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Abstract: Super-resolution (SR) technique is to estimate High-resolution (HR) images from a sequence of Low-resolution
(LR) observations. This paper proposes a Bayesian SR reconstruction algorithmthat model sthe process of video compression,
DCT quantization noise and motion noise by exploiting the quantization step size and motion information embedded in the
bit-stream. The proposed total noise term adaptively adjusts for different quantizers. With a Huber-Markov Random Field
(HMRF) asthe prior model, a Bayesian framework for MAP reconstruction and the gradient descent algorithmare presented
and its performance are also analyzed. Simulation results show that proposed algorithm obtains better performances in
both objective and subjective quality, which is applicable for compressed videos.
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1. INTRODUCTION

SR algorithms increase the resolution of an image by
exploiting the underlying motion of a video sequence to
provide multipleobservationsfor each frame. Theidea was
first addressed by Tsai [1] and more realistic approaches
can be divided into two distinct groups. One group uses
deterministic methods, such asProjections onto Convex Sets
(POCY) [2-3]. The second group of methods is based on a
dtatistical formulation, such asamaximum likelihood (ML)
or Maximum a Posteriori (MAP) probability estimate
[4-5]. All of these methods are based on the assumption
that the LR images areavailablein the spatial domain.

In this paper, we focus on SR from a video source that
isavailable in a compressed format such as MPEG, H.263
or DV. These compression systems introduce several
disparitiesto the SR approach. Firstly, the LR observations
are compressed hitstream instead of a sequence of intensity
images. Thisbitstream describesthe original image sequence
as a combination of quantized transform coefficients and
motion vectors, and it introduces other departures into the
SR problem. Furthermore, the structure of the encoder
introduces a variety of coding errors such as blocking,
ringing, and temporal flicker. Asafinal difference, motion
vectors are present in the bitstream. These vectors provide
anoisy observation of the subpixe displacement within the
image sequence. There are several Bayesian algorithmsthat
are designed for compressed video. In [6], the algorithm is
designed to penalize any artifacts formed during the
guantization process. In [7], the algorithm proposes to

compute the joint statistics of the spatial quantization and
additive noises. In [8], the quantization operator is
incorporated into a SR procedure, in which all necessary
displacement values are assumed known.

In thispaper, we propose a Bayesian SR reconstruction
technique by using MAP estimation with aHMRF asaprior
model. We modd the process of compression and exploit
the quantization step size and motion vector information
availablein thebit-stream. The SR formulation relies on the
Bayesian framework, and it incorporates both the transform
coefficients and motion vectors from the compressed bit-
stream. The proposed noise model automatically adjusts for
different quantizers and it is a much more realistic model
than assuming 1D noise modd throughout each frame. The
method also uses the source statistics and additional
reconstruction constraints, such asthose that might aid in
blocking artifact reduction and edge enhancement.

The paper is organized as follows. In Section 2, we
present a general system model, including video
compression, DCT quantization noise, motion estimation
noise and aHMRF prior image model. Section 3 providesa
Bayesian framework for the SR reconstruction and the
gradient descent algorithm for its solution. Experimental
results are presented in Section 4. Finally, we discuss
conclusi ons and the futurework in Section 5.

2. SYSTEM MODEL

An accurate system model is the key to the SR approach,
which must be developed to exploit the information
available in the compressed bit-stream. In this section, we
formulate the system model of SR reconstruction of
compressed video.
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2.1 Video Compression M odel

Assume that a sequence of L LR frames is available, with
0, designated asthereferenceframe. Theideaisto extract

additional knowledge about the unknown HR frame f, from

neighboring LR frames ¢, for | =k . The video
observation model must consider motion occurring

between g, and the reference frame g, . This model [9] is
given as

g :W|,kfk+n|,k N

whereW,  isthe motion-compensated sub-sampling matrix
that taking into account the motion between frames, n,, is
an independent and identically distributed (11D) Gaussian
additive noise. When each HR image frameis of dimension

gM xgN, then g, isof dimenson M x N and W, has

dimension gMgN xgMQgN , where q represents the
resolution enhancement factor.

