
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received August 25, 2007
Manuscript revised November 30, 2007

Predicate Abstraction of C Programs

V. K. Pachghare1

1Lecturer, Computer Engineering & IT Department, College of Engineering, Pune
(An Autonomous Institute of Government of Maharashtra, India) E-mail: vkp@comp.coep.org.in

Abstract: Typically, software contains millions of lines of code which presents a major challenge for program analysis and
related techniques such as model checking. Analyzing such large code is expensive in terms of space and time. Predicate
abstraction is a technique that generates an abstract of the original program using a set of predicates. Such an abstract or
reduced code preserves all the properties of the original program. It is achieved through a technique called program slicing
which eliminates all the irrelevant parts of the original program with respect to the set of predicates. Moreover, the abstract
code can be used as an input to a model checker to prove properties of programs. This is vital since a model checker accepts
only a finite state system.

This paper covers concepts related to predicate abstraction and our approach to building the predicate abstraction tool for
C programs. It also illustrates how this tool is unique as compared to other tools in the software industry. The important
applications of the tool along with the challenges faced are covered in brief as well.

Keywords: Predicate Abstraction, Program Slicing, Approach, Challenges

1. INTRODUCTION

Program analysis refers to the process of collecting
information about a program. Program analysis is a key
component of many applications and software development
processes. It is required for applications such as compilers /
decompilers, reduces costs of program maintenance and
increases effectiveness of program testing.A growing
commercial use of program analysis is in the verification of
properties of software used in safety-critical computer
systems and locating potentially vulnerable code.

Model checking is a technique related to program
analysis which is used to prove properties of finite state
systems. However, generally programs contain thousands of
lines of code which results in infinite state systems. Such
infinite state systems cannot be given as input to the model
checker (model checking tool) due to memory restrictions.
Thus there arises a need to abstract the original program
with respect to a set of predicates to generate a finite state
system that can fit into the model checker. The generated
abstraction is such that it preserves the behaviour of the
original program. Such an abstraction is called Predicate
Abstraction. There are many important applications of
predicate abstraction viz. deadlock detection, divide by zero
detection, etc.

2. PREDICATE ABSTRACTION

Predicate abstraction is a technique that is used to prove
properties of infinite state systems. It is a combination of

theorem proving and model checking techniques. Given a
concrete infinite state system and a set of abstraction
predicates (points of interest in a particular program,
expressed as variables), a conservative finite state abstraction
is generated. Predicate abstraction is conservative in the
sense that for every execution in the concrete system there
is a corresponding execution in the abstract system.

Abstraction may be very coarse .So we need to refine
it. However, abstraction is expensive. Moreover the
reachable state space of a program is generally sparse. Hence
we use refinement only where required by constructing the
abstraction ‘on the fly’ driven by the search.

This gave rise to Lazy abstraction. Lazy abstraction
continuously builds and refines a single abstract model on
demand just enough to verify the desired property. When
applying iterative abstraction refinement, we must strike a
delicate balance between the accuracy of the abstraction that
is produced and the speed at which it is generated.

Figure 1: Components in C Programs

Journal of Information Technology and Engineering
Vol. 1 No. 2 (December, 2016)

 Received: 03rd March 2016 Revised: 14th July 2016 Accepted: 20th August 2016

62 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

The block diagram shown in figure 1 shows the
components involved in predicate abstraction of C programs.

1. C Parser: It takes a C program as its input and
generates an intermediate representation (IR).

2. Predicate Abstraction Tool: This is responsible for
analyzing the whole program and generates an
abstract version of the program. It takes the
intermediate representation of the C program and
a set of predicates which generates the abstract of
the program as its output.

Predicate abstraction involves a technique called
program slicing.

3. PROGRAM SLICING

Program slicing is a technique for simplifying programs by
focusing on selected aspects of semantics. The process of
slicing deletes those parts of the program which can be
determined to have no effect upon the semantics of interest.
Figure 2 gives the programmers view of a slice.

Slicing could be of various types:
1. Static: identifies all program code that can in any

way affect the value of a given variable
2. Dynamic: Dynamic information(input to the C

program) is given to compute the slice along with
the information to compute the static slice

3. Conditioned: Slice computed with respect to certain
conditions whose result is known.

Our paper will be dealing with static slicing.

