
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 1, January 2007
CSES International © 2007 ISSN 0973-4406

Manuscript received August 25, 2006
Manuscript revised November 30, 2006

A Hybrid Approach for Mobile Agent Security using
Reversible Watermarking

ABID KHAN1, Xia-Mu NIU2 and Yong ZHANG3

1Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, China
E-mail:abidkhan_hit@yahoo.com

2Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, China
E-mail: xiamu.niu@hit.edu.cn

3Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, China
E-mail: zhangyong@hitsz.edu.cn

Abstract: Reversible Watermarking has recently drawn a lot of attention for content authentication. An additional advantage
of this technique is that one can always get the original content after the authentication of watermark. At present reversible
watermarking is being used only for protecting digital media like images, audio and video. Protecting Mobile Agents from
malicious hosts have been investigated for some time now. In this paper we present a framework for protecting mobile
agent’s results from tampering and also suggest a way to get back the original values of results. Our framework uses both
reversible watermarking and dynamic graph based software watermarking in a hybrid way.
Key words: Mobile agent Security, Reversible watermarking, Malicious hosts, Dynamic graph based watermarking.

1. INTRODUCTION

In the past few years, we have seen some tremendous changes
in distributed and client-server computing. Earlier software
applications were limited only to a few nodes in computer
networks. But with the advent of Mobile agents [1] this
reality is likely to change. A Mobile agent (MA) can be
simply defined as a program that can act in a computer
network on behalf of a user or an application. MA has already
been employed in a variety of applications with great effect
such as information retrieval, workflow management
systems, e-commerce applications and Network
Management [2, 3, 4, 5, 6]. Despite all these promises there
are some issues which needs to be address properly by
research community before mobile agents can be used
widely. The security being the most serious issue among
others needs a lot of attention. Security in mobile agents
System (MAS) can be divided into two major types. The
first type of security is the security of the platform from
malicious mobile agents and the second one is the security
of the mobile agent from a malicious platform. The second
type is our focus here in this paper.

This paper introduces the idea of using reversible
watermarking and graph based software watermarking for
mobile agent security. The digital content in our case is the
results carried by mobile agents while visiting a number of

hosts in its itinerary. Reversible Watermarking is used to
watermark the results. The watermarked results are then
represented by a dynamic graph structure. The advantage of
our approach is twofold. Firstly, by using reversible
watermarking we can restore the original content after
authentication. Secondly, by using software graph based
watermarking it is very difficult for an attacker to get some
useful information without a lot of effort. We will be using a
dynamic heap allocated data structure to represent the
watermark results.

The remaining of the paper is organized as follows: In
Section 2 we discuss the Notion of Malicious host and
enumerate some existing approaches to solve the problem.
In Section 3 we discuss the idea of Graph based Reversible
watermarking and give an example of potential application
scenario where this approach is being implemented. Section
4 discusses some attacks against our proposed idea.
Conclusion is given in Section 5.

2. MALICIOUS HOST AND EXISTING APPROACHES

Mobile agent execution platform is responsible for providing
the necessary environment and resources in order to
successfully execute a mobile agent. Thus the proper goal
and function of a mobile agent can not be achieved without
cooperation from its platform. The manipulation attacks
performed by a malicious host are difficult to detect and are
considerably expensive [16]. Even if some attacks are
detected it is not possible to get the original content (data).
In [18] the idea of a time limited black box security was

Journal of Information Technology and Engineering
Vol. 3 No. 2 (December, 2018)

Received: 15th April 2017 Revised: 10th May 2017 Accepted: 17th January 2018

50 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 1, January 2007

presented using obfuscation as a key technique. The problem
with this technique is that how long or how short should be
that protection time interval. In [11, 15] the idea of encrypted
computing was given as a way to execute mobile code with
integrity and privacy. However there are some limitations
as there are few functions that can be executed in an
encrypted way. In [13] the idea of cryptographic traces for
mobile agents was presented based on the execution tracing
and cryptography. It allows the “detection of attacks against
the code, state and execution flow for mobile agents”. These
facts can be used to punish the attackers using a Trusted
Third Party (TTP) [12]. However it has some limitation and
cost as well. In [14] the idea of using reference states to
protect mobile agent was presented. “A reference state is a
state of mobile agent that is produced by non-attacking hosts/
reference host”. The idea of using watermarking as a
protection mechanism was presented by [16,17]. This
method attempts to detect manipulation attacks performed
during agent’s execution. The agent’s execution creates
marked results. When the agent returns to the origin host,
these results are examined in order to locate the watermark.
If the mark has been changed this proves a manipulation of
results and malicious behavior of the host. The problem with
this approach is that a trusted third party is needed in order
to punish the malicious hosts. Colluding attacks are shielded
by using fingerprinting where a different watermark is
embedded instead of a same watermark for each host. In [7]
the idea of software watermarking was given. As compared
to [7] we have used reversible watermarking so the advantage
is twofold. Firstly we are using graph to represent the result
so because of the aliasing effect it is very difficult to
understand the graph representation. Secondly we are using
reversible watermarking so the original content/results can
be retrieved after the authentication of the watermark.