We now add the MPEG compression stages to this
model [10]. The LR frameismotion compensated (i.e., the
prediction frame is computed and subtracted from the
original to get a residual image), and the residual is
transformed using a series of block-DCT to producethe DCT

coefficients. Defining D as the DCT matrix and §, as the

prediction framewhich isobtained using nei ghboring frames
(except for the case of intra-coded frames, where the
prediction frameis zero), wewrite

y, =DW,,f, —Dg, +Dn, 2
y, are then quantized to produce the quantized DCT
coefficients. Quantization isrealized by dividing each DCT
coefficient by a quantization step sizefollowed by rounding
to the nearest integer. The quantization step size is
determined by the location of the DCT coefficient, the bit

rate, and the macraoblock mode. The quantization operation
isanonlinear process that will be denoted by the operator

Q
y) = Q{DWI,kfk -Dg, + Dnl,k} ©)

The quantized DCT coefficients y,q and the corresponding
step sizes are available at the decoder, i.e., they are either
embedded in the compressed hit-stream or specified as part
of the coding standard.

2.2 DCT Quantization Noise

The quantization error is a deterministic quantity that is

defined as the difference between y;' and Y, , but it can

also be treated as a stochastic vector. There have been a
number of studies directed toward modeling the statistical

distribution of the quantization error [11]. Since the
guantization takesplacein the transform domain, the natural
way toexplait thisinformation istouseitinthe DCT domain
without reverting back tothe spatial domain. Dencting g as
the quantization error, we can write

Y =Y, +e|q (4)
e’ ~N(O,Ky,) (5)

and K, isthe covariance matrix of the quantization noise
in the spatial domain at frame |. Defining the covariance
matrix, Ko thus becomes the critical step in modeling the
compression system. Since errorsin the spatial domain are
related to errors in the transform domain by the inverse-
transform operation, we can express the needed covariance
matrix as

Ko = E[eﬁ (ef )t} =D KD ©)

whereKT’I isthe autocovariance matrix of thenoisein DCT
domain.
Due to the de-correlating properties of the DCT for

typical images, the autocovariance matrix of y,q is
approximately diagonal, KT,I can be shown to be diagonal

as well. The diagonal elements of KT,I represent the
variances of the DCT-domain quantization efrors. In order
to estimate the variances, it is reasonable to assume an
independent uniform distribution within each quantization
level when the quantization step sizeissmall. Furthermore,
the uniform assumption also holds when the magnitude of
the quanti zed transform coefficient islarge. Thisistrue snce
thedistribution of thetransform coefficientstypically contain
significant tails, which leadsto auniform distribution within
the quantization intervals distant from the mean [12].
Whenever the assumption of auniformdistribution isviable,
the noi sevariance for transform index is defined completely
by the bitstream and expressed as

where

2_4
% =75 (")

where g, isthe quantizer step-size. Thusthe matrix K T is

easily constructed based on the quantization limits defined
by the quantizer. It is interesting to note that when the

diagonal entriesof K T+ areequal, theresulting covariance

matrix describes an I1D noise process in the transform
domain. For thelarge class of linear transforms, the noisein
the spatial domain is also IID under these conditions.
However, when the noiseis not identically distributed in the
transform domain (but still independent), it then becomes
correlated in the spatial domain. In the case of standards
based coding, both of these Stuationsoccur in practice. Intra-
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coded frames employ perceptually motivated quantization
strategies. This leads to coarser quantization of the high-

frequency transform coefficients and KT,I that is not I1D.

When transmitting the residual between theoriginal frame
and a motion compensated prediction though, the
quantization strategy often utilizesthe same quantization step
sizefor each coefficient. The DCT noisein thiscaseis|ID
in both the transform and spatial domains.

