
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007
CSES International © 2007 ISSN 0973-4406

Manuscript received July 25, 2007
Manuscript revised September 15, 2007

Guidelines and Notations towards a Simulation
Temporal Data Base Management System

Abdelhak BOUBETRA
Computer Science Department, University of Bordj Bou ArreridjBordj Bou Arreridj, 34000, Algeria

E-mail: boubetraabd@yahoo.fr

Abstract: The approach to make connection between simulation and temporal data bases helps in dividing the simulation
activities into independent stages. This connection deals with the temporal aspect in simulation and data bases. Guidelines
and notations for a design approach of a data base management system for simulation based on temporal aspects are
presented.

Keywords: simulation, data base, time, DBMS, temporal map

1. INTRODUCTION

Beside its popularity and advantages, simulation still has
limitations since simulation users are always seeking for easy
simulation software with more features, and there is an urgent
need for user-friendly software for all stages of simulation
including the definition, development, and validation of
simulation models. In order to reduce the complexity to
implement a desired simulation software, several authors
[5,6,7] recognize the need for a model development and
analysis environment in which tools can be used to support
modelling and analysis, thus separating data management
from the simulation language itself, and this environment
should be integrated. The recommendations argue that a data
base management system (DBMS) provides a very effective
means of implementing this integration. This may be the
reason that one of the main activities in simulation [2,3],
today, is the management of data generated by large scale
simulation studies. We can think of a logical view of the
main activities for building, analysing and utilising a
simulation model with the aid of a data base management
system as it is shown in Figure 1.

First, the analyst must study the real world system under
investigation to specify a conceptual model (its static and
dynamic structure), which he believes is the map of his real
world system, within some language. The resulting
description can be loaded into the data base. The simulation
system can run the simulation, retrieve parameters from the
data base and store outputs in the data base to obtain answers
to queries or information for simulation purposes.

Within this logical view, the simulation user will have
an integrated environment which has the ability to maintain
model descriptions and store results of simulation runs.

However, in most of the existing DBMS the running facility
of the simulation does not exist. In other words, when most
of these DBMS were first designed they did not include a
simulation system. Parallel to that, in the design of the so-
called simulation languages or simulation ‘packages’
simulation designers did not include the possibility of having
a data base.

Figure 1: A Simulation System Using a Data Base

2. TIME, SIMULATION AND DATA BASES

The problem with most data base modelling techniques is
that they concentrate almost exclusively on static views of
the system being modelled. What is modelled is a time slice
of a given system’s existence or a time slice of the real world,
the system dynamics are only modelled implicitly and
obscurely in the data base transactions rules. However,

Journal of Information Technology and Engineering
Vol. 2 No. 2 (December, 2017)

 Received: 23rd July 2017 Revised: 14th September 2017 Accepted: 15th November 2017

268 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007

simulation modelling techniques have concentrated almost
on dynamic views of the system being modelled. What is
modelled is the system behaviour or the dynamism of the
real world.

Here the aim of our suggestion can be seen in the need
to have something in the DBMS that represents the entity
behaviour just as a collection of events drives an entity
through its behaviour in the real world. On the other hand,
in specifying the dynamic behaviour of a system, time forms
the core of any simulation study. Thus, temporal data bases
that “capture what is known about events and their effects
occurring over time” can offer a good support to meet the
requirement of a DBMS for the simulation.

Studies in data base applications [8] have revealed the
need to have new functions for new requirements. Among
these additional requirements is temporal (or time domain)
support, so as to allow the data base to model the time
dimension. For example, in the storage of legislation,
historical information is just as important as current data.
As a result of the discovery that time domain support is
needed in many applications, research work has been started.
In some cases, the temporal domain is handled in a very
restricted manner [4] and other studies [1] have concentrated
on the user’s perspective. Here the researchers [9, 10]
attempted to see what kind of logic, interface, and language
or query facility would be needed to support the different
usages involving the time domain. Little serious effort has
been expended to implement a system with general function
for time support as well as the normal data base functions.

