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Abstract: Super-resolution (SR) technique is to estimate High-resolution (HR) images from a sequence of Low-resolution
(LR) observations. This paper proposes a Bayesian SR reconstruction algorithm that models the process of video compression,
DCT quantization noise and motion noise by exploiting the quantization step size and motion information embedded in the
bit-stream. The proposed total noise term adaptively adjusts for different quantizers. With a Huber-Markov Random Field
(HMRF) as the prior model, a Bayesian framework for MAP reconstruction and the gradient descent algorithm are presented
and its performance are also analyzed. Simulation results show that proposed algorithm obtains better performances in
both objective and subjective quality, which is applicable for compressed videos.
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1. INTRODUCTION

SR algorithms increase the resolution of an image by
exploiting the underlying motion of a video sequence to
provide multiple observations for each frame. The idea was
first addressed by Tsai [1] and more realistic approaches
can be divided into two distinct groups. One group uses
deterministic methods, such as Projections onto Convex Sets
(POCS) [2–3]. The second group of methods is based on a
statistical formulation, such as a maximum likelihood (ML)
or Maximum a Posteriori (MAP) probability estimate
[4–5]. All of these methods are based on the assumption
that the LR images are available in the spatial domain.

In this paper, we focus on SR from a video source that
is available in a compressed format such as MPEG, H.263
or DV. These compression systems introduce several
disparities to the SR approach. Firstly, the LR observations
are compressed bitstream instead of a sequence of intensity
images. This bitstream describes the original image sequence
as a combination of quantized transform coefficients and
motion vectors, and it introduces other departures into the
SR problem. Furthermore, the structure of the encoder
introduces a variety of coding errors such as blocking,
ringing, and temporal flicker. As a final difference, motion
vectors are present in the bitstream. These vectors provide
a noisy observation of the subpixel displacement within the
image sequence. There are several Bayesian algorithms that
are designed for compressed video. In [6], the algorithm is
designed to penalize any artifacts formed during the
quantization process. In [7], the algorithm proposes to

compute the joint statistics of the spatial quantization and
additive noises. In [8], the quantization operator is
incorporated into a SR procedure, in which all necessary
displacement values are assumed known.

In this paper, we propose a Bayesian SR reconstruction
technique by using MAP estimation with a HMRF as a prior
model. We model the process of compression and exploit
the quantization step size and motion vector information
available in the bit-stream. The SR formulation relies on the
Bayesian framework, and it incorporates both the transform
coefficients and motion vectors from the compressed bit-
stream. The proposed noise model automatically adjusts for
different quantizers and it is a much more realistic model
than assuming IID noise model throughout each frame. The
method also uses the source statistics and additional
reconstruction constraints, such as those that might aid in
blocking artifact reduction and edge enhancement.

The paper is organized as follows. In Section 2, we
present a general system model, including video
compression, DCT quantization noise, motion estimation
noise and a HMRF prior image model. Section 3 provides a
Bayesian framework for the SR reconstruction and the
gradient descent algorithm for its solution. Experimental
results are presented in Section 4. Finally, we discuss
conclusions and the future work in Section 5.

2. SYSTEM MODEL

An accurate system model is the key to the SR approach,
which must be developed to exploit the information
available in the compressed bit-stream. In this section, we
formulate the system model of SR reconstruction of
compressed video.

Journal of Information Technology and Engineering 
Vol. 3 No. 1 (June, 2018)

Received: 03rd June 2017      Revised: 14th August 2017   Accepted: 01st November 2017



16 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 1, January 2007

2.1 Video Compression Model

Assume that a sequence of L LR frames is available, with

kg designated as the reference frame. The idea is to extract

additional knowledge about the unknown HR frame kf  from

neighboring LR frames lg ,  for  l k� .  The video
observation model must consider motion occurring

between lg  and the reference frame g
k
 . This model [9] is

given as

, ,l l k k l kg � �W f n (1)

where W
l,k

  is the motion-compensated sub-sampling matrix
that taking into account the motion between frames, n

l,k
 is

an independent and identically distributed (IID) Gaussian
additive noise. When each HR image frame is of dimension

qM qN� , then lg  is of dimension M × N  and W
l,k

 has

dimension qMqN qMqN� , where q represents the
resolution enhancement factor.