3. GRAPH BASED REVERSIBLE WATERMARKING

The basic idea of the graph based reversible watermarking
is to watermark the results that a mobile agent gathers from
a host. The watermarked results are represented by a graph,
using java object serialization. This graph can travel along
with mobile agent as it traverses different nodes in its
itinerary. The graph is a heap allocated data structure that is
built at runtime of the mobile agent. This heap allocated data
structure can be a PPCT or a list as described by [7]. Beside
that we can use any dynamic data structure like graph/list
for encoding and decoding. When a mobile agent returns to
home platform it delivers the necessary information to it and
from this information the graph can be deserialized. Now
we can get the watermarked results from the graph. We can
finally get the original results by extracting the watermark
from the results represented by the graph after the
watermarks are found to be authentic. Because of the
undecidability of pointer aliasing [8,9] it is difficult to
analyze the code that builds the graph structure. So there
are two lines of defense for any attacker to break. First is

the difficulty of analyzing the heap allocated data structure
and the second is the reversible watermarked data. Since
we are watermarking the data not the code it is easy to add
tamper proofing to the code segment that embed the
watermark and builds up the graph [7].

4. ALGORITHM DESCRIPTIONS

In order to implement the idea we have selected a typical
Airline Ticket Booking scenario as shown in Fig.1. We have
used IBM Aglet [10] for implementation.

Figure 1: Airline Ticket Booking System.

It’s basically an information system consisting of various
mobile agents communicating with each other to achieve
their designated tasks. In the following discussion we will
use the word agent and aglet interchangeably. Every Airline
has its own local representative agent. The user agent which
we call Booking Agent (BA) is provided with necessary
information before being dispatched. Mobile Agent visits
various hosts in its itinerary before returning to its home
platform. Mobile agent is supposed to give the result of its
computation to the home platform at the end. The
information provided by the user to this BA includes its
itinerary plan (The number of hosts and the order in which
they will be traversed by BA), a user query to be executed
on a remote airline host. The query specifies the information
which includes departure city, destination city, and the date
etc about the ticket that a user want to reserve. Now the
booking agent is given this information (in the form of an
SQL query) and its itinerary plan before being dispatched.
Each airline has its own database which includes information

A Hybrid Approach for Mobile Agent Security using Reversible Watermarking 51

about various flights schedules. In addition to that each
airline host is responsible for providing the necessary
resources to the incoming agents from remote hosts. The
resources include the Agent’s execution environment,
database connectivity etc. The airline host communicates
with the booking agent via a Local Agent (LA). This LA is
responsible for providing the necessary information to the
BA. In other words the LA is basically representing the
airline in this multi-agent information system.

The information provided by LA in our scenario is the
Data Source Name (DSN) and the name of the driver
(Oracle/SQL/MYSQL) used by the airline hosts. This
information is necessary for the booking agent to successfully
connect itself to the database. After establishing connection
successfully with the database, the booking agent (BA) can
communicate directly without exposing the query to any
other entity. A similar implementation scenario can be found
also in [4].After getting results from a host airline database
the mobile agent does the following things before dispatching
itself to the next host in its itinerary. First of all it uses
wavelets based reversible watermarking [23] to embed a
watermark in the results. Secondly after the results are being
watermarked they are represented by a dynamic data
structure in the form of a list. In order to get the results all
we only need is the head of the list only. By serializing the
head of every list for each host we can get the result of each
host. When the mobile agent returns to the home platform
the correctness of its results is checked by authenticating
the presence of watermark. If the watermark is not present
that means the results were modified by a malicious host.

