b) are two single nodes, and we don’'t need to split any
index node and only add an edge between {1}and {3}
(Figure 7(c)). Because of the unbismulation caused by
addition of edge, we have to spilt node {4, 6, 7} into {4}
and {6, 7} (Figure 7(d)). Now, after the split, any two data
nodesin extent of an index node are besimilar.

Merge phase begins in Figure 7(e) by looking for an
index nodesamong the siblings of { 1}, which have the same
label and the same set of index parents. Here, wefind {2},
and then merge {1} . {2}together. Next, we iteratively
consider the possible merges among the children of newly
generated index nodes from previous merges. In this
example, wewill mergeindex nodes{4} and {5} together.
Thefinal result of the update i s shown in Figure 7(f).

and merge them together iteratively until no more merges
can bemade, then triesto processthe descendants iteratively
with the same method.

Our algorithmisdescribed below. In thisalgorithm, we
use I[v] to denote the index node whose extent containsdata
node v, and define ISucc[l]={J|(I, J€E}, the index
successors of |.

A New Structural Summary for Graph-Structured XML Data

Algorithm Edgelnsertion and Deletion
insert_edge(u, v)

1: /lour structureisdefined by path expression Q;
2: add an edge from uto v in data graph;

3: if thereisan index edge from I[u] to I[V]
then return;

4: [*replacethe 2 lines above with the following for
deletions:
del ete the data edge from(u, v)
if thereexist U’ e I[u], v' e l[v] andthereisadata
edgefromu tov or theedgein irrelevant to Q
then return; */

5: /ISplit phase;

6: if |I[v][>1then

7. split1[v] into | ={v} and I =I-{Vv}:

8: SplitNode(l,)

SplitNode(l)

1: For each index node K el Succ][I] do

21K "Qzx &

3. split K into K = K Succ[l] and K,=K- K ;

4: SplitNode(K);

/I Merge phase;

Mer geNode(I[v])

1: Look for anindex node Jwith the samelabel asv among
I[v]'ssiblingsthat havethe same set of index parentsas|[v];
2: if such an index node J existsthen

3: mergel[v] and Jinto M=J I[v];

4: M.k =Jk;

5: for each index node K e 1Succ][l]

6. if KN Q= ¢ then

7: MergeNode(K);

For edge deletion, we also have split phase and merge
phase. We only need modify the edge insertion algorithm
dightly.

In the algorithm above, split phase guarantees the
structure correct, and merge phase makestheindex structure
minimal, which bringsin high query performance.

4.2 Subtree Insertion

Because addition of subtree is tantamount to consecutive
insertions of all the nodes and edgesin the subtree, addition
of subtree can be processed in the similar way as addition
of edge. Here, because addition of new node, wedon’t need
to split any index nodeand only carry out merge operation.

We give asimple examplein the Figure 8, which shows
the process of subtree addition. We begin this process by
adding theroot of the subtree and corresponding edge. The
algorithm is briefly shown below. Based on the analysis of
the case of edge addition, we still guarantee the structure
minimal and precise.

45

Figure 8: An Example of Subtree Insertion

Algorithm Subtree Addition

add_subtree(r)

1: Add r, the root of the subtree T and the corresponding
edgeto the index graph;

2: MergeNode*(r)

3: for each index node K e Succ|r]

4: add_subtree (K);
Mer geNode* (1)

1: Look for an index node Jwith the samelabel as| among
I’ssiblings that have the same set of index parentsasl|;

2: if such an index node J existsthen

3: mergel andJintoM =JyU I;

4: M.k =Jk;

For subtree deletion, this is the process of consecutive
deletions of all the edgesin the subtree, wecan processitin
the same way as the case of hode del etion.

46

5. ANALYSISAND EXPERIMENT

In this section, extensive experiments are conducted to
demongrate effectiveness of the S(k)-index, and we describe
these experiments and present the experiment results.

5.1 Experiment Setup

Experiments are implemented in Javawith JDK 1.5.0. We
conduct the experimentson theAMD Athlon XP1.83G with
256MB main memory running on Windows XP (sp2) with
80G hard disk.

We carried out our experimentson real XML database
DBLP (http://uni-trier.de/XML). DBLP is a popular
computer science bibliography database and each record of
DBLP accords to a publication. The part we downloaded
has size of 11M with tree structure of maximum depth 4.
Thedocument treesin the DBLP dataset have good smilarity
in structure.