In a simulation, it is impossible to answer question such
as ‘what is the state of a system at a specified time’ without
access to history data. Thus, it is of immense value to have
access to the notion of time in simulation through a data
base or exactly to have access to the simulation data
evolution through the time dimension. The development of
tools and techniques required for managing data generated
by large and complex simulated problems gives the
simulation a new dimension. To fulfil this requirement, we
are suggesting a specification of a tool to deal with that
matter. We shall refer to such a tool as a simulation temporal
data base management system (Sim-TDBMS). Beyond the
conceptual complexity involved, attempts to implement such
system can support the simulation with a powerful tool for
building models and for following and keeping the step by
step evolution of the simulated system.

3. METHODOLOGY

Dean T. L. and Mc Dermott D. [12] proposed a map for a
real world system with the name of “a temporal map” which
he defines it as a graph in which the nodes are snapshots of
time associated with events, and the arcs connecting these
nodes describe relations pairs of snapshots. The relations
between the pairs of snapshots are the necessary conditions
leading to the occurrence of events at these snapshots.
Reasoning about simulation and time in this framework, we

can imagine a simulation temporal map as a means of
viewing time in simulation and provides us with a convenient
reference to design a simulation temporal data base that
captures the outcomes of the snapshots in the simulation
temporal map and their effects over time. The information
in the data base specifies the different situations and the
relationships between the different entities of the simulated
system at different points of time. In planning and decision
making, it might be interesting to verify if certain conditions
(‘C’ events: Conditional events) or certain facts of certain
situations (‘B’ events: Bound events) had occurred or have
been satisfied.

From above we can say that a simulation temporal data
base management system (Fig. 2) supporting the
functionality of the simulation temporal map might be seen
as a powerful tool for the simulation user and for simulation
in general. Such system might consist of a simulation
temporal data definition system (Sim-TDDS), a simulation
temporal data manipulation system (Sim-TDMS), a
simulation temporal data query system (Sim-TDQS) and a
simulation temporal documentation system (Sim-TDS).

Figure 2: The Sim-TDBMS tool.

Sim-TDBMS

Simulation Simulation
Data Base

4. THE NEEDED SIMULATION TEMPORAL DATA BASE

To store and record the behavior generated by the simulation
reflecting the state changes at the different snapshots of the
time evolution, we propose a temporal data structure in the
form of a relation that can be viewed as a 3-dimensionnal
structure where the first two dimensions represent the objects
and their attributes and the third dimension represents the
time aspect. With the cubic representation applied to the
simulation; each horizontal slice will indicate the changes
at a specific snapshot of a simulation object. The upper
horizontal slice represents in general the most current view
of the simulated system object.

For example, let’s consider a system consisting of a set
of classes of objects. Each class is composed of objects
having the same characteristics called instances in an object
oriented approach. Among these classes we have a class
consisting of three objects having for example three attributes
notated:

Guidelines and Notations towards a Simulation Temporal Data Base Management System 269

ClassObject(): Attributes(atr1,atr2,atr3) where an attribute
can be also an object.

A slice of the state of one of the three objects at time t
i

is notated as follows:

Slice :ClassObject():Object()(time t
i
)

So the slice of the state the three objects can be at time t
i

like it is shown in Figure 3:

Slice :ClassObject(1):Object(1)(time t
i
) =

Slice :ClassObject(1):Object(2)(time t
i
) =

Slice :ClassObject(1):Object(3)(time t
i
)=

Figure 3: A Slice of the Objects’ Attributes at Time t
i
.

In simulation, when time advances entities change their
states as a result of the appearance of a particular event or a
set of events. However, the cubic representation reveals some
difficulties. When some attributes of an object remain
unchanged but others change their states at a snapshot, the
object can be assumed to have logically taken the last state
at the most current snapshot which is not true like it is shown
in Figure 4.

Slice: ClassObject(1):Object(1)(time t
i+1

) =

Slice: ClassObject(1):Object(2)(time t
i+1

) =

Slice: ClassObject(1):Object(3)(time t
i+1

)=

Figure 4: A Slice of the Objects’ Attributes at Time t
i+1

.

