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Abstract: Based on Fermat’s theorem and polynomial basis, an efficient systolic array for power-sum in GF(2m) with the
circuit folding technique is presented. A power-sum algorithm based on the reuse of two-folded systolic array circuit for
‘AB2+C’, is firstly proposed in this article. The proposed systolic power-sum architecture saves half of space complexity as
compared to other existing semi-systolic power-sum circuits. Also in this paper, the circuits of two important computations:
inversion and division, which are based on the proposed power-sum circuit, are then presented. Both proposed circuits also
save 75% of space complexity and 50% of time complexity while comparing with other off the shelf inversion/division
circuits which employ the Fermat algorithm.
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1. INTRODUCTION

Finite field arithmetic operations have several applications
in coding theory [1], cryptography [2], digital signal
processing [3-4], switching theory [5], and pseudorandom
number generation [6], and so on. Arithmetic operations in
such areas require several complex operations, like
multiplication, power-sum (C+AB2), inversion/division, and
exponentiation. The power-sum operation is a basic
operation for public-key cryptosystem [7] such as RSA [8]
and Elliptic curve cryptosystem [9] and in decoding multiple-
error-correcting binary BCH codes and RS codes [10-12].
Numerous researchers proposed many efficient power-sum
architectures [13-18]. Most power-sum architectures are
based on the polynomial basis representation of GF(2m).
However, the major shortcomings of such circuits, as regards
cryptographic applications, are their high space and time
complexities. Thus, further research on efficient power-sum
architectures with low space and time complexities is
elegantly needed. In  this paper, a systolic array
implementation of the power-sum circuit with low space
complexity by employing the circuit folding technique is
proposed.

Inversions and divisions are essential operations in many
error-control coding schemes for reliable data transmission

and storage systems, and for  many cryptographic
applications such as Diffe-Hellman key exchange algorithm
[7], RSA algorithm [8], elliptic curve cryptography [9], and
elliptic curve digital signature algorithm [9,19]. Three well-
known methods for finding an inverse element in a finite
field are the table lookup algorithm, the extended Euclid’s
algorithm [20], and the repeated exponentiation algorithm
[21]. The former two algorithms are not easily realized in a
VLSI circuit. The exponentiation algorithm based on the
Fermat’s theorem [22] uses the iterative multiply-square
algorithm. Such multiply-square algorithm can be realized
by the power-sum operation. The Fermat’s theorem is
employed in this paper.

The performance of finite field arithmetic operations is
highly related to the representation of the field elements.
There are three main popular types of bases over finite fields,
namely polynomial basis (PB), normal basis (NB), and dual
basis (DB). The polynomial basis representation [23-33] is
widely used and leads to efficient implementations of finite
field arithmetic operations. As compared to other two bases
representations, the polynomial basis representation has the
features of low design complexity. Additionally, PB
architecture has three significant features, simplicity,
regularity, and modularity. Therefore, it could be potentially
fit to various applications. Regarding the normal basis
representation [34-41], one important advantage is that the
squaring of an element is computed by a cyclic shift of the
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binary representation. The dual basis representation [42-44]
while requires less chip area than other  two basis
representations. This study is relied on the polynomial basis
representation.

In this article, a new systolic array architecture
employing the circuit folding technique for performing
power-sum operation is presented to achieve the goal of
saving space complexity and retaining same time complexity.
Applying the proposed power-sum circuit, the inversion/
division circuits utilizing Fermat’s theorem are then
presented. Such inversion/division circuits also have the
features of low circuit complexity and short latency.

The remainder of this article is organized as follows.
Section 2 briefly reviews the mathematical background.
Section 3 presents the proposed power-sum circuit by
utilizing the circuit folding technique. In Section 4, we
present the inversion circuit based on the proposed power-
sum circuit. The new division circuit will then be discussed
in Section 5. A brief conclusion is made in the final section,
Section 6.

2. MATHEMATICAL BACKGROUND

It is assumed that the reader is familiar with the basic
concepts of finite fields. For more information, the reader
can refer to [2]. In the following paragraphs, the results from
the finite fields are briefly reviewed.

