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Abgtract: Based on Fermat’s theorem and polynomial basis, an efficient systolic array for power-sum in GF(2") with the
circuit folding technique is presented. A power-sum algorithm based on the reuse of two-folded systolic array circuit for
‘AB2+C’, is firstly proposed in this article. The proposed systolic power-sum architecture saves half of space complexity as
compared to other existing semi-systolic power-sum circuits. Also in this paper, the circuits of two important computations:
inversion and division, which are based on the proposed power-sum circuit, are then presented. Both proposed circuits also
save 75% of space complexity and 50% of time complexity while comparing with other off the shelf inversion/division

circuits which employ the Fermat algorithm.
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1. INTRODUCTION

Finitefield arithmetic operations have several applications
in coding theory [1], cryptography [2], digital signal
processing [3-4], switching theory [5], and pseudorandom
number generation [6], and so on. Arithmetic operationsin
such areas require several complex operations, like
multiplication, power-sum (C+AB?), inversion/division, and
exponentiation. The power-sum operation is a basic
operation for public-key cryptosystem [7] such as RSA [§]
and Elliptic curve cryptosystem [9] and in decoding multiple-
error-correcting binary BCH codes and RS codes [10-12].
Numerous researchers proposed many efficient power-sum
architectures [13-18]. Most power-sum architectures are
based on the polynomial basis representation of GF(2™).
However, themajor shortcomings of such circuits, asregards
cryptographic applications, are their high space and time
complexities. Thus, further research on efficient power-sum
architectures with low space and time complexities is
elegantly needed. In this paper, a systolic array
implementation of the power-sum circuit with low space
complexity by employing the circuit folding technique is
proposed.

Inversonsand divisonsare essential operationsin many
error-control coding schemesfor reliable datatransmission

and storage systems, and for many cryptographic
applications such asDiffe-Hellman key exchange algorithm
[7], RSA algorithm [8], dliptic curvecryptography [9], and
eliptic curvedigital Sgnaturealgorithm [9,19]. Three well-
known methods for finding an inverse element in a finite
field are the table lookup algorithm, the extended Euclid’s
algorithm [20], and the repeated exponentiati on a gorithm
[21]. Theformer two algorithmsarenot easily realized in a
VLSI circuit. The exponentiation algorithm based on the
Fermat’s theorem [22] uses the iterative multiply-square
algorithm. Such multiply-square algorithm can berealized
by the power-sum operation. The Fermat’s theorem is
employed in this paper.

The performance of finitefield arithmetic operationsis
highly related to the representation of the field elements.
Therearethreemain popular types of bases over finitefields,
namely polynomial basis (PB), normal basis(NB), and dual
basis (DB). The polynomial basi srepresentation [23-33] is
widely used and leads to efficient implementations of finite
field arithmeti c operations. As compared to other two bases
representations, the polynomial basis representation hasthe
features of low design complexity. Additionally, PB
architecture has three significant features, simplicity,
regularity, and modularity. Therefore, it could be potentially
fit to various applications. Regarding the normal basis
representation [34-41], oneimportant advantage isthat the
squaring of an e ement is computed by a cyclic shift of the
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binary representation. Thedual basisrepresentation [42-44]
while requires less chip area than other two basis
representations. Thisstudy isrelied on the polynomial basis
representation.

In this article, a new systolic array architecture
employing the circuit folding technique for performing
power-sum operation is presented to achieve the goal of
saving space complexity and retaining sametime compl exity.
Applying the proposed power-sum circuit, the inversion/
division circuits utilizing Fermat’s theorem are then
presented. Such inversion/division circuits also have the
features of low circuit complexity and short latency.

The remainder of this article is organized as follows.
Section 2 briefly reviews the mathematical background.
Section 3 presents the proposed power-sum circuit by
utilizing the circuit folding technique. In Section 4, we
present the inversion circuit based on the proposed power-
sum circuit. Thenew division circuit will then be discussed
in Section 5. A brief conclusionismadein thefinal section,
Section 6.

2. MATHEMATICAL BACKGROUND

It is assumed that the reader is familiar with the basic
concepts of finite fields. For more information, the reader
can refer to[2]. Inthefollowing paragraphs, theresultsfrom
thefinitefields are briefly reviewed.