To overcome this problem, we extend the concept to
include the history behavior of the simulated system. Instead
of building one table for each class of entities with additional
time attributes to contain all the tuples and their changes
since their creation, we shall have a table that contains only
the current tuples as is done in the current view systems.
However, to capture the time aspect we will have its value
stored with the tuples of the current view. This time will not
behave as in the case where the temporal domain is supported
by adding the time attributes to the tables. Included with
each tuple will be a pointer that points to the first history
tuple when there is.

The method for creating and storing history simulation
data works as follows: all history information belonging to
one tuple representing an entity is chained in time order.
The beginning of the chain is the current view of the entity
and with this structure we can process all the current and
history view of the entities. Now we go into discussion of
our approach and focus on the performance and the design
of the historical view. We organize another table for
sequential accessing of the time aspect which will be referred
to as the simulation historical table and it consists of two
fields. The first one represents the time and the second one
is a pointer to the attributes values of an entity. The historical
pointer of the entities class points to the simulation historical
table which acts as a pointer to the attributes values of the
entities with the time as a key access in the first field. The
second field of the simulation historical table is a pointer to
the attributes which have undergone a change.

Within such an implementation framework, the
simulation can gain in all its stages starting from initialization
until the investigation of the simulation outcomes. The
initialization phase generate the slices of the objects’
attributes with their corresponding initial states. The
simulation run generates all the next slices corresponding
to the different changes of the objects’ attributes.

5. THE SIM-TDBMS COMPONENTS

So far we introduced within the simulation temporal map
the notions of snapshots and the outcome of a snapshot. To
deal with these notions the Sim-TDBMS should use a data
base to capture the outcomes of each of the snapshots and
the different snapshot-to-snapshot paths relating them.
Adding to that the Sim-TDBMS should provide means to
walk within the simulation temporal map in order to access
and interrogate the simulation temporal data base.

On the other hand from a software design point of view,
Ian Sommerville [11] stated that a more methodical approach
to software design is offered by so-called ‘structured
methods’, which are basically sets of notations and guidelines
about how to create a software design. In that direction, the
Sim-TDBMS components design might be expressed by the
following forms.

5.1 The Sim-TDDS Component

There are a number of modelling methodology and issues in
simulation. These issues consist in chosing the level of detail
of the system representation, and what is to be represented
of the real world under study. It is obvious that defining a
system is defining its static and dynamic structures and in
some cases is defining some pictorial structures representing
some formalism of the system under study. For such a
purpose, we introduce in the next sections the modelling
formalism in the Sim-TDDS to define the static, dynamic
and pictorial structures of the system under investigation.

Static descriptions in the Sim-TDDS: A static structure
of a real world system is for the major part the set of entities

270 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007

with their attributes. These attributes are supposed to
represent an abstract image of the real system and its parts.
As a consequence, their choice is highly influenced by the
modeller of the system. Based on these considerations, it
can be seen that there are two fundamental concepts involved
in specifying the static structure of a system. These are the
concepts of entities (objects) and of the entities classes
(objects classes) where an entity has a name and a set of
attributes. The name is a distinct identifier not possessed by
any other entity. The set of attributes is the set of images
and values that the entity can take. The identification of
entities in the Sim-TDBMS is specified by records with fields
representing the entity inter-relationships in the simulation
temporal data base.

A decomposition of the system into classes represents
a simple decomposition of a model into components where
each component or a class is a set of entities having the same
attributes and the same functions in the system. Thus, entities
can be categorised as belonging to various classes and that
by knowing the class of an entity we can determine some of
its properties. Each such class in the Sim-TDDS is reprented
by a set of records.

Dynamic descriptions in the Sim-TDDS: In addition
to structural static descriptions in terms of entities and entities
classes, the simulation user may additionally define the
dynamic structure of the system components and how the
entities of the classes are connected together. Connection
may be described by the set of entities taking part in an
activity. Thus, The Sim-TDDS provides means for the
behavioural description of a system which is the definition
of the type of entities starting or ending an activity. In the
three phase simulation approach, we distinguish two types
of events, the B and C events which form the system’s
behaviour. B events are those occurrences which correspond
to ending an activity. C events are those occurrences
indicating the starting of an activity. Wether an event is B or
C, the type of entities taking part in it is known to the
modeller before simulation. However, the exact identification
of the entities is unknown. In the Sim-TDDS, the most
elementary method for defining B and C events is to indicate
simply class type and the number of entities from each class
to take part in an event. The data structure of the records to
support this description should be defined.