Let GF(2m) be a finite field of 2m elements. GF(2m) is
an extension field of the ground field GF(2). Let ± be a root
of an irreducible polynomial of degree m over GF(2) given
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Based on Eq. (2), the inversion can be performed by
repeating multiply and square algorithms. In other words,
the inversion operation can be done iteratively by power-
sum operations.

The division operation /A B  is equivalent to the

multiplication operation 1�� BA , and is thus expressed as

follows:
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Observing Eq. (3), the division operation can also be
done by power-sum operations.

In this study, m is assumed to be an even number. If m
is not an even number, m+1 is temporarily used by adding
an extra 0 to the most significant bit and the computing result
is then modified for the final correct result.

3. THE PROPOSED POWER-SUM OPERATION IN
GF(2M)

The power-sum computations are always required in
decoding BCH codes and RS codes, computing inversions,
and computing divisions. Using polynomial basis
representation, Wei [14] presented a systolic power-sum
circuit with bidirectional data flow. However, such a systolic
array with bidirectional data flow is not suited to testable
design. For gaining advantages of low space complexity,
short latency, and fault tolerance, Wang and Guo [15] also
employed polynomial basis to present a systolic array for
power-sum computation with unidirectional data flow.
Instead of the LSB-first schemes in conventional power-sum
circuits, Kim et al. [16] used the MSB-first scheme to further
reduce the space and time complexities in existing power-
sum circuits. However, such existing systolic power-sum
architectures still have shortcomings of high space
complexity and long latency as such power-sum circuits are
applied to cryptographic application. Wei [17] provided a
semi-systolic design of the power-sum circuit for maximum
throughput rate. Lee et al. [18] developed a time-independent
bit-parallel systolic architecture for further saving space
complexity. In this study, a new systolic power-sum array
architecture by employing the circuit folding technique is
presented for lower space complexity as compared to other
existing power-sum circuits.
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Assuming that the squaring of the element B is split into
two sub-words,
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With the circuit folding technique, the power-sum
equation in Eq.(1) can be rewritten as
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Before computing Eq.(4), the Eq.(5) must be performed
in prior. The result of Eq.(5) is as the initial value of Eq.(4).
Both Eq.(4) and Eq.(5) have the same iterative form and
such iterative form is shown as follows:

2
1i i kT T Ab�� � � � (6)

where

0

     for Eq.(4)

0          for Eq.(5)

1   for Eq.(4)
2

1   for Eq.(5)

HAB
T

m
i

k
m i

�
� �
�
� � ��� �
� � ��

and

(2 )m
jT  GF�  for 0

2

m
j� �

Suppose F and T
i
 are expressed as

2 1
0 1 2 1... m

mF f f f f� � � �
�� � � � �  and

2 1
0 1 2 1

m
i i, i, i, i,mT t t α t α ... t α �

�� � � � �

where

(2) 0 1.i, i, jf t GF , i, j m -� � �

Because � is the root of P(x), thus � � 0��P  and we

have the following results

1
1

2
210 ... �

������ m
m

m pppp ���� (7)

1 ' ' ' 2 ' 1
0 1 2 1...m m

mp p p p� � � �� �
�� � � � �  (8)

where

'
1 1i m i ip p p p� �� �  for1 i -1m� �  and

'
0 1 0mp p p��

Substituting Eqs.(7-8) into Eq.(6), we obtain

� � � �
� � � �

� �

2
1

' '
0 , 2 0 , 1 0 1 , 2 1 , 1 1

' 2 ' 3
2 , 2 2 , 1 2 ,0 3 , 2 3 , 1 3 ,1

' 1
1 , 2 1 , 1 1 , 3...

i i k

k i m i m k i m i m

k i m i m i k i m i m i

m
k m i m m i m m i m

T T Ab

b a t p t p b a t p t p

b a t p t p t b a t p t p t

b a t p t p t

�

�

� �

�

�

� � � �

� � � �

�
� � � � � �

� � �

� �� � � � � �
� �
� �� � � � � � � � �
� �
� �� � � �� �

(9)
Based on the Eq. (9), the semi-systolic array architecture

with m
m
�

2
 cells for Eq. (4) is shown in Fig.1. The detailed

circuit of the cell U in Fig.1 is depicted in Fig.2. The symbol
Di in Fig.1 denotes i clock cycles delay. The function unit L
in Fig.2 is a 1-bit latch. At the first round, the systolic array

in Fig.1 is used for computing HBAF �� . At the second

round, the result F obtained at the first round is applied as
input to compute the final result Y. The inputs applied to
such a systolic array are shown in Fig.1.