From Eq. (6), each spatial-domain noisetermisalinear
combination of independently distributed uniform random
variables, alowing the spatial-domain quantization noiseto
be approximated as a 0-mean Gauss an random vector with
autocovariance matrix K, asfollowing

p(e’)=p(yfff)

=+9Xp{—%(qq)t*<@ﬁaq} ®)
(27) 2 [K o]

2.3 Motion Estimation Noise

In addition to the quantization intervals, information about
the sub-pixel displacements al so appearsin the compressed
bit-stream. This data is encapsulated in the motion vectors
that provideanoisy observation of theorigina displacements
[13]. We define the relationship between the motion
compensated prediction and the reference image frame as

Yi=Yut qn,]k ©)
where elnjk isthe error that accounts for the uncertainty in
estimating Y, from Y, . It isassumed that the motion noise
eI"Y]k islID Gaussian noise [4] Gaussian with autocovariance
matrix K ,'\f'k , which for the case at hand israther limited—
1D noiseimpliesthat each observation is equally reliable,
and doesnot takeinto congderation spatially-varying errors
in motion estimation such as appearing/di sappearing objects,
lighting changes, or incorrect motion vectors. Here, we
propose a spatially-varying motion noise model. Suppose
first that K,'\f'k isdiagonalized by the transformation matrix

U, such that
M Tw M

KM =UK"U (10)
where KMisadiagonal matrix. Thus, with knowledge of U
the autocovariance of elnjk isrepresented by the N elements
of KM rather than the N? elements of K ,'\f'k , where N isthe
number of pixelsin theimage. Two-dimensional signalsthat
arewell-modeled by first-order prediction modelswith high
one-step correlation parameters have autocovariance

matrices that are approximately diagonalized by the DCT
[14]. Assuming such asignal leadsto the approximation.

K =D'K"D (11)

where D isthe block-DCT, which isthe DCT applied on a
block-by-block basis. It is argued that for most situations
using the BDCT provides a more accurate description of
the noise than an 1D assumption. Furthermore, when
performing at relatively low bit rates, motion-compensation
errors that are not approximately de-correlated by the
BDCT—where the motion error is quite small—will be
dominated by the BDCT quantization noise.

Thevariantmaﬁk that compose thediagonal matrix KM

must be determined. Assuming it is proportional to the
distance between frames[15], therequired termsarefound
hereas

O'lz,k :|I _k|//8

where isaparameter.

(12)

2.4 ImagePrior Model

We now need to model the prior distribution to complete
the MAPformulation. Theprior image model ischosen asa
HMRF model, which has been used extensively in image
and video processing [16]. The Huber function isa convex
function that has edge-preserving properties relative to a
simple quadratic. The HMRF is given herewithout excessive
discussion,

p(1) - 2 ep| -2 . )

where G is anormalizing constant known as the partition
function, A is aregularization parameter, and x is a local
group of pixels contained within the set of all image cliques

(13)

X. The quantitydtxf is an activity measure, with a small

valuein smooth imagelocationsand alargevalue near edges.
Four spatial activity measuresare computed at each pixel in
the HR image, given by the following second-order finite
differences:

dtxlf = fxl,xz—l - 2fxl,x2 +fx1,x2+l
dlf= 0.5f, .1y, —Fon +05F 10
dtx3f = fxl—l,xz - 2fx1,x2 +fx1+l,x2
dtx4f = O'Sfxl—l,xz—l _fxl,xz + O'5fx1+l,x2+l
The Huber function p, () is defined as
ue lu|<a
Pa (1) = 2
a +2a(|y|—a) |y|>a
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Using the HMRF encourages smoothness in the final
SRrecongtruction, sincetheprobability in Eq. (13) is higher
for smoother images. The Huber function penalizes
differences less than + quadratically; however, differences
larger than + areonly penalized linearly, which hel ps prevent
oversmoothing image edges. In this work, the HMRF
smoothes compression artifactsintroduced from the received
frames, preventing ther presencein thereconstructed frames.
The prior image modd also fillsin gaps in the image that
may result when no motion information is present.

3. BAYESIAN SR RECONSTRUCTION

In the MAP formulation, the quantized DCT coefficients,
motion estimation noise and the original HR frame are all

assumed to be random processes. Denoting p(f ‘y“) as

the conditional probability density function, the MAP
estimate isgiven by

f= arg max { p(f ‘yq )} (16)
Using the Bayesrule, Eg. (16) can be rewritten as
fzargmfax{p(f ‘yq)p(f)} (17)

wherewe usethefact that p(y“) isindependent of p(f).