Pictorial descriptions in the Sim-TDDS: In addition
to structural static and dynamic descriptions, a simulation
user can define pictures to his system. The Sim-TDDS
provides a set of images among which the user can choose
to define his system for the purpose of learning the simulated
behaviour generated in a pictorial form. These pictures will
form a communication language between the simulation user
and the Sim-TDBMS.

System functioning of the Sim-TDDS: To accomplish
its functions, the Sim-TDDS interface is one of screen menus
and keyboard functions providing the simulation user with
facilities to describe the static and dynamic structure of his

system. The Sim-TDDS takes this information in the form
of question/answer from the simulation user ans stores it in
the simulation temporal data base.

5.2 The Sim-TDMS Component

The Sim-TDMS is the set of software components
responsible for running the simulation, accessing the
simulation temporal data base to extract information about
the system under study, storing the generated behaviour and
forming the interface between the simulation user program
and the simulation temporal data base.

The main actions that occurs when the simulation is
running by means of the Sim-TDMS are as shown in Figure
5. and they consist of :

(1) the simulation user program issues a call to the Sim-
TDMS to read a current view of an entity in the
simulation temporal data base by stating the name
of the entity type.

(2) The Sim-TDMS gives the value of the key of the
required entity based on a hash coding function.

(3) The Sim-TDMS examines the physical simulation
temporal data base descriptions and determines
what physical record or records to read and looks
up the entity in question.

(4) The Sim-TDMS issues a command to the computer
operating system, instructing it to interact with the
storage media containing the simulation temporal
data base and read the requisite record.

(5) The Sim-TDMS transfers the data from the
simulation temporal data base to the work area of
the simulation program.

If the simulation program updates a record, the sequene
of actions is similar. The simulation program will normally
read and issue an instruction to the Sim-TDMS to write back
the modified data.

Figure 5: Main Actions of the Sim-TDMS Functioning.

Simulation

program Sim-TDMS

Simulation

temporal data

Operating

system

Hash

coding

1

2

3 4
5

System functioning of the Sim-TDMS: As mentioned
above, the Sim-TDMS reflects the functioning of the
simulation temporal map based on the three phase simulation
approach. Thus, the Sim-TDMS is responsible for advancing
time from snapshot to snapshot in the simulation temporal
map and provide the three phase simulation executive with

Guidelines and Notations towards a Simulation Temporal Data Base Management System 271

the necessary informations to run the simulation model, such
as some of the model static and dynamic descriptions strored
in the simulation temporal data base with the help of the
Sim-TDDS.

In addition to that, the Sim-TDMS is responsible for
storing in the simulation temporal data base the outcomes
of each snapshot or the results of the execution of the B and
C events representing the simulation model. From that, we
understand that the three phase simulation executive will
form the heart of the Sim-TDMS which has the ability to
make transactions on the simulation temporal data base to
extract and store informations.

The mentioned transactions are mainly the events stated
in the previous section and we will discuss them in the next
section in terms of the three phase (A,B,C) simulation
approach. So the the three phase simulation executive will
be embedded in the Sim-TDMS.

The Sim-TDMS executive: within the Sim-TDMS, the
formalism to implement the three phase approach is the same
as described in the different literatures, but with more
functions which consists of the management of the differing
transactions on the simulation temporal data base to extract
and store information. This implementation will be as
follows:

(a) The Sim-TDMS ‘A Phase’: a time scan which
determined the next time at which one or more B
events are scheduled to be executed and forms a
list of all such actions that must take place at that
time.