We now add the MPEG compression stages to this
model [10]. The LR frame is motion compensated (i.e., the
prediction frame is computed and subtracted from the
original to get a residual image), and the residual is
transformed using a series of block-DCT to produce the DCT

coefficients. Defining D as the DCT matrix and ˆlg  as the

prediction frame which is obtained using neighboring frames
(except for the case of intra-coded frames, where the
prediction frame is zero), we write

, ,ˆl l k k l l kg� � �y DW f D Dn (2)

y
l
 are then quantized to produce the quantized DCT

coefficients. Quantization is realized by dividing each DCT
coefficient by a quantization step size followed by rounding
to the nearest integer. The quantization step size is
determined by the location of the DCT coefficient, the bit
rate, and the macroblock mode. The quantization operation
is a nonlinear process that will be denoted by the operator
Q

� �, ,ˆq
l l k k l l kQ g� � �y DW f D Dn (3)

The quantized DCT coefficients q
ly  and the corresponding

step sizes are available at the decoder, i.e., they are either
embedded in the compressed bit-stream or specified as part
of the coding standard.

2.2 DCT Quantization Noise

The quantization error is a deterministic quantity that is

defined as the difference between q
ly  and ly , but it can

also be treated as a stochastic vector. There have been a
number of studies directed toward modeling the statistical

distribution of the quantization error [11]. Since the
quantization takes place in the transform domain, the natural
way to exploit this information is to use it in the DCT domain
without reverting back to the spatial domain. Denoting e

l
  as

the quantization error, we can write

q q
l l l� �y y e (4)

where ,(0, )q
l Q lNe K� (5)

and K
Q,l

  is the covariance matrix of the quantization noise
in the spatial domain at frame l. Defining the covariance
matrix, K

Q,l
 thus becomes the critical step in modeling the

compression system. Since errors in the spatial domain are
related to errors in the transform domain by the inverse-
transform operation, we can express the needed covariance
matrix as

� � 1
, ,

tq q
Q l l l T lE �� �� �� �� �

K e e D K D (6)

where K
T,l

  is the autocovariance matrix of the noise in DCT
domain.

Due to the de-correlating properties of the DCT for

typical images, the autocovariance matrix of q
ly  is

approximately diagonal, ,T lK  can be shown to be diagonal

as well. The diagonal elements of ,T lK  represent the
variances of the DCT-domain quantization errors. In order
to estimate the variances, it is reasonable to assume an
independent uniform distribution within each quantization
level when the quantization step size is small. Furthermore,
the uniform assumption also holds when the magnitude of
the quantized transform coefficient is large. This is true since
the distribution of the transform coefficients typically contain
significant tails, which leads to a uniform distribution within
the quantization intervals distant from the mean [12].
Whenever the assumption of a uniform distribution is viable,
the noise variance for transform index is defined completely
by the bitstream and expressed as

2
2

12
l

l

q
� � (7)

where q
l
 is the quantizer step-size. Thus the matrix ,T lK  is

easily constructed based on the quantization limits defined
by the quantizer. It is interesting to note that when the

diagonal entries of ,T lK are equal, the resulting covariance

matrix describes an IID noise process in the transform
domain. For the large class of linear transforms, the noise in
the spatial domain is also IID under these conditions.
However, when the noise is not identically distributed in the
transform domain (but still independent), it then becomes
correlated in the spatial domain. In the case of standards
based coding, both of these situations occur in practice. Intra-
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coded frames employ perceptually motivated quantization
strategies. This leads to coarser quantization of the high-

frequency transform coefficients and ,T lK  that is not IID.

When transmitting the residual between the original frame
and a motion compensated prediction though, the
quantization strategy often utilizes the same quantization step
size for each coefficient. The DCT noise in this case is IID
in both the transform and spatial domains.