A slice is constructed by deleting those parts of the
program that are irrelevant to the values stored in the chosen
set of variables at the chosen point. The point of interest is
usually identified by annotating the program with line
numbers which identify each primitive statement and each
branch node.

The point of interest will be indicated by adding a
comment to the program. In general slices are constructed
for a set of variables, but in this article only slice constructed
for a single variable will be considered. Thus, given a
variable v and a point of interest n, a slice will be constructed
for v at n. This is not restrictive, because the slice with respect
to a set of variables V can be formed from the union of the
slices on each variable in V.

Simple example of static slicing is given below:

Explanation: In the above example, A is the original
program and B is the corresponding sliced program with
the slicing criteria as variable ‘i’. As it can be clearly seen
the assignment k=3 and the print f(“%d”,k) bears no
relevance to the value of ‘i’. Hence, these statements are
deleted to obtain the sliced program, B.

4. WORK DONE IN THIS FIELD

Microsoft has been doing a lot of research in this field. SLAM
project is an example of the work they have done. The aim of
the SLAM project was to prove correctness properties of OS
device drivers by using predicate abstraction.

Berkeley University has made significant contributions
to this field. BLAST (Berkeley Lazy Abstraction Software
Verification Tool) constructs an abstraction of the original
system ‘on the fly’ only according to the reachable states in
the program.

MAGIC (Modular analysis of programs in C) follows
the counterexample guided abstraction refinement paradigm.

All these approaches combined abstraction along with
the model checking tools to prove program properties.

5. OUR OBJECTIVE AND APPROACH

Work that has been done in this area has combined slicing
along with model checking. Our objective here is to create

Figure 2: Programmer’s View of a Slice

3.1 Static Slicing

There are many forms of slice, so it will be helpful to start
off with a simple form of slice; the static slice. The other
forms of slice can be thought of as augmentations of this
static form.

Predicate Abstraction of C Programs 63

a pure slicing tool that will mainly be used for scaling up
data flow analysis. Scaling up will be done with respect to
memory as well as time. Hence, very large programs can be
analysed in less time.

We have taken a rather naïve approach to slicing. As
mentioned above, abstraction is expensive and hence initially
the abstraction is coarse. It can be refined as per the need.

We are following a user-driven approach in which we
give a set of predicates to our program from a file. These
predicates form our points of interest in the program. With
respect to these predicates the predicate abstraction prototype
tool will give all the parts of the program that affect the value
of these predicates / program variables. In other words, it
gives us the parts of the program relevant to the set of
predicates input to the program. The input set of predicates
is given to the program in the form:

Figure 3: Input File Format

Here ‘G’ stands for a global variable and ‘L’ stands for
a local variable. The scope of the variable is given followed
by the name of the variable which is followed by the function
to which it belongs.

In the example above we can see that the scope is ‘G’
or global and the name of the variable is ‘var1’. Being global
it does not belong to any function. The second variable has
a local scope, name as ‘var2’ and belongs to ‘FuncName’
function.

In our tool we are interested in the ‘Divide by Zero’
property. For testing purposes a driver has been made that
generates the predicates from a C application. In this case it
will consider all the divisors in the program and collect all
the variables in the divisors as the points of interest. It will
generate a file in the form given in figure 3.

Once this input has been given to our tool, it returns all
the relevant aspects of the program in the form of functions
relevant over the set of input predicates. The approach to
find such relevant functions is as follows:

Initially there are three sets computed for each function
which are as follows:

1. Globals used
2. Globals modified
3. Formal parameters modified
The first set gives all the global variables that have been

used by a particular function and all its children (the functions
that are called in its body) since they may be using global
variables.

The second set gives all the global variables that
have been modified by a particular function and all its
children.

The third set gives us all the formal parameters that are
modified by a particular function and its children. It means
that after a function has been executed the memory locations
that it has modified are contained in this set in the form of
formal parameter numbers since it may be called from any
function. Once these sets have been computed we proceed
towards the main approach.

Consider the functions in a program one at a time.
First of all check if our point of interest variable is being

directly modified in this function. If yes, then mark this
function as relevant and mark all its ancestors as relevant.
The ideology behind this is that the value of our point of
interest can be modified only if the parent of our function is
called. So, only if the parent is called will the current function
be called.