5.2 Index Size

We measure the size of index structure with the number of
edges and nodes from index structure. Similar to [7], we
show the different numbers of edges and nodes on s ze after
alarge number of queriesare carried out.

For M* (k)-index, we count the total number of nodes
across all component indexes except duplicate nodes such
asthoselabeledrandbin| andl,in Figurel. Theedgesin
all component indexes and across-component links are
counted except duplicates edges that connect duplicate
nodes.

Because of the single structure, of S(k)-index, we avoid
storing not only the nodes and edges from each of the
components, but also the links between two components.
Moreover, the merging operation of relevant nodes doeswell
in controlling numbersof nodes and edges.

The dataset we selected from DBLP contains about
18,000 nodes. Table 1 and 2 show the number of nodes and
edges based on the two index structures respectively. For
this dataset, the number of nodesin S(k)-index isabout 60%
of that in M*(k)-index, and the number of edgesin Sk)-
index isabout 20% of that in M* (k)-index wheretherearea
lot of links.

Table 1
The Number of Nodes
Num. of query M* (k)-index S(k)-index
50 4250 2550
100 4750 2802
200 5250 3150
Table 2
The Number of Edges
Num. of query M* (k)-index S(k)-index
50 8700 4422
100 9052 4500
200 10032 5809

5.3 Query Performance

In this section, we investigate the query performances of
the two different index structures. Table 3 listsfour queries
with ascending complexity. These queries from XML
documents in DBLP represent four kinds of queries
respectively and have different characteristics in terms of
selectivity, presence of values and twig structure. Q, is a
single path expression query with two nodes and thereisno
attribute valuesinvolved. Q, hasone branch structure which
involvesan attribute value. Q, and Q, aretwig patternswith
three nodes and one branch respectively, and use wild cards
which increase query scope.

Table 3
Sample Queries over DBLP
Query Path Expressions Dataset
Q, /mastersthesis/title DBLP
Q, /article/Journal/IWBS Report DBLP
Q, /*lauthor/Frank Manola DBLP
Q, /fauthor/Klaues Jansen DBLP

Figure 9 shows the performance results of the two
different index structures. The S(k)-index outperforms the
M*(k)-index. For M*(k)-index, the queries are processed
by traversing components from the sequence structure. The
process needs visit plenty of nodes and edges, so it takes
much moretimeto compl ete the queries. S(k)-index which
is a single structure has smaller size, and processes the
queries more efficiently. For query Q, whoselength isvery
short, the dight difference between thetwo index structures
makestheir runningtimesclose. Thelength of Q,is2, soa
sequence including three components should be built for
M*(k)-index to finish the query. Because of the single
structure, S(k)-index has better performance on query Q,.
For Q,and Q,, wildcards, “//” and “*” areinvolved, which
enlarge the search scope. For M*(k)-index, in order to
process the queries, components in the sequence must be
traversed through the “links”, and the cost is expensive. In
construction of S(k)-index, merging rel evant nodes makes
the index structure succinct, and the structure can process
the queries more efficiently.

Running Time(msec)

3000 |
£
2000 SR
&
=]
o k)-ind
1000 g S e e
X

0
Ql Q2 Q3 Q4
query
Figure 9: S(k)-index VS M* (k)-index

A New Structural Summary for Graph-Structured XML Data

5.4 Updating Performance

The idea of update operation is from [10], which contains
two phases, splitting and merging. But our approach ismore
flexible, which only processes the nodes from the current
guery. In this section, we analyze theimpact on sze of index
structure after update operations.

5.4.1 Edges Insertion and Deletion

In order to generate edge insertions in a meaningful way,
we first remove a sequence of edges from the data graph.
These dd eted edges becomethe “source” of insertion. Using
the resulting data graph as the starting point, we perform
one edge insertion followed by one edge deletion in each
step: first a randomly selected edge is removed from the
source and inserted into the data graph, and then another
randomly selected edge is deleted from the data graph and
put back into the source.