From Eq. (6), each spatial-domain noise term is a linear
combination of independently distributed uniform random
variables, allowing the spatial-domain quantization noise to
be approximated as a 0-mean Gaussian random vector with

autocovariance matrix ,Q lK  as following

� � � �

� � 1
,

2
,

1 1
exp

2
(2 )

q q
l l l

tq q
l Q l lMN

Q l

p p

�

�

�

� �� �� �
� �

e y f

e K e
K

(8)

2.3 Motion Estimation Noise

In addition to the quantization intervals, information about
the sub-pixel displacements also appears in the compressed
bit-stream. This data is encapsulated in the motion vectors
that provide a noisy observation of the original displacements
[13]. We define the relationship between the motion
compensated prediction and the reference image frame as

,
m

l k l k� �y y e (9)

where ,
m
l ke  is the error that accounts for the uncertainty in

estimating ly from ky . It is assumed that the motion noise

,
m
l ke  is IID Gaussian noise [4] Gaussian with autocovariance

matrix ,
M
l kK , which for the case at hand is rather limited—

IID noise implies that each observation is equally reliable,
and does not take into consideration spatially-varying errors
in motion estimation such as appearing/disappearing objects,
lighting changes, or incorrect motion vectors. Here, we
propose a spatially-varying motion noise model. Suppose

first that ,
M
l kK  is diagonalized by the transformation matrix

U, such that

,
M T M
l k �K U K U (10)

where KM is a diagonal matrix. Thus, with knowledge of U
the autocovariance of ,

m
l ke  is represented by the N elements

of KM rather than the N2 elements of ,
M
l kK , where N is the

number of pixels in the image. Two-dimensional signals that
are well-modeled by first-order prediction models with high
one-step correlation parameters have autocovariance
matrices that are approximately diagonalized by the DCT
[14]. Assuming such a signal leads to the approximation.

,
M T M
l k �K D K D (11)

where D is the block-DCT, which is the DCT applied on a
block-by-block basis. It is argued that for most situations
using the BDCT provides a more accurate description of
the noise than an IID assumption. Furthermore, when
performing at relatively low bit rates, motion-compensation
errors that are not approximately de-correlated by the
BDCT—where the motion error is quite small—will be
dominated by the BDCT quantization noise.

The variances
2
,l k� that compose the diagonal matrix KM

must be determined. Assuming it is proportional to the
distance between frames [15], the required terms are found
here as

2
,l k l k� �� � (12)

where � is a parameter.

2.4 Image Prior Model

We now need to model the prior distribution to complete
the MAP formulation. The prior image model is chosen as a
HMRF model, which has been used extensively in image
and video processing [16]. The Huber function is a convex
function that has edge-preserving properties relative to a
simple quadratic. The HMRF is given here without excessive
discussion,

� � � �1
exp t

xp
G �� �

� �
� �� �

� �
�f d f (13)

where G is a normalizing constant known as the partition
function, � is a regularization parameter, and x is a local
group of pixels contained within the set of all image cliques

X. The quantity t
xd f  is an activity measure, with a small

value in smooth image locations and a large value near edges.
Four spatial activity measures are computed at each pixel in
the HR image, given by the following second-order finite
differences:
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The Huber function ( )�� �  is defined as

� �
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Using the HMRF encourages smoothness in the final
SR reconstruction, since the probability in Eq. (13) is higher
for smoother images. The Huber function penalizes
differences less than ± quadratically; however, differences
larger than ± are only penalized linearly, which helps prevent
oversmoothing image edges. In this work, the HMRF
smoothes compression artifacts introduced from the received
frames, preventing their presence in the reconstructed frames.
The prior image model also fills in gaps in the image that
may result when no motion information is present.

3. BAYESIAN SR RECONSTRUCTION

In the MAP formulation, the quantized DCT coefficients,
motion estimation noise and the original HR frame are all

assumed to be random processes. Denoting � �qp f y  as

the conditional probability density function, the MAP
estimate is given by

� �� �ˆ arg max qp�
f

f f y (16)

Using the Bayes rule, Eq. (16) can be rewritten as

� � � �� �ˆ arg max qp p�
f

f f y f (17)

where we use the fact that � �qp y  is independent of � �p f .