Let GF(2™) be afinite field of 2™ elements. GF(2™) is
an extension field of the ground field GF(2). Let + bearoot
of anirreducible polynomial of degreem over GF(2) given

8SP(x) = po + Pt + popx® + .t px"H +x" Wherep = 1.

Thus, thesety = {La,az,a?’,...,am*l} isapolynomial

basis of GF(2"). Any elements 4, B, C, YIGF(2") can be
represented by

_ 2 m-=1
A=ay,+taoa+a,ax” +..+a, &,

— 2 m-1
B=b,+ba+ba”+..+b, a"",

_ 2 m=1
C=cy+ca+c,a+..+c,,a" ",

Y=y, +yoa +y2a2 +...+ym_lam_l,

wherea,,b,,c,,y, € GF(2) foral 0<i<m-1.

1

Let Y=C+A4B?mod P(x), theresult isgiven by

Y =C+AB* mod P(x)

2 m=1 2
=C+A><(bo+bla+b2a +..4+b, ) o
=C +A><(b0 +ha’ +ba’ + ...+bmfla2(”'7l))

From Fermat’s theorem, for every p < Gr(2”),B% =B
and therefore we have

871 — BZ’” -2
=BZ+22+Z3+...+2"1’1

;N
(2

= B2x (B2 x((B?)2)2..x((.(B)}))2.)2.

Based on Eg. (2), the inversion can be performed by
repeating multiply and square algorithms. In other words,
the inversion operation can be done iteratively by power-
sum operations.

The division operation 4/ B is equivalent to the

multiplication operation 4« g~, andisthusexpressed as
follows:

Al B=AxB*

—— 3)
= AxBXBY (B x(ABY)-.)

Observing Eq. (3), the division operation can also be
done by power-sum operations.

In this study, m isassumed to bean even number. If m
isnot an even number, m+1 istemporarily used by adding
an extraOtothemost significant bit and the computing result
isthen modified for thefinal correct result.

3. THE PROPOSED POWER-SUM OPERATION IN
GF(2™)

The power-sum computations are always required in
decoding BCH codes and RS codes, computing inversions,
and computing divisions. Using polynomial basis
representation, Wel [14] presented a systolic power-sum
circuit with bidirectional dataflow. However, such asystolic
array with bidirectional data flow is not suited to testable
design. For gaining advantages of low space complexity,
short latency, and fault tolerance, Wang and Guo [15] also
employed polynomial basis to present a systolic array for
power-sum computation with unidirectional data flow.
Instead of the L SB-first schemesin conventional power-sum
circuits, Kim et al. [16] used the MSB-first schemeto further
reduce the space and time compl exities in existing power-
sum circuits. However, such existing systolic power-sum
architectures still have shortcomings of high space
complexity and long latency as such power-sum circuitsare
applied to cryptographic application. Wei [17] provided a
semi-systolic design of the power-sum circuit for maximum
throughput rate. Lee et al. [18] devel oped atime-independent
bit-paralldl systolic architecture for further saving space
complexity. In this study, a new systolic power-sum array
architecture by employing the circuit folding technique is
presented for lower space complexity as compared to other
existing power-sum circuits.
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Assuming that the squaring of theelement Bissplitinto
two sub-words,

B*=B, +x"B,
where

B, =by+ba® +ba* +..+b, o™

2
2 m-2
By =bﬂ +bﬂ+1a +..4+b, 0"

2 2

With the circuit folding technique, the power-sum
equation in Eq.(1) can berewritten as

Y =C+ AB* mod P(x)

[bo +ba” +ba’ +.+b, a 2}-
2
=C+Ax

m 2 m-2
a”| b, +b, “ +..4b, J

=
2 2

by+ba® +ba’ +..+b, " |+
=C+4 x 51

m
a"By

:(co+cla+cza2+...+cm " 1)+ [[[[(ABH Yo +4b, Jz)zz-%—Abﬁ Zjaz +...Ja2+AbOJ
2 2

(4)

F=A4B

H

=4 x(bm +b, a? +b, a’+ ...+bmla'"2j
5 E+1 5+2 (5)
- ((((O)a2 +4b, )a?+ Ab, ,)a® + ...)a2 +4b,
B
Before computing Eq.(4), the Eq.(5) must be performed
in prior. Theresult of Eq.(5) isastheinitial value of Eq.(4).
Both Eg.(4) and Eq.(5) have the same iterative form and
such iterative form is shown asfollows:

T.,=T xa’+Ab, (6)

where

- AB,  for Eq.(4)

° o for Eq.(5)
m .

i = ?—z—l for Eq.(4)

m—i-1 for Eq.(5)

and

m

T, e GF(2") for 0<j< >

Suppose /" and T’ are expressed as

F=f,+ fia+ foa +.t+ f, 0" and

_ 2 m-1
I,=ty +t,0+t,0"+...+t, 0

1 3 L,

where
fiytiyj e GF(2),0<i,j<m-1

Because o is the root of P(x), thusP(«)=0 and we
havethefollowing results

a™ = po+ pa +p2a2 +..+ pmflam*l (7

m+1

a"t = p(') +pia + p'ZaZ + ...+p,'nfloz’"’l (8)

where
P =Dl + Py fOr1<i < m-1and

p(‘) = PuabPo
Substituting Egs.(7-8) into Eq.(6), we obtain
T, =Txa"+ b,
(Butto +1,, 2P0+, 1P5 ) +(Butt + 1, o1+ 11 )+

= (bkaz TlimaPat t,,mlplz + t,‘o) o’ + (bAa3 +limaPst t:,mflpéi + [i,l)as +

' -1
et (bL Ayt 2Py g Pt ,mfa)am

9)
Based onthe Eq. (9), thesemi-systolic array architecture

with%xm cellsfor Eq. (4) isshown inFig.1. Thedetailed

circuit of thecell Uin Fig.1isdepictedin Fig.2. The symbal
D'in Fig.1 denotesi clock cyclesdelay. Thefunction unit L
inFig.2isal-hitlatch. At thefirst round, the systolic array

in Fig.1isused for computing F = Ax B, . At the second

round, theresult F obtained at the first round isapplied as
input to compute the final result Y. The inputs applied to
such asystolic array areshownin Fig.1.

As comparing with other existing power-sum array
architectures, the following assumptions for space
complexity aremade: (1) a 2-input AND gate, a 1-bit latch,
a 2-input XOR gate, 2-to-1 MUX, 2x1 Switch, and 3x1
Switch consist of 6, 8, 6, 6, 6, and 11 transistors, respectively
[45]; (2) an 3-input XOR gate and an 4-input XOR gate are
constructed by 2 2-input XOR gates and 3 2-input XOR
gates, respectively. The comparison results of various power-
sum array architecturesare depicted in Table 1. Our propased
systolic array architecture for the power-sum circuit saves
about 50% and 15% of space complexity to existing power-
sum array architecture in [17] and [18], respectively.
Moreover, our proposed power-sum array architecture only
requiresonecell type, but thearray architecturein [18] needs
three types of cdlls.

The propagation delays through onecdll of two different
array architecturesin Table 1 are assumed the same because
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the propagation delays for both 3-input XOR gate and architecture[17]. Furthermore, thedata flow of our proposed
4-input XOR gate have the same propagation delay. power-sum array architecture is unidirectional.
Table 1 shows that our proposed power-sum array Unidirectional dataflow makesfault-tolerant circuit design
architecture is executed as fast as Wei's power-sum array  easy and feasible.

2'nd 49 po 4 p1 4 pp 4G P Gm2 Py-p%ml P
round 0 Pofy Prfi P2 fi Pjfus Pm2f; Pma g
L'st ap a a; a ., Ao Q-1 round
round — Po P1 P2 P Pm-2 Pm-
SELN L LA SN
Lo A AN A A o S
b b, M Uoo ; Uoa ; Uo> ; Uo, ; Uo,m-zz UO,m—l;: 8;’"?
B S DU I o I & N o N -
S IR AN A AN RN 2N TR 1Y |
b';'—z b, |;1_| A Uio ﬁ Uiy f Ui, f Uy f Ul,m-Zf Uim1 rzozgd
P D] Ny ey NTYY N Yy Ny Yy N vYy\yYy
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......... Co Cy (6} ) C; Cm-2 Cin-1
. T ] . A i
D 20 2O S S 2 74
1st Yo Vi )’Z ...... Vi Vm-2 V-1
FOUND YN B e
fo fi f2 i fm-2 fn-1

Note: s=ml2-1

Figure 1: The Semi-systolic Array for Computing Y=AB2 + C.
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Figure 2: The Detailed Circuit of the Cell U in Fig. 1.