As comparing with other existing power-sum array
architectures,  the following assumptions for space
complexity are made: (1) a 2-input AND gate, a 1-bit latch,
a 2-input XOR gate, 2-to-1 MUX, 2×1 Switch, and 3×1
Switch consist of 6, 8, 6, 6, 6, and 11 transistors, respectively
[45]; (2) an 3-input XOR gate and an 4-input XOR gate are
constructed by 2 2-input XOR gates and 3 2-input XOR
gates, respectively. The comparison results of various power-
sum array architectures are depicted in Table 1. Our proposed
systolic array architecture for the power-sum circuit saves
about 50% and 15% of space complexity to existing power-
sum array architecture in [17] and [18], respectively.
Moreover, our proposed power-sum array architecture only
requires one cell type, but the array architecture in [18] needs
three types of cells.

The propagation delays through one cell of two different
array architectures in Table 1 are assumed the same because
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the propagation delays for both 3-input XOR gate and
4-input XOR gate have the same propagation delay.
Table 1 shows that our proposed power-sum array
architecture is executed as fast as Wei’s power-sum array

architecture [17]. Furthermore, the data flow of our proposed
power-sum array architecture is unidirectional.
Unidirectional data flow makes fault-tolerant circuit design
easy and feasible.

Figure 1: The Semi-systolic Array for Computing Y=AB2 + C.
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Figure 2: The Detailed Circuit of the Cell U in Fig. 1.
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Table 1
Comparison of Semi-systolic Arrays for Computing AB2+C in GF(2m)

Items Wei [17] Lee et al. [18] Fig.1

Function AB2+C AB2 AB2+C
Array type Semi-systolic Systolic Semi-systolic
Cell types 1 cell type 3 cell types 1 cell type

No. of cells m2 V: � �m m/2 , W:m, Q: m2/2

Latency m cycles � �2m m/2�  cycles m cycles

Propagation delay per cell T
AND

+T
XOR3

T
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T
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Space complexity 3m2 AND
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1

4m2 L
1 � �2m 2 m/2�  2×1 Switch

m 3×1 Switch
Transistor count 68m2 40m2+71m 34m2

Algorithm LSB MSB MSB

Note: AND
i
: i-input AND gate, XOR

i
: i-input XOR gate, L

1
: 1-bit latch.

T
AND

: propagation delay of a 2-input AND gate.
TXOR

i
: propagation delay of an i-input XOR gate.

4. THE PROPOSED INVERSION IN GF(2M)

Most efficient schemes for the inversion in GF(2m) are mainly
based on either Euclid’s algorithm or Fermat’s theorem. The
inversion algorithms based on the Euclid’s algorithm usually
use the polynomial basis representation and have the benefit
of low space complexity [46-49]. The Fermat theorem-based
inversion algorithms can use any basis representation, but
its best choice is the normal basis representation since the
squaring operations in the normal basis representation can
be easily implemented by only simply cyclic shifting [50-
51]. However, the drawback of the normal basis
representation is that it needs basis conversions. For short
latency, Wei [17, 52] provides a semi-systolic inversion with
the Fermat theorem and the polynomial basis. In this paper,
we will present a new low-complexity inversion algorithm
based on the Fermat theorem and the circuit folding
technique and using the polynomial basis representation for
further reducing space cost.

Inversion can be considered as a special case of
exponentiation because
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The concept of computing multiplicative inverses using
consecutive multiplications may be performed under the
polynomial basis and the normal basis. Most inverter
architectures have been proposed under the normal basis
since the squaring operations can be implemented by only

simply cyclic shifting. However, existing normal basis
multipliers based on the Fermat’s theorem use XOR trees
for low time complexity are not regular and modular, hence
are not suitable for VLSI implementation. Hence, the
computation speed of inverters is slower than those of
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systolic-type inverters under the polynomial basis. For the
polynomial basis, it is difficult to compute inverses using
Fermat’s theorem if the value m of GF(2m) is large. To
overcome this problem, this study presents a low-complexity
systolic array inverter by using the circuit folding technique.