Since we are using reversible watermarking we can get
the original results after authentication. If the watermark is
destroyed by an attacker then the correct results can not be
retrieved. For every pair (x, y) in the results we have to
calculate the average value l and difference value h using
the following transformation respectively

� � 2/yxl �� (1)

yxh �� (2)

The modified values of x and y are calculated by using
the following transformation

� � 2/1����� hlx (3)

hxy ����� (4)

The watermark is embedded into the binary
representation of h at the location right after the most
significant bit (MSB). Where h/ is the new difference number
after embedding the watermark into h. The algorithm’s steps
are explained in the following pseudocode below.
Step 1: Get results from database
Step 2: Convert results to ASCII values.
Step 3: Make pairs of ASCII values i-e. (x, y)
Step 4: If x >y go to step 5 else go to step 6
Step 5: Swap the values of x and y.
Step 6: Update the flags record for x and y
Step 7: Calculate the values of l and h.
Step 8: Embed watermark bit w = {0, 1}.
Step 9: Calculate x/ and y/.
Step 10: Construct the graph representation of x/ and y/

Step 11: Serialize the graph (only the head is necessary to
serialize)

Step 12: If itinerary completed to home else dispatch next
host

In the following table we show some sample output of
the algorithm for watermark embedding process. The table
show the ASCII values of x and y before embedding the
watermark and new modified values (x/ & y/) after the
watermark bit is embedded.

In this table h/ is the value of h after embedding the
watermark. Whereas (h)

2
 represents the binary value of h.

similarly (x/)
2
 and (y/)

2
 is the binary representation of x/ and

y/ respectively.
Now we discuss how the watermark is extracted. After

the Booking mobile agent reach the home platform it delivers
all the results and flags set to a Home Agent. This whole
process is explained by the following pseudo code.

Table 1
Watermark Embedding Process

x y l h (h�)
2

h� x� y� (x��� (y���

90 72 81 18 100010 34 98 64 1100010 1000000
57 55 56 2 100 4 58 54 111010 110110
51 49 50 2 100 4 52 48 110100 110000
52 48 50 4 1000 8 54 46 110110 101110
49 45 47 4 1000 8 51 43 110011 101011
54 45 49 9 10001 17 58 41 111010 101001
50 48 49 2 100 4 51 47 110011 101111
54 48 51 6 1010 10 59 49 111011 110001
49 48 48 1 10 2 49 47 110001 101111
58 48 53 10 10010 18 62 44 111110 101100
56 53 54 3 101 5 57 52 111001 110100
52 48 50 4 1000 8 54 46 110110 101110

52 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 1, January 2007

Step 1: get a list of graph heads and deserialize each graph
Step 2: Get the value of x/ and y/

Step 3: Calculate new l �and h� using (5) & (6).
Step 4: Autheticate watermark.If the watermark bit is

present or not?
Step 5: Extract watermark if authenticated.
Step 6: Calculate the original values of x and y using the

transformation in equation (7) & (8). h is the value
of h/ after watermark bits are removed

Step 7: Check the flags accordingly to swap the values if
necessary.

Step 8: Get the final result(x and y)

 l/= � �yx ��� /2 (5)

yxh ����� (6)

� � 2/1���� hlx (7)

hxy �� (8)

Table 2
Watermark Extraction

x� y� l� h� (h)�
2

(h)
2

h x y

98 64 81 34 100010 10010 18 90 72

58 54 56 4 100 10 2 57 55

52 48 50 4 100 10 2 51 49

54 46 50 8 1000 100 4 52 48

51 43 47 8 1000 100 4 49 45

58 41 49 17 10001 1001 9 54 45

51 47 49 4 100 10 2 50 48

59 49 51 10 1010 110 6 54 48

49 47 48 2 10 1 1 49 48

62 44 53 18 10010 1010 10 58 48

57 52 54 5 101 11 3 56 53

54 46 50 8 1000 100 4 52 48

The watermark results are represented by a graph data
structure. The following piece of Java code shows the graph
data structure representation.

class WatermarkGraph implements Serializable{
private int selfReference;
private WatermarkGraph nextNode;
private WatermarkGraph head;

}
This data structure can be used to represent our

watermark graph. This data structure has three fields. The
first field self Reference is of type integer and it is used to
represent the number of zeros. For every 1 in the result we
draw a new node. The nextNode is a reference to the next
node in the graph structure. The nextNode Null value
represent that we have reached to the end of the input. The

third field is the head and it used to keep track of the head
of the graph.

Figure 1: Graph Representation of the Results.

The graph above encodes the binary value of
100100010.

5. ATTACKS AND SECURITY ANALYSIS

There are many possible attacks to prevent Mobile agent
from getting the results without being tampered. The attacks
that we discuss for our approach are also common against
program transformation attacks.

Before giving a security analysis of our approach we
would like to stress that no technique or algorithm can
guarantee unresponsiveness against all attacks and often we
have to choose a tradeoff between some factors to achieve
the desired level of security.