4. THE PROPOSED INVERSION IN GF(2")

Mog efficient schemesfor theinverson in GF(2™) aremainly
based on either Euclid’salgorithm or Fermat’stheorem. The
inversion algorithms based on the Euclid’s algorithm usually
usethe polynomial basis representation and have the benefit
of low space complexity [46-49]. The Fermat theorem-based
inversion algorithms can use any basis representation, but
its best choice isthe normal basis representation since the
squaring operationsin the normal basis representation can
be easily implemented by only simply cyclic shifting [50-
51]. However, the drawback of the normal basis
representation is that it needs basis conversions. For short
latency, Wei [17, 52] providesasemi-systolic inversion with
the Fermat theorem and the polynomial basis. In this paper,
we will present a new low-complexity inversion algorithm
based on the Fermat theorem and the circuit folding
technique and using the polynomial basis representation for
further reducing space cost.

Inversion can be considered as a special case of
exponentiation because

B—l — BZ"’—Z

m=1

= B2 % (B2)2x ((B%)?)%..x ((..((B)?)?)..)2.

Table 1
Comparison of Semi-systolic Arrays for Computing AB?+C in GF(2")

Items Wei [17] Leeetal. [18] Fig. 1
Function AB*+C AB’? AB*+C
Array type Semi-systolic Systolic Semi-systolic
Cell types 1 cdl type 3 cdl types 1 cdl type
No. of cels m? V: m[m/2] , Wm, Q: m2/2
Latency m cycles 2m+ [m/2] cycdles m cycles
Propagation dday pa (E” TAND+TXOR3 TAND+TXOR2 TAND+TXOR4
Space complexity 3m?AND, 2m[m/2] AND, 3m?/2 AND,
1m? XOR, 2m[m/2]+2m+2[m/2] XOR, m?/2 XOR,
1m? XOR, m[m/2]+2m+2[m/2] L, 2m?L,
4m? L, 2m+ z[m/z] 2x1 Switch
m 3x1 Switch
Transistor count 68m? 40m+71m 34m?
Algorithm LSB MSB MSB

Note:
T .o Propagation delay of a 2-input AND gate.
TXOR: propagation delay of an i-input XOR gate.

The concept of computing multiplicative inverses using
consecutive multiplications may be performed under the
polynomial basis and the normal basis. Most inverter
architectures have been proposed under the normal basis
since the squaring operations can be implemented by only

AND;: i-input AND gate, XOR: i-input XOR gate, L,: 1-bit latch.

simply cyclic shifting. However, existing normal basis
multipliers based on the Fermat’s theorem use XOR trees
for low time complexity are not regular and modular, hence
are not suitable for VLSI implementation. Hence, the
computation speed of inverters is slower than those of
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systolic-type inverters under the polynomial basis. For the
polynomial basis, it is difficult to compute inverses using
Fermat’s theorem if the value m of GF(2") is large. To
overcome this problem, thisstudy presentsalow-complexity
systolic array inverter by using thecircuit folding technique.

The conventional inversion algorithm based on Eq. (2)
isdescribed in Algorithm A. Both multiplication operations,
Step-A4d and Step-Ab5, arerequired in each iteration of the
Algorithm A. Supposethat each multiplication operation has
the general form D = H x K mod P(a). D, H, K are any
elementsin GF(2™) and are expressed as follows:

D=dy+da+d,a’+..+d, ja""

_ 2 m-1
H=hy+ha+hoa” +.+h, a

2 m—1
K=ky+ka+k,a”+..+k, a

where
di’hi’ki € GF(Z) for 0<i<m-1.

Algorithm A: (Conventional inversion algorithm using
Fermat’stheorem)

I* Computing Y = B mod P(a) */

Begin

Sep-Al: Q:=B;
Step-A2:Y:=1,
Sep-A3: For i=1 Tom-1 Do

Begin
Sep-Ad: Q:=QxQ mod P(a);
Sep-AS: Y:=YxQ mod P(a);

End;

Step-A6: Return'y;

End.

The multiplication D =HxK modP(a) can be
factored as follows:

D=HxK mod P(a)
=H x(ko + ko + ko + ---+km710"n71)
(ko +hka® +kat + ...+km72a””’2) +
~ix oz(kl +ha’ + kot + ---+km710‘"172)
{ko +h,a + kot + ...+km2aZlJ +
- Hx (10)

2
23
2 2
a(kl-i-kaa +ho+..+k, o ]

:H><K12+a><(H><K22)

where

2

K,=ko+hk,a+ka’+..+k, ,a?

m

2

K,=k +ka+ka?+..+k, a?