The conventional inversion algorithm based on Eq. (2)
is described in Algorithm A. Both multiplication operations,
Step-A4 and Step-A5, are required in each iteration of the
Algorithm A. Suppose that each multiplication operation has

the general form � �αPKHD  mod  �� . D, H, K are any
elements in GF(2m) and are expressed as follows:
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Algorithm A: (Conventional inversion algorithm using
Fermat’s theorem)
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Begin
Step-A1: Q:=B;
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End;
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End.
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Eq. (10) shows that a multiplication operation can be
separated as two power-sum operations. Hence, the proposed
power-sum systolic array architecture in the former section
can be employed for computing Eq.(10). Both power-sum
operations are expressed as follows.
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According to Eqs. (10-12), Fig. 3 shows the systolic

array architecture for computing � �αPKHD  mod ��  by

utilizing the circuit folding technique. The U array in Fig. 3
is similar to the kernel U array in Fig. 1. The difference
between them is just their sizes. The U array in Fig.1 is an

m
m
�

2
 array while that in Fig. 3 is an m

m
�

4
 array. The

function block × � modifier is realized by Fig. 4. The 1st

round and the 3rd round are responsible for computing

� �αPKH  mod 2
1� , and the 2nd round and the 4th round are

for � �αPKH  mod 2
2� , respectively. At the final step, the
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temporal result of � �αPKH  mod 2
2�  is modified by

multiplying ± through the function and then is summed to
the intermittent result of for the final result D. In Algorithm
A, both steps Step-A4 and Step–A5 are time-dependent. In
other words, the result of the Step-A4 is the income of the
Step-A5. Thus, Algorithm A requires 2m multiplication
operations.  For further reduction of multiplication
operations, the parallel processing concept is employed and
the parallel processing version of Algorithm A is depicted
in Algorithm B. Both Step-B5 and Step-B6 are performed
concurrently.
Algorithm B: (The proposed parallel inversion algorithm
using Fermat’s theorem)
/* Computing Y = B–1  mod P(�) */

Begin
Step-B1:Q:=B×B mod P(�);
Step-B2:W=Q;
Step-B3:Y:=1;
Step-B4:For i=1 To m-1 Do

Begin
Cobegin

Step-B5:Q:=Q×Q mod P(�);
Step-B6:Y:=Y×W mod P(�);

Coend
Step-B7:W:=Q;

End
Step-B8:Return Y;

End
By applying Eqs. (10-12), the multiplication operation
Q: = Q × Q mod P(±) in Step-B5 can be factored as follows.

Q = Q × Q mod P (�) (13)

= � �� � � � � �� �2 2
1 2 mod  mod � � � �Q Q P α Q Q P α�
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Similarly, the multiplication operation Y: = Y×W mod
P(�) in Step-B6 can be expressed as follows.
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Figure 3: The Proposed Circuit for Realizing D=H×K mod P(�).

Figure 4: The Detailed Circuit of the Function × � modifier in Fig. 3.
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Fig.  3. The proposed circuit for realizing D=H×K mod P(α). 
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The Algorithm B roughly takes m multiplication
execution time. Based on the systolic architecture in Fig. 3,
Eqs. (13-18), and the pipelined method, both multiplication
operations (Step-B5 and Step-B6) can be performed in
parallel and the procedure is shown in Fig. 5. Four rounds,
the 1st, the 2nd, the 5th, and the 6th round, are charged with
computing Q: = Q × Q mod P(�) in Step-B5. Another four
rounds, the 3rd, the 4th, the 7th, and the 8th round, are
responsible for performing. By utilizing the multiplication
array in Fig. 5, the execution flow of Algorithm B is
described in Fig. 6.

Comparison of various systolic inverters is listed in
Table 2. The results show that our proposed systolic inverter
using the circuit folding technique saves about 75% space
complexity while comparing with existing systolic inverter
which is based on Fermat’s algorithm. Furthermore, the
latency of our proposed inverter takes only m2/2 clock cycles

Figure 5: The Proposed Circuit for Concurrently Realizing both Q: = Q × Q mod P(�) and Y: = Y × W mod P(�).
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while the traditional inverters may need at least m(m-1) clock
cycles. In other words, our proposed inverter takes only 50%
execution time of that of other existing one based on Fermat’s
algorithm. Our proposed systolic inverter is slower than the
Yan-Sarwate-Liu inverter [49] which is based on the
modified Euclidean algorithm. However, the proposed
inverter saves about 93% space complexity as compared to

Figure 6: The Execution Flow for Computing Y=B-1 mod P(�) by Using the Multiplication Array in Fig. 5.

the Yan-Sarwate-Liu inverter. The proposed inverter is
suitable for the resource constrained devices such as portable
devices (i.e, PDAs, smart phones).