The split/merge algorithm [10] guarantees the index
sructureminimal and precise, but it processesall therdevant
nodesin the structure. Since our insertion algorithm (1-split/
merge algorithm) only processes the nodesfrom the current
query, it takes less time to construct the resulting index
structure, and the storage regquirement of the resulting index
structureissmaller. Figure 10 showstheratio of augment of
document after the insertion of nodes. In Figure 10, the I-
split/merge algorithm maintains the size very well, never
exceeding 2%, while the split/merge algorithm makes the
ratio of augment much larger.

‘g 0.03 ./.\./I
&

0.02 —o— |-glit/merge
g ‘/0/./‘ —I—qnsllljt/merge
2 001
®
o
'.E O 1 1 1 1

50 100 150 200
No. of (inertion, deletion)

Figure 10: The Different Ratio of Augment on Edges Insertion
and Deletion

5.4.2 Subtree Addition

We also construct the experiments on subtree addition.
According to DBLPDTD™, we build 50 XML documents,
with an average size of 50 nodes. Addition of subtree is
tantamount to consecutive insertions of all the nodes and
edgesin the subtree, addition of subtree can be processed in
the similar way as addition of edge.

10 documents are added into original document tree
onceatime. Similar to the case of insertion and deletion of
edges, in Figure 11, the I-split/merge a gorithm keeps the
better performance al the time. In terms of running co<t,
the l-split/merge algorithm is very fast, about 5sec for each

47

subtree, which is 2 times faster than the split/merge
algorithm.

= 0.04

:

o 0.03 |

3 —— |-glit/merge
s 0.02 - —B— gplit/merge
=

® 001 }

2

- O 1 1 1 1]

10 20 30 40 50
No. of subtree

Figure 11: The Different Ratio of Augment During a Sequence
of Subgraph Additions

6. CONCLUSION

In this paper, weintroduce a new index structure, S (k)-index.
Asanimprovement of M* (k)-index, it reservesthe adaptive
property that allows different index nodes to have different
local similarity requirements, and its single structure avoids
not only storage of nodes and edges in components from
sequence structure, but also links between components.
Furthermore, we process the update operations on S (k)-
index, including additions and de etions of edge and subtree.
The operations only processtherelevant nodesin the query,
and the structure after updating isfit for the current query
process. An experimental studiesof the storage requirements
of S(k)-index and M* (k)-index indicate the newly proposed
index structure is more compact than M*(k)-index. The
experiments of performance on query and update show better
efficiency than M* (k)-index.

REFERENCES

[1] Editors: T. Bray, Janguag. Paoli, and C. Sperberg-
McQueen. Extensible Markup | e (XML) 1.0, February
1998. W3C Recommendation available at http://
www.w3.org/ TR/1998/REC-xml-19980210.

[2] J. Clark and S.Derose, XML Path Language(XPath)
Version 1.0, World Wide Web Consortium, http:// www.,
W3. org/TR/xpath, November 1999.

[3] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Sim’eon. XQuery 1.0: An XML Query
Language. http://mmw.w3.org/ TR/Xquery, August 2002.

[4] T. Milo and D. Suciu. Index Structures for Path
Expressions In ICDT: 7th International Conference on
Database Theory, pages 277-295, 1999.

[5] R. Kaushik, P. Sheony, P. Bohannon, and E. Gudes.
Exploiting Local Similarity for Efficient Indexing of
Paths in Graph Structured Data, In Proc. of the 2002
Intl. Conf. on Data Engineering, pages 129-140,
February 2002.

[6] Q. Chen, A. Lim, and K. W.Ong. D(k)-Index: An
Adaptive Structural Summary for Graph-Structured Data.

48

[7]

(8]

In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, pages 134-144, June, 2003.

H. He and J. Yang. Multiresolution Indexing of XML
for Frequent Queries. In Proc. of the 20th Intl Conf. on
Data Engineering, pages 683-694, 2004.

R.Paige and R. Tarjan. Three Partition Refinement
Algorithms. SSAM Journal of Computing, 16: 973-988,
1987.

[9] R.Kaushik, P. Bohannon, J. F. Naughton, and P. Shenoy.
Updates for Structure Indexes. In VLDB, 2002.

[10] K.Yi, H.He I. Sanai, J. Yang, Incremental Maintenance
of XML Structural Indexes, in: Proceedings of the 23th
ACM SIGMOD, pages 491-502, 2004.

[11] DBLPdatabaseweb site. http://uni-trier.de/X