Eq. (10) shows that a multiplication operation can be

separated astwo power-sum operations. Hence, the proposed

power-sum systolic array architecturein the former section

can be employed for computing Eq.(10). Both power-sum
operations are expressed as follows.

H><K12
_[[[[(HKm)a2+Hkm 2]a2+Hkm ]a2+...]a2+Hk0]
i )
2 2
and (1)
HK,, _[((((O) a? +Hkm72)a2+Hkm74)a2 +) o’ +Hk,,
2
where
)
K,, =k, +k, a’+k, a*+..+k, ,a?
5 E-¢-2 ?+4
)
K, =ko+hk,a®+ka*+..+k, o’
z
H><K22
= HK,, )a®+Hk o’ +Hk o’ +... |a® + Hk
2H m_y m_g 1
2 2
and 12

HK,, = [((((o)az HHK, ;) +HE, o)’ +...) o + H,

—+1
2
where

2 4 2
+k, a’+..+k,

- 2 4 2
K, =k +ka’+ka +...+k£71a

2
According to Egs. (10-12), Fig. 3 shows the systolic
array architecture for computing D = H x K mod P(«) by

utilizing the circuit folding technique. TheU array in Fig. 3
is smilar to the kernel U array in Fig. 1. The difference
between them isjust their sizes. TheU array in Fig.1isan

%Xm array while that in Fig. 3 isan %Xm array. The

function block x o modifier is realized by Fig. 4. The 1¢
round and the 3" round are responsible for computing

H xK,* mod P(a), and the 2" round and the 4" round are
for H x K, mod P(a), respectively. At the final step, the
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temporal result of H xK,* mod P(«) is modified by , \ m,
S . . Oy=q,+q, a +q, a +..+q,,a? ,

multiplying + through the function and then is summed to 2 52 24

theintermittent result of for thefinal result D. In Algorithm ",

A, both steps Step-A4 and Step—AS5 aretime-dependent. In O, =q,+ q2a2 + q4a4 +otq, a2

other words, the result of the Step-A4 is the income of the 27

Step-Ab. Thus, Algorithm A requires 2m multiplication
operations. For further reduction of multiplication 0x0,

operations, the parallel processing concept isemployed and :

the parallel processing version of Algorithm A is depicted 2 2 2 2

in Algorithm B. Both Step-B5 and Step-B6 are performed (0Qz ) +Qq121_1 “ +qu_3 @t a0
concurrently.

Algorithm B: (The proposed parallel inversion algorithm and

using Fermat’stheorem)
/* Computing Y= B! mod P(a) */
Begin
Sep-B1:Q:=BxB mod P(o);
Sep-B2:W=Q;
Sep-B3:Y:=1;
Sep-B4:For i=1 Tom-1 Do
Begin
Cobegin
Sep-B5:Q:=0QxQ mod P(a);
Sep-B6:Y:=Y xW mod P(a);

00, = (((((O)az +0q,.)a" +0q,.5)a’+..) o +qu+1j

(15

where

L)

— 2 4 2
QZH - qm + qm a + q”z a +..+ anfla ’
E+1 E+3 E+5

)

— 2 4 2
0, =q,+q,a° +q.x +...+qﬂila
2

Co€nd Similarly, the multiplication operation Y: = Y xW mod
Step-B?.\é\;aQ, P(a) in Step-B6 can be expressed as follows.
Step-B8:Return'Y; Y =Y xW mod P(a)

End 2 2 16
By applying Eqs. (10-12), the multiplication operation :(YX”Vl mdP(“))*(“X(YXWz ) mOdP(“)) (16)
Q: = Qx Qmod P(x) in Step-B5 can befactored asfollows. where

0 = 0xQmodP (o) (13)