In summary, our proposed inverter using the circuit
folding technique saves both space and time complexities
as compared to other existing traditional inverters based on
the same Fermat algorithm.
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Table 2
Comparison of Semi-systolic Arrays for Computing Inversion in GF(2m)

Items Yan et al. [49] Wei [17] Proposed in Fig.5

Basis Polynomial Polynomial Polynomial

Algorithm Euclid Fermat Fermat

No. of cells Cell type-4: (2m-1)×m m2 m2/4
Cell type-5: 2m-1

No. of cell types 2 1 1

Latency (unit=cycles) 5m-2 m(m-1) m2/2

Propagation delay per cell T
AND

+T
MUX

T
AND

+T
XOR3

T
AND

+T
XOR4

Cell complexity 3m(2m-1) AND
2

3m2 AND
2

3m2/4 AND
2

2m(2m-1) XOR
2

1m2 XOR
2

m2/4 XOR
4

(6m2-m-1) 2-to-1 1m2 XOR
3

m2 L
1

MUX22m2-9m-2 L
1

4m2 L
1

Transistor count 244m2 68m2 17m2

Algorithm MSB MSB MSB

Note: AND
i
: i-input AND gate, XOR

i
: i-input XOR gate, L

1
: 1-bit latch

5. THE PROPOSED DIVISION IN GF(2M)

Observing Eq.(3), the division operation is similar to the
inversion. The division operation A / B is actually equivalent
to the multiplication of A and B-1. Thus, the difference
between the division and inversion operations is that the
initial values for both operations are different. Therefore,
the division algorithms based on Algorithm A and Algorithm
B are rewritten as follows:

Algorithm C: (Conventional division algorithm using
Fermat’s theorem)

/* Computing � �  mod �
A

Y P α
B

 */

Begin
Step-C1: Q:=B;
Step-C2: Y:=A;
Step-C3: For i=1 To m-1 Do

Begin
Step-C4: Q:=Q×Q mod P(�);
Step-C5: Y:=Y×Q mod P(�);

End
Step-C6: Return Y;

End.
Algorithm D: (Parallel division algorithm using

Fermat’s theorem)

/* Computing  � �  mod �
A

Y P α
B

*/

Begin
Step-D1: Q:=B×B mod P(�);
Step-D2: W=Q;
Step-D3: Y:=A;
Step-D4: For i=1 To m-1 Do

Begin
Cobegin

Step-D5: Q:=Q×Q mod P(�);

Step-D6: Y:=Y×W mod P(�);

Coend

Step-D7: W:=Q;

End

Step-BD8: Return Y;

End
Algorithm C shows the traditional division algorithm

and Algorithm D is the proposed parallel division algorithm.
The proposed inversion architecture in Fig.5 is also useful
for the proposed division architecture. Therefore, the
proposed division architecture saves 75% space complexity
and 50% time complexity while comparing with other
existing systolic division architectures.

6. CONCLUSIONS

A new systolic power-sum circuit using the circuit folding
technique has been presented herein. The proposed power-
sum circuit saves about 50% space complexity and same
time complexity while comparing with other existing semi-
systolic power-sum circuits. Based on the proposed power-
sum circuit, a new efficient systolic inversion architecture
has also proposed. As compared to traditional inversion
circuits [17] which are based on the same Fermat algorithm,
the proposed inversion circuit saves about 75% space
complexity and 50% time complexity. Furthermore, the
proposed systolic division architecture also saves about 75%
space complexity and 50% time complexity while comparing
with other existing conventional division circuits [17]. By
employing the circuit folding technique, parallel processing,
and pipeline processing, our proposed power-sum, inversion,
and division circuits provide efficient array architectures for
saving both space and time complexities.
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