In section 2, we have modeled � �qp f y  and � �p f , thus

the final optimization problem to be solved becomes

� � � �� �ˆ arg min v��� �
f

f f f (18)

where

� � � �t
x

x
�� �

�

��
X

f d f (19)

� � � � � �11 11

2
t q q
l l l l l l l l

l L l L

v
�� �

� �

� � � �� �f e K e Wf y K Wf y (20)

As discussed above, it is known that q
l l l� �y y e ,

combining with Eq. (9), we can write

,
q q m q
l l l k l k l k l� � � � � � �y y e y e e y e (21)

where ,
m q

l l k l� �e n e  consists of both DCT quantization

noise and motion estimation noise, thus , ,
M

l Q l l k� �K K K .

After substituting for lK , the gradients of the individual
terms are given as

� � � �' t
x x

x
�� �

�

� � �
X

f d d f (23)

� � � � � �1

,
t t m q
l T l l l l

l

v
�

�

� � ��
L

f W D K K D W f - y (24)

The gradient term in Eq. (22) has larger values for large

differences in t
xd f , thus encouraging smoothness. Note,

however, that the first derivative of the Huber function has
a maximum magnitude of 2�, which effectively prevents the
gradient from becoming too large, and thus prevents
excessive smoothing of image edges in the final result. The
effect of Eq. (23) is such that DCT frequency components
that have larger variance do not affect the gradient as much
as DCT frequency components with lower variance. Thus,
the proposed noise model automatically adjusts for different
quantizers—if the quantization parameters decrease for
certain regions of the frame, the model accounts for this by
having lower quantization noise for those regions. Similarly,
if the quantization parameters change from frame to frame,
the quantization noise for each frame follows accordingly.
This is a much more realistic model than assuming IID noise
throughout each frame.

The convex optimization problem in Eq. (18) is solved
using a gradient descent algorithm [17]. Denoting the
estimate of f at iteration n as f (n),  and

� � � � � �g v� �� � ��f f f ,  the gradient descent

algorithm forms the new estimate as

� �( 1) ( ) ( ) ( )n n n ng�� � �f f f (24)

where ( )n�  is a step size that ideally reduces the objective

function by as much as possible. By taking the derivative

with respect to ( )n�  and manipulating terms, the step size

for the n-th iteration is given by [10]

� �
� � � �

( ) ( )

( )

( ) 2 ( ) ( )

tn n
xn

tn n n
x x

�
�

�

��
�

�

f d

d f d
(25)

This value for the step size ( )n�  gives the maximum decrease

in a local region of the function for each iteration, ensuring
global convergence in a reasonable number of iterations.

4. SIMULATIONS

In order to compare the performance of the proposed SR
algorithm, two image sequences were used in the simulations.
The first image is synthetically generated from a single digital
image mobile sequence #5 frame to model a diagonal camera
pan with known motion vectors. The second image sequence
is captured by a camera with a slight panning. This sequence
is composed of several objects moving independently. Both
image sequences are are first sub-sampled by a factor of q
(q = 2) and then compressed at 1Mbps with a MPEG-4
codec. The quantitative comparisons could be made using
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the improved signal-to-noise ratio (ISNR). The ISNR is a

quantitative measure of how much the estimated frame ( )ˆ kf
has improved over the reference frame, given as

2( ) ( )
0

2
( ) ( )

10log (dB)
ˆ

k k

k k
ISNR

�
�

f f

f - f
(26)

In this expression, ( ) 2 ( )
0

k T kq�f W y , ( )kf  is the original

HR image, and ( )ˆ kf is the estimated HR image.