2
= (Qfo modP(a))+(a><(Q>< sz) mod P(a)) W, =Wy +wya+wa" +...+w a2
where m_y
W, =w +wa+wo’+..+w a2
2
O =qp+q0+ %az +...4q,, 507
ﬂ,l YXI/V:LZ
— 5 2
O, =q1+ 4,0+ qs0° +...+ g, 10
= H(YWM Ja® +Yw, zjaz +Yw, Jaz +.o|a®+ Y,
R 7
Q><Ql2 and
= [(H(QQM )az + qu_zjaz + Q‘IZ_JQZ + "-]az + qu] w,, = (((((O)az + Ywm_z)a2 + Ywm_4)a2 + ...)az +Yw, j
2
and
17
00, =(((((0)02+qu_2)&2 +04, )’ +---)a2+qu] where
2
(14) Wy, =w, +w, a’+w, 4a4 ot w”da%2

where

2 2
m
_ 2 4 P
W, =wy+wa” +w,ax totw, o
2
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Fig. 3. The proposed circuit for redlizing D=HxK mod P(a).

Figure 3: The Proposed Circuit for Realizing D=Hx*K mod P(a,).
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A

Figure 4: The Detailed Circuit of the Function x a. modifier in Fg. 3.



Efficient Systolic Arrays for Power-Sum, Inversion and Division in GF(2™) 37

Y x W,

= {((((YWZH Ja®+Yw, J a’+Yw, 3](12 +J a’+ lej
z z

and (18)

YW,, = (((((O)az + Ywmfl)az + YW”’*3)a2 * ...)a2 * Ywﬂﬂ

2
where

)

+w, a’+w, o' +.tw, a?

Wy =w
2H 2 —+3 —+5
2 2

ﬂfz

_ 2
W, =w +wa’ +weat +.. 4w, a
2

1" ~4":(00,...,0)

5" (0, fyor forror fun-z)

6" :(0.f2,0'f2,1""'f2,m—2)
(

720, foor foaros fom-2)
fomz) |

8":(0, fuor fusrre

1" ~4":(00,..0)

The Algorithm B roughly takes m multiplication
execution time. Based on the systolic architecturein Fig. 3,
Egs. (13-18), and the pipelined method, both multiplication
operations (Step-B5 and Step-B6) can be performed in
parallel and the procedureisshown in Fig. 5. Four rounds,
the 1%, the 2", the 5", and the 6™ round, are charged with
computing O: = Q x Q mod P(a) in Step-B5. Another four
rounds, the 3¢, the 4", the 7", and the 8" round, are
responsiblefor performing. By utilizing the multiplication
array in Fig. 5, the execution flow of Algorithm B is
describedin Fig. 6.

Comparison of various systolic inverters is listed in
Table2. Theresults show that our proposed systolic inverter
using the circuit folding technique saves about 75% space
complexity while comparing with existing systolic inverter
which is based on Fermat’s algorithm. Furthermore, the
latency of our proposed inverter takes only m?/2 clock cydes

1.\'t 2nd 5th 6th . (qquly---qu_l)
3 4th 7th 8th . yoyyly 'ym_l)

’“Sth : pO'pll 'plm—l)

~8th' pO!pl' 'pm—l)

1" ~4":(0,0)
1" ~4":(00.,...0)" e 5" (o o0 it
U Array — 6" (fzm 21 Som- 1)T
| (m/4 X m)

, RV |
v :[qmz,qw---,qm] 8" (funo fana)
’ T
2 :[qml,qmg, "q";ﬂ] 4" (fros farrs fama)
B ' 3" (fy0r farosSoms)
: [ oz e W] ™ 2 (oo o fans)
, 1+ (fig0 fuaresSins)
K {8”‘ (faor farrs Foms) {7”’ (Frov Frarees frm )
5 (qm Ay -,%J 6" : (S0, fonroos foma) | 15" :(fior fonror fuma)
' v _ L
6 Eqm ,qm S .,qu |Xa modifier | |Reg|ster |
,
8,/1:[% » ,__.,WIJT {Y=(yo.y1,y2.---.ym_1)
g 0 =(Go41:Gz0-++19, 1)

Figure 5: The Proposed Circuit for Concurrently Redlizing both O: = O x Q9 mod P(a) and Y: = Y x W mod P(a).
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whilethetraditional inverters may need at least m(m-1) clock
cydes. In other words, our proposed inverter takes only 50%
execution time of that of other existing onebased on Fermat’s
algorithm. Our proposed systalic inverter issower than the
Yan-Sarwate-Liu inverter [49] which is based on the
modified Euclidean algorithm. However, the proposed
inverter saves about 93% space complexity as compared to

the Yan-Sarwate-Liu inverter. The proposed inverter is
suitablefor the resource constrained devices such as portable
devices (i.e, PDAS, smart phones).