The next case to be considered is during the time of
function calls inside a function definition. It is because a
call to a function could change a memory location which in
turn could affect the values of our points of interest. A call
could change a memory location by retuning a value or by
modifying a location pointed to by the pointer sent as a
formal parameter or by changing global variables. Hence,
when there is a function call we consider three cases.

1. It call could be a call that returns a value and the
value is being used (the value returned is being
assigned to something)

2. It could take a reference as its parameter
3. It could just be a plain call that does not return a

value or it returns a value but the value is not used
or no reference is being passed to it.

Case 1: Consider the first case. If the call returns a value
and the value is being used (the value returned is modifying
some memory location), then we may assume that the value
being returned may later affect the values of our points of
interest. Hence we mark the called function and all its
ancestors (all its callers, and their callers and so on) as
relevant since this function can be called only if its caller is
called. We also need to make an executable program. Hence
the above rule.

Case 2: In the second case since a reference is being
passed as a parameter to the function we can find whether
this function is modifying some memory location by
checking the third set that we had initially computed. If yes,
then we may assume that the modification may later affect
the values of our points of interest. Hence we mark the called
function as relevant and all its ancestors as relevant. If no,
then we need to check for the global variables that the
function modifies in the second set that has been computed.
If we find that the called function is modifying some global
value which may be used by the caller function or any of its
ancestors we mark the called function as relevant and all its
ancestors as relevant.

Case 3: In the third case, we bring into picture global
variables. If we find that the called function is modifying
some global value which may be used by the caller function

64 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

or any of its ancestors we mark the called function as relevant
and all its ancestors as relevant. It is done so because we
assume that the change in the global variables may later affect
the points of our interest.

In this way we get all the relevant parts of the program,
removing all the irrelevant parts of the original program.

Let us illustrate with an example
In the following example variable ‘i’, a local variable

that belongs to function ‘main’ is our point of interest.
According to our approach we have found that the relevant
functions are ‘abc’, ‘xyz’ and ‘main’. Function ‘abc’ is
relevant because it is returning a value inside the function
‘main’ that is being consumed. Hence ‘abc’ is relevant. Also
‘main’ is relevant because the value of of ‘i’ is being directly
modified inside this function. Function ‘xyz’ is relevant
because a pointer is being passed which according to our
second case should be marked as relevant. Since function
‘pqr’ does not fall into any of the above cases it is irrelevant
with respect to variable ‘i’.

In this manner we can find out all the functions that
may directly or indirectly affect the value of our point of
interest.

Abstraction it is necessary to keep track of all the
pointers which directly or indirectly may affect our
point of interest variable. Since we process
functions not according to the flow of the program
it is even more difficult to handle pointers.
When a pointer is passed as parameter to a call, it
is important to note whether the pointer is
modifying a memory location after retuning from
the call.

• Procedures or Functions : In Predicate Abstraction
the Procedures or Functions which are modifying
the value of point of interest variable are relevant
to us, while others are irrelevant and are sliced out
in the abstract version of a program. There can be
various types of functions :
1. Call by reference.

2. Call by value.
3. Call without parameters etc.

Thus all the functions in a program are analyzed and
corresponding operations are carried out to find all the
functions which are relevant to our point of interest variable.

Recursive Calls: All the recursive functions in a program
are considered to find if it is relevant or irrelevant. The
procedure to find relevant functions is as follows:

a. Process

b. Mark
By means of a flag we can mark the function as

processed in the beginning itself. In this way we can handle
recursive functions.

• Complex Data Types: Structures, unions and arrays
are handled differently. For instance, even if a
member of a structure variable is being modified
we need to consider the structure variable as
modified. Doing this requires an API called
coveredby() which tells whether the variable under
consideration is part of the structure variable.
e.g.:

Struct node
{

Int x;
Char y;

}
Struct node s;
s.x=30;

Consider the structure variable‘s’ to be our point of
interest. We can see that‘s’ is modified in the statement
s.x=30. Using covered by API we can find whether s.x is a
part of s. Hence in this manner we can handle complex data
structures as well.

7. UNIQUENESS

The slicing tool differs from the ones given above. Its
features are given below in brief.