(b) The Sim-TDMS ‘B Phase’: which consists of the
actual execution of the bound events found
necessary in the previous phase. Within the
execution of the bound events, the Sim-TDMS
makes a transaction on the simulation temporal
data base. This transaction is the creation of the
new historical view of each entity corresponding
to the new image of its attributes. Within the
execution of each of the B events, the Sim-
TDBMS changes the linkages belonging to the
entities taking part in these events. Thus, creating
the current view of the entities having undergone
a change at this snapshot.

(c) The Sim-TDMS ‘C Phase’: Which consists of
testing and, where the tests succeed the execution
of the action part, of each conditional event. In the
Sim-TDMS, some of the testing consists of making
transactions on the simulation temporal data base
to read the current view of some of the entities and
consult their states. Where the tests succeed, the
execution of the actions part consists of making a
transaction on the simulation temporal data base
to create the new historical view of the entities
having go through a change and modifying the
lnikage belonging to these entities within the
simulation temporal data base.

The executive program cycles round these three phases
until a preset duration or a predetermined termination
condition is reached.

5.3 The Sim-TDQS Component

So far we introduced within the simulation temporal map
the notions of snapshots and the outcome of a snapshot. To
deal with these notions the Sim-TDBMS should use a data
base to capture the outcomes of each of the snapshots and
the different snapshot-to-snapshot paths relating them.
Adding to that the Sim-TDBMS should provide means to
walk within the simulation temporal map in order to access
and interrogate the simulation temporal data base. In that
direction, the Sim-TDQS which is of great value to
understand a simulation run will be built on the basis of the
notions described in the simulation temporal map cited above
and will take its semantics from answering questions denoted
by:

? A(St) which means what snapshot-to-snapshot paths
lead to the appearance of the snapshot St or the
identification of all the paths related to that snapshot.

? Outcome(St) which means what is the outcome of a
snapshot St or the identification of all the beginning and
ending events at that snapshot.

? B-event(St) which means identify all the ending events
at the snapshot St.

? C-event(St) which means identify all the beginning
events at the snapshot St.

In general, the appearance of events within the snapshots
takes actions on elements or entities of the simulated system.
The investigation of the events’ effect, on the attributes of
the entities, is usually a primary target in simulation. Such
investigation can take the following forms denoted by:

? (Entity (B-event :evtb)) (St) Which means identify the
entity which takes part in the ending event evtb at the
snapshot St.

? (Entity (C-event :evtc)) (St) Which means identify the
entities which take part in the beginning event evtc at
the snapshot St.

?Attribute:atr1>Entity:ent1>B-event:evtb)(St) which
means identify the value of the attribute atr1 of the entity
ent1 which takes part in the ending event evtb at the
snapshot St.

?(Attribute:atr1>Entity:ent1>C-event:evtb)(St) which
means identify the value of the attribute atr1 of the entity
ent1 which takes part in the beginning event evtc at the
snapshot St.

One of the important characteristics of the simulation
temporal map that it allows one to walk backward and forward
from snapshot to snapshot. We denote such actions by:

(St
i-1

) > (St
i
) Which means jump forward from snapshot

St
i-1

 to snapshot St
i

272 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007

St
i-1

) < (St
i
) Which means jump Backward from snapshot

St
i
 to snapshot St

i-1
.

In addition to that, a dynamic pictorial facility within
the Sim-TDBMS is of a great value. This makes is possible
to access visually the time dimension in the simulation and
create pictorial images of the snapshots. The design
inspiration of such facility can be based on the following
semantics denoted by:

View(?A(St)) which means visualize the snapshot St.

View(?O(St)) which means visualize the outcome of the
snapshot St.

View(?B-event(St)) which means visualize the ending
events of the snapshot St.

View(?C-event(St)) which means visualize the
beginning events of the snapshot St.

View(?(Entity>B-event:evtb)(St)) which means
visualize the entities having taken part in the B-event:
evtb at the snapshot St.

View(?(Entity>C-event:evtc)(St)) which means
visualize the entities having taken part in the C-event:
evtc at the snapshot St.

View(?(Attribute:atr>Entity:ent>Bevent:evtb)(St))
which means visualize the attribute :atr of the entity :ent
of the B event :evtb at the snapshot St.