In summary, our proposed inverter using the circuit
folding technique saves both space and time compl exities
as compared to other existing traditional invertersbased on
the same Fermat algorithm.

Q:=BXB mod P(«)
W:=Q,Y:=1

A

Concurrently computing
Q:=QXQ modP(«), and
Y:=Y XW mod P(«)

Wiy
Qzn
Qun

O O O Ceoeo

Fig.5

The multiplication array in

:

Fo Fs F2 B

Loop m-1 times?

No

Yes

Output the result Y

Figure 6: The Execution Flow for Computing Y=B" mod P(a) by Using the Multiplication Array in Fg. 5.
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Table 2
Comparison of Semi-systolic Arrays for Computing Inversion in GF(2™)

Items Yan et al. [49] Wei [17] Proposed in Fig.5

Basis Polynomial Polynomial Polynomial

Algorithm Euclid Fermat Fermat

No. of cels Cell type-4: (2m-1)xm n? m?/4
Cell type-5: 2m-1

No. of cell types 2 1 1

Latency (unit=cycles) 5m-2 m(m-1) m?/2

Propagation dday pa Ce” TAND+TMUX TAND+TXOR3 TAND+TXOR4

Cell complexity 3m(2m-1) AND, 3m?AND, 3m?/4 AND,
2m(2m-1) XOR, 1m? XOR, m?/4 XOR,
(6m?-m-1) 2-to-1 1m? XOR, m?L,
MUX22m2-9m-2 L, am? L,

Transistor count 244m? 68m? 17m?

Algorithm MSB MSB MSB

Note: AND;: i-input AND gate, XOR: i-input XOR gate, L,: 1-bit latch

5. THE PROPOSED DIVISION IN GF(2") Sep-D5: Q:=QxQ mod P(a);

Observing EQ.(3), the division operation is Smilar to the Step-D6:  Y:=Y xW mod P(w);

inversion. Thedivison operation 4/ B isactually equivalent Coend

to the muItipI_ic_at_ion of A and B’ Thus,_ the _difference Sep-D7: W:=Q:

between the division and inversion operations is that the '

initial values for both operations are different. Therefore, End

thedivision algorithmsbased on Algorithm A and Algorithm  Step-BD8: Return'Y;

B arerewritten as follows: End

Algorithm C: (Conventional division algorithm using
Fermat’stheorem)

4
[* Computing ¥ =— mod P(a) */

Begin

Sep-Cl: Q:=B;

Sep-C2: Y:=A;

Sep-C3:  Fori=1Tom-1 Do
Begin

Sep-C4: Q:=QxQ mod P(a);

Sep-C5: Y:=Y*xQ mod P(a);
End

Sep-C6:  Return',;
End.

Algorithm D: (Parallel division algorithm using
Fermat’stheorem)

A
[* Computing ¥ = mod P (a)*/

Begin
Sep-D1:  Q:=BxB mod P(a);
Sep-D2: W=Q;
Sep-D3: Y:=A;
Sep-D4: For i=1 Tom-1 Do
Begin
Cobegin

Algorithm C shows the traditional division algorithm
and Algorithm D isthe proposed parallel divison algorithm.
The proposed inversion architecturein Fig.5 isalso useful
for the proposed division architecture. Therefore, the
proposed division architecture saves 75% space complexity
and 50% time complexity while comparing with other
existing systalic division architectures.

6. CONCLUSIONS

A new systolic power-sum circuit using the circuit folding
technique has been presented herein. The proposed power-
sum circuit saves about 50% space complexity and same
time compl exity while comparing with other existing semi-
systolic power-sum circuits. Based on the proposed power-
sum circuit, a new efficient systolic inversion architecture
has also proposed. As compared to traditional inversion
circuits[17] which are based on the same Fermat a gorithm,
the proposed inversion circuit saves about 75% space
complexity and 50% time complexity. Furthermore, the
proposed systolic division architectureal so saves about 75%
space compl exity and 50% ti me complexity while comparing
with other existing conventional division circuits [17]. By
employing thecircuit folding technique, parallel processing,
and pipeline processing, our proposed power-sum, inversion,
and division circuits provide efficient array architecturesfor
saving both space and time compl exities.
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