6. CHALLENGES IN PREDICATE ABSTRACTION

In Predicate Abstraction of C programs various aspects of
C Language are to be considered, so various challenges were
encountered in designing the Predicate Abstraction Tool.
Some of the challenges faced are as follows:

• Pointers: Pointers are datatypes which hold
addresses of variables to which it is ‘pointing to’.
In C programs pointers directly affect the value of
variable to which it is referencing. Thus in Predicate

Predicate Abstraction of C Programs 65

Table 1
Characteristics of the Tool

Characteristics Our Tool
Abstraction level Function
Type of result Set of functions
Intended application Program analysis
Slicing Direction Backward
Type of information Static
The statement Not at a particular statement

Thus the effective output from the slicing tool is a set
of functions relevant to the slicing criterion, the criterion
being a set of program variables.

8. APPLICATIONS

The predicate abstraction tool can be used for various
applications. Some of them are given below.

• Deadlock detection: In this case we can consider
semaphores as the points of interest variables. With
respect to these semaphores we get only the relevant
parts of the code.

• Division by zero: In order to locate statements in
the program that could lead to a division by zero
case, all the denominators are considered as the
points of interest variables.

• Null Pointer Exception: Consider all the variables
that could lead to a null pointer exception as points
of interest. All the functions relevant to such
variables are found.

General Applications

This section describes four of the applications to which
program slicing has been put. The section starts with a
discussion of debugging, which was the original motivation
for program slicing. Since then slicing has been applied to
many other problem areas. To give a flavor for the breadth
of applications two additional topics are described:
comprehension and maintenance. The first of these is
covered in detail, while the latter two are presented in
overview.

1. Debugging

It facilitates debugging and can be used to narrow the search
for the fault, by including only those statements which could
have caused a fault to have occurred on the particular
execution of interest.

2. Comprehension

Program comprehension becomes better by obtaining slices
to understand every individual case in the program leaving
the rest aside.

3. Maintenance

By obtaining a slice with respect to some property of interest
we can find the parts of code that will be affected due to a

change in the predicate. Hence maintenance effort is reduced
as well.

CONCLUSION

The tool has successfully been tested on a number of C
programs including one with around 6000 lines of code
containing 163 functions in it. In order to check for the divide
by zero cause, the predicates input to the tool were the
divisors in the program. A Driver was written to generate
such predicates. It generated the predicates in less than half
a minute. After slicing, 86 relevant functions were obtained.
This processing took just 45 seconds. Thus, in order to check
for divide by zero, only 86 functions need to be analyzed
instead of the original 163 functions. This saves analysis
time and memory immensely.

The predicate abstraction tool thus built contributes
greatly in scaling up of Data Flow Analysis in terms of
memory and time. Thus, instead of analyzing a code that
spans thousands of lines, only the relevant parts need to be
analyzed just by giving the point of interest to the tool. The
Relevant parts of the program are expressed in terms of
relevant functions. These are those functions which directly
or indirectly affect the value of the variable of interest also
known as the predicate. In finding these relevant functions,
care has been taken to ensure that only those functions which
definitely have no bearing on the value of predicate are
marked as irrelevant. All cases for relevance have been
checked meticulously.

The tool is currently being tested on a C project which
has around 1 lakh lines of code containing 877 functions.
After analysis, 27 predicates have been generated.

REFERENCES

[1] Herbert Schildt, JAVA: Complete Reference.

[2] www.wikipedia.org

[3] www.google.com

[4] v e r i f y . s t a n f o r d . e d u / s a t y a k i / r e s e a r c h /
ResearchInterests.html

[5] v e r i f y . s t a n f o r d . e d u / s a t y a k i / r e s e a r c h /
PredicateAbstraction.html

[6] http://hissa.nist.gov/unravel/

[7] linz.ac.at/Research/Projects/ProgramSlicing/ECOOP99/
Demonstration/Demo/ppframe.htm

[8] Satyaki Das , “Predicate Abstraction”, Stanford University.

[9] Tommy Hoffner, “Evaluation and Comparison of
Program Slicing Tools”.

[10] Andrea De Lucia, “Program Slicing: Methods and
Applications”, Faculty of Engineering, University of
Sannio.

[11] Thomas Henzinger, U C Berkely, “An Overview of
Program Slicing Software Verification with Blast”.

[12] David Binkley, “Program Slicing”,The Wisconsin
Program-Slicing Tool.