View(?(Attribute:atr>Entity:ent>C-event:evtc)(St))
which means visualize the attribute :atr of the entity :ent
of the C event :evtc at the snapshot St.

View((St
i-1

) > (St
i
)) Which means jump visually forward

from snapshot St
i-1

 to snapshot St
i
.

View((St
i-1

) > (St
i
)) Which means jump visually

Backward from snapshot St
i
 to snapshot St

i-1.

6. CONCLUSIONS

In today’s simulation, the simulation modelling community
is seeking from the simulation software community for
software to solve simulation problems by formal means, and
to deal with systems complexity at all levels. There is much
scope for future development of the Sim-TDBMS if the
simulation software community could particularly transform
the notions of the Sim-TDBMS into a simulation temporal
data base management language (Sim-TDBML) and a
simulation temporal data query system (Sim-TDQS).

REFERENCES

[1] H. S. Arons, “Knowledge-based Modeling of Discrete-
event Simulation Systems”, in Proceedings of the 1999
Winter Simulation Conference, ed. P.A. Farrington, H.B.
Nembhard, D. T Sturrock, and G. W. Evans, Society of
Computer Simulationm, 1999, pp. 591-597.

[2] T. McLean, L. Mark, M. Loper and D. Rosenbaum D.,
“Applying Temporal Databases to HLA Data Collection
and Analysis”, In Proccedings of the 1998 Winter
Simulation Conference, ed. D.J. Medeiros, E.F. Watson,
J. S. Carson and M. S. Mannivannan, Society for
Computer Simulation, 1998, pp. 827-833.

[3] L. G. Randell and G. S. Bolmsj, “Database Driven Factory
Simulation: A Proof-of-Concept Demonstrator”, In
Proceedings of the 2001 Winter Simulation, ed. B.A.
Peters, J. S. Smith, D. J. Medeiros and M. W. Rohrer,
Society for Computer Simulation, 2001, pp. 977-983.

[4] N. H. Robertson and T. Perera, “Feasibility for Automatic
Data Collection”, In Proceedings of the 2001 Winter
Simulation Conference, ed. B.A. Peters, J. S. Smith, D.
J. Medeiros and M. W. Rohrer, Society for Computer
Simulation, 2001, pp. 984-990.

[5] C. R. Standridge and D. B. Wortman, “The Simulation
Data Language (SDL), A Database Management Systems
for Modelers”, Simulation Journal; August 1981, pp. 55-
88.

[6] C. R. Standridge, “Modular Simulation Environments.
An Object Manager Based Architecture”, In Proceedings
of the 1999 Winter Simulation Conference, ed. P. A.
Farrington, H. B. Nembhard, D. T. Sturrock, and G. W.
Evans, Society of Computer Simulation, 1999, pp. 598-
602.

[7] T. Wiedmann, “Database Oriented Modeling with
Simulation Microfunctions”, In Proceedings of the 1999
Winter Simulation Conference, ed. P. A. Farrington, H.
B. Nembhard, D. T. Sturrock, and G. W. Evans, Society
of Computer Simulation, 1999, pp. 586-590.

[8] J. L. Camolesi Jr, “Survivability and Applicability in
Database Constraints: Temporal Boundary to Data
Integrity Scenarios”, 5th IEEE International Conference
on Information Technology: Coding and Computing,
2004, pp. 518-522.

[9] A. K. Mok, C. Lee and H. Woo, “The Monitoring of
Timing Constraints on TimeIntervals”, Proc. IEEE Real-
Time Systems Symposium, 2002, pp. 1-10.

[10] G. Câmara, R. Souza, B. Pedrosa, L. Vinhas, A. Monteiro,
J. Paiva, M. Carvalho, and M. Gatass, 2000, “TerraLib:
Technology in Support of GIS Innovation”, II Brazilian
Workshop of GeoInformatics, São Paulo(ed), June 2000.

[11] I. Somerville, Software Engineering, Addison-Wesley
Publishing Company, Inc., 1989.

[12] T. L. Dean, D.V. Mcdermott, “Temporal Data Base
Management”, Artificial Intelligence Journal, n° 32,
1987, pp. 1-5.