In section 2, we have model ed p(f ‘y“) and p(f ) , thus
the final optimization problem to be solved becomes

f=arg mfin{/ly(f)+v(f)} (18)

where

()= p, (d)

xeX

v(f) =%ZéK| g = (Wi —y?) K (Wi -y) 20)

leL leL

(19)

As discussed above, it is known that Yy =y, +€,
combining with Eg. (9), we can write

yl=y +el =y e el =y e (2
where € =N", + €' consists of both DCT quantization
noiseand motion estimation naise, thus K| =K | + K.
After substituting for K, the gradients of the individual
termsaregiven as

Vu(t)=d,p, (dif)

XeX

(23)

w(f):EWth(KT,. +KI") D(W-¥7) (o

Thegradient termin Eq. (22) haslarger valuesfor large
differences in dtxf , thus encouraging smoothness. Note,
however, that the first derivative of the Huber function has
amaximum magnitude of 2o, which effectively preventsthe
gradient from becoming too large, and thus prevents
excessive smoothing of image edges in thefinal result. The
effect of Eq. (23) is such that DCT frequency components
that havelarger variance do not affect the gradient as much
as DCT frequency components with lower variance. Thus,
the proposed noi se modd automatically adjustsfor different
guantizers—if the quantization parameters decrease for
certain regions of the frame, the model accountsfor this by
having lower quantization noisefor thaseregions. Smilarly,
if the quantization parameters change from frameto frame,
the quantization noise for each frame follows accordingly.
Thisisamuch more realistic model than assuming 11D noise
throughout each frame.

The convex optimization problem in Eq. (18) is solved
using a gradient descent algorithm [17]. Denoting the
estimate of f at iteration n as f®™, and

g(f)=lVy(f)+Vv(f), the gradient descent

algorithm formsthenew estimate as

FOD _f ) _ (g (f (n)) (24)

where (" is a step size that ideally reduces the objective
function by as much as possible. By taking the derivative

with respect to (™ and manipulating terms, the step size
for the n-th iteration is given by [ 10]

() _v/‘(f " )t dy
vt (din) )‘ sz(f (n))ds(n) (25)

Thisvauefor thestep size (M givesthe maximum decrease

in alocal region of the function for each iteration, ensuring
global convergencein areasonable number of iterations.

4. SIMULATIONS

In order to compare the performance of the proposed SR
algorithm, twoimage sequences were used in thesmulations.
Thefirstimageissynthetically generated fromasingledigital
image mobile sequence#5 frameto modd adiagonal camera
pan with known motion vectors. The second image sequence
iscaptured by a camerawith adight panning. Thissequence
is composed of several objects moving independently. Both
image sequences are are first sub-sampled by a factor of q
(q = 2) and then compressed at 1IMbps with a MPEG-4
codec. The quantitative comparisons could be made using
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the improved signal-to-noise ratio (ISNR). The ISNR isa

guantitative measure of how much the estimated frame f (K
hasimproved over the referenceframe, given as

® £ W]
[f 157

ISNR =10log Hf ” -f(")Hz

B) (29

(k)

In this expression, f{¥ = ?WTy™® & isthe original

HRimage, and f (%) isthe estimated HR image.

Estimating accurate subpixd-resol ution mation vectors
is acritically important component of modeling an image
sequence for usein SR reconstruction algorithms[18]. The
goal is to compute the motion fields as quickly and as
accurately as possible. In full-search subpixel block
matching, the search area must be increased in size by a
factor of g over integer-resolution block matching, and the
motion vectors are estimated using only the decoded,
interpolated frames. This is a relatively accurate, albeit
computationally expensive, method of estimating subpixe
displacements. Since the MPEG encoder provides half-pel
motion displacements in the compressed bit stream, a
suboptimal search can be performed in aregion centered at
each MPEG motion vector, rather than by conducting an
exhaustive search over all possible displacements. To
significantly reduce the number of computations, the
decoded half-pel MPEG motion vectors may be used as
initial conditions, with asmaller search areacentered at each
up-sampled MPEG mation vector. For aframeinterpolation
factor of g, the half-pel MPEG moation fields must be up-

sampled by a factor of /2. Recal that a single MPEG

vector representsthe displacement for all 16 x 16 LR pixels
contained within a macroblock. The up-sampled MPEG
motion vector is used astheinitial condition for al pixels
within its macroblock, and an individual subpixel
displacement isestimated for each block of 4 ( HR pixels.