Estimating accurate subpixel-resolution motion vectors
is a critically important component of modeling an image
sequence for use in SR reconstruction algorithms [18]. The
goal is to compute the motion fields as quickly and as
accurately as possible. In full-search subpixel block
matching, the search area must be increased in size by a
factor of q over integer-resolution block matching, and the
motion vectors are estimated using only the decoded,
interpolated frames. This is a relatively accurate, albeit
computationally expensive, method of estimating subpixel
displacements. Since the MPEG encoder provides half-pel
motion displacements in the compressed bit stream, a
suboptimal search can be performed in a region centered at
each MPEG motion vector, rather than by conducting an
exhaustive search over all possible displacements. To
significantly reduce the number of computations, the
decoded half-pel MPEG motion vectors may be used as
initial conditions, with a smaller search area centered at each
up-sampled MPEG motion vector. For a frame interpolation
factor of q, the half-pel MPEG motion fields must be up-

sampled by a factor of / 2q . Recall that a single MPEG

vector represents the displacement for all16 16�  LR pixels
contained within a macroblock. The up-sampled MPEG
motion vector is used as the initial condition for all pixels
within its macroblock, and an individual subpixel

displacement is estimated for each block of q q�  HR pixels.
Since inaccurate motion vectors can cause a great deal

of damage to the SR enhanced frame, these displacements
are detected and the corresponding pixels eliminated from
the video observation model. The displaced frame difference

(DFD) is computed between up-sampled frame y
l
  for l k�

and the compensated image constructed from the up-sampled
I-picture and the estimated subpixel motion vectors. In
regions where the DFD is large, the block matching
displacements are generally inaccurate due to either a lack
of edges within the data or pixel occlusions. To accommodate
for these errors, pixels within y

l
 which are not also observable

in the I-picture are ignored in the SR algorithm.
The procedure used to compute the SR enhanced

estimates is as follows:

1. Identify the location of the I-picture to be enhanced in
the MPEG sequence, and save the neighboring P- and
B-pictures and decoded motion fields;

2. Up-sample both LR frames y
k
 and y

l
 by a factor of

q = 2, using bilinear interpolation ,and perform reduced-
search subpixel block matching on the up-sampled video
frames using the half-pel motion fields as initial
conditions;

3. Detect inaccurate motion vectors and eliminate the
corresponding pixels from the video observation model
by examining the DFD. Then, down-sample the
displacement vectors by averaging q × q vector blocks.

4. Estimate the HR frame using decoded frames and
subpixel motion fields.
In all experiments, the Huber threshold parameter was

set to ��= 1.0, ��= 0.00075, ��= 10, and the total frame
number L = 4. Fig. 1 and 2 provide a visual comparison of
reconstruction results using the SR techniques.

Fig.1 (a) is the LR image and Fig.1 (b) is the up-sampled
image synthetic sequence. Fig.1 (c) represents the SR result
(ISNR = 5.24dB) using all estimated motion vectors(MVs),
while Fig.1 (d) denotes that the inaccurate motion vector
estimates have been detected and eliminated prior to the
application of the SR algorithm (ISNR=6.13dB.)

Fig. 2 (a) is the LR image and Fig. 2 (b) is the up-
sampled image for actual sequence. Fig. 2(c) is of ISNR =
3.14dB while Fig. 2 (d) with ISNR = 3.63dB.

From the synthetic and actual image sequences, we can
see that the coding artifacts are attenuated by proposed SR
algorithm with visual quality improvement throughout the
frame by retaining detailed information. We also note that
in most cases, the ISNR is improved after inaccurate motion
vectors have been detected and eliminated.

Figure 1: Results from Synthetic Sequence (a)LR image (b)Up-
Sampled Image(c) SR with all MVs (d) SR with
Accurate MVs
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CONCLUSIONS

In this paper, we utilize the Bayesian framework to
incorporate information from the bit-stream as well as to
model synthetic coding artifacts, and it relies on a gradient
descent optimization for realization. We model the process
of video compression and exploit the quantization step size
and motion vector information available in the bit-stream.
The method also uses the source statistics and additional
reconstruction constraints, such as those that might aid in
blocking artifact reduction and edge enhancement. A
synthetic sequence and an actual image sequence are
simulated. Experimental results demonstrate that the
proposed algorithm has an improvement in terms of both
objective and subjective quality. However, there are still
some open issues. The nature of the distributions of the DCT
coefficients is of high importance for determining DCT
domain quantization noise. Rather than assuming uniform
DCT-domain quantization noise, prior knowledge of the
DCT coefficients can be incorporated in the model, which
can yield better results. Again, more thorough analysis needs
to be done.
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