Sinceinaccurate motion vectors can cause agreat deal
of damage to the SR enhanced frame, these displacements
are detected and the corresponding pixels eliminated from
thevideo observation model. The displaced frame difference

(DFD) iscomputed between up-sampled framey, for | = k

and the compensated i mage constructed from the up-sampled
[-picture and the estimated subpixel motion vectors. In
regions where the DFD is large, the block matching
displacements are generally inaccurate due to either alack
of edgeswithin the data or pixd occlusions. To accommodate
for theseerrors, pixelswithinyy, which arenot aso observable
inthel-pictureareignored in the SR algorithm.

The procedure used to compute the SR enhanced
estimatesisasfollows:

1. ldentify the location of thel-picture to be enhanced in
the MPEG sequence, and save the neighboring P- and
B-pictures and decoded motion fields;

2. Up-sample both LR frames y, and y, by a factor of
g =2, usng bilinear interpolation ,and perform reduced-
search subpixel block matching on the up-sampled video
frames using the half-pel motion fields as initial
conditions;

3. Detect inaccurate motion vectors and eliminate the
corresponding pixelsfrom the video observation model
by examining the DFD. Then, down-sample the
displacement vectors by averaging q x g vector blocks.

4. Estimate the HR frame using decoded frames and
subpixel motion fields.

In all experiments, the Huber threshold parameter was
set to oo = 1.0, A = 0.00075, B = 10, and the total frame
number L = 4. Fig. 1 and 2 provide avisual comparison of
reconstruction results using the SR techniques.

Fig.1(a) istheLRimageand Fig.1 (b) istheup-sampled
image synthetic sequence. Fig.1 (c) representsthe SR result
(ISNR = 5.24dB) using all estimated motion vectors(MVs),
while Fig.1 (d) denotes that the inaccurate motion vector
estimates have been detected and eiminated prior to the
application of the SR algorithm (ISNR=6.13dB.)

Fig. 2 (a) isthe LR image and Fig. 2 (b) is the up-
sampled image for actual sequence. Fig. 2(c) isof ISNR =
3.14dB while Fig. 2 (d) with ISNR = 3.63dB.

From the synthetic and actual image sequences, we can
see that the coding artifacts are attenuated by proposed SR
algorithm with visual quality improvement throughout the
frame by retaining detailed information. We al so note that
in most cases, the | SNR isimproved after inaccurate motion
vectors have been detected and eliminated.

(c) (d)

Figure 1: Results from Synthetic Sequence (a)LR image (b)Up-
Sampled Image(c) SR with all MVs (d) SR with
Accurate MVs
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(a) (b)

© ()

Figure 2: Results from Actual Sequence (a) LR Image (b) Up-
Sampled Image(c) SR with all MVs (d) SR with
Accurate MVs

CONCLUSIONS

In this paper, we utilize the Bayesian framework to
incorporate information from the bit-stream as well as to
model synthetic coding artifacts, and it relieson agradient
descent optimization for realization. We model the process
of video compression and exploit the quantization step size
and motion vector information available in the bit-stream.
The method also uses the source statistics and additional
reconstruction constraints, such asthose that might aid in
blocking artifact reduction and edge enhancement. A
synthetic sequence and an actual image sequence are
simulated. Experimental results demonstrate that the
proposed algorithm has an improvement in terms of both
objective and subjective quality. However, there are still
some open issues. The nature of the distributionsof the DCT
coefficients is of high importance for determining DCT
domain quantization noise. Rather than assuming uniform
DCT-domain quantization noise, prior knowledge of the
DCT coefficients can be incorporated in the model, which
can yield better results. Again, morethorough analysisneeds
to be done.
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