The approach proposed by this paper has also some
limitations.

5.1 Reverse Engineering of Code

One of the shortcomings is that an attacker can still capture
the code and makes as many copies of it as he wishes. That
means the attacker can decompile the code also. There are
so many decompilers publicly available [19, 20, 21]. So
getting the mobile agent code is not a difficult problem for
an attacker. So generally for mobile agent it is always
assumed that the attacker will always have a copy of the
code. So if we can not stop the attackers to capture the code
we can make it difficult for him to understand the code and
extract some useful information out of it.

5.2 Static Analysis of Code

Now the attacker can perform analysis of the code in order
to understand the code and in particular the part/routine of
the code that build the watermark structure. So what can be
done then? Fortunately for the last few years there have been
many techniques developed to make a program difficult to
understand against such attackers. Obfuscation being the
most popular and strongest of all, the goal of an obfuscator
is to produce a program that has the exact same function but
a lot more difficult for an attacker to understand and reverse
engineer [22].

5.3 Cropping Attacks

For an attacker to be successful locating the watermark is
the first job. In order to locate the watermark the code that
construct and embeds the watermark must be analyzed. This

2 3 1

A Hybrid Approach for Mobile Agent Security using Reversible Watermarking 53

task can be made difficult by using some of obfuscation
techniques [22]. That means the attacker can apply some
sort of deobfuscation to remove the effects of the obfuscator.
After the analysis of code, the heap allocated data structures
must be access to locate and remove the watermark. The
code that builds a heap allocated data structure is difficult
to analyze for an attacker and generally it is believed that
given two pointer it is undecidable to find whether they refer
to the same memory location [8, 9].

The fact that the results are watermark and not have
the actual values makes the task of a malicious host even
more difficult although not impossible. Another reason is
that all the attacks must be carried out in a way without
affecting the function of the program. The routine that
actually extract watermark from the mobile agent results
is not part of the mobile agent code so there is little
information in the executable code about the exact location
of the watermark. The Home Aglet (HA) is responsible for
authentication and extraction of watermark in order to get
the results.

5.4 Code Optimization Attacks

A clever attacker may use some code optimization techniques
to remove the code that builds the dynamic graph structure.
The code optimizer will recognize the graph that build the
graph structure as dead code and try to remove it. One of
the strength of proposed approach is that since all the
watermark is constructed inside a heap allocated dynamic
data structure so the strong typing feature of the java can be
used as a relying factor to check the authentication of the
embedded watermark.

6. CONCLUSION

This paper has introduced a new method for mobile agent
security using graph based reversible watermarking. Mobile
Agent Security is a challenging problem to solve because of
the diverse nature of the execution environment of mobile
agents. By using mobile agents in any client/server
application we can perform a lot of task more conveniently
and efficiently but there are always some security
vulnerabilities as well. On one hand it is easy to capture and
reverse engineer the mobile agent code. we can use
obfuscation to make it difficult for an attacker to understand
the code. On the other hand we can use heap allocated
dynamic data structures to hide the watermark results of a
mobile agent. Using reversible watermarking for
authentication of the mobile agent is a new idea. It guarantees
the recovery of the original untampered results after the
watermark has been found to be authentic.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Project Number: 60671064), the
Science Foundation of Guangdong Province (Project
Number: 05109511), the Science and Technology Plan of

Guangdong Province (Project Number: 2006B37430001),
the Foundation for the Author of National Excellent Doctoral
Dissertation of China (Project Number: FANEDD-200238),
the Multidiscipline Scientific Research Foundation of Harbin
Institute of Technology (Project Number: HIT.MD-2002.11),
the Scientific Research Foundation of Harbin Institute of
Technology (Project Number: HIT.2003.52), the Foundation
for the Excellent Youth of Heilongjiang Province, the
Program for New Century Excellent Talents in University
(Project Number: NCET-04-0330), and the Chinese national
863-Program (Project Number: 2005AA73120).

REFERENCES

[1] Todd Sundsted, “An Introduction to Agents.”
www.javaworld.com/javaworld/jw-06-1998/jw-06-
howto.html

[2] Dag Johansen, “Mobile agent Applicability”,
Proceedings of the Mobile Agents 1998, Berlin, Springer-
Verlag, Lecture Notes in Computer Science; vol. 1477,
ISBN 3-540-64959-X,(1998), pp. 9-11 September, 1998.

[3] Pattie Maes, Robert H. Guttman and Alexandros G.
Moukas, “Agents That Buy and Sell “, Communication
of ACM, Vol. 42, no. 3, pp. 81-91, March 1999.

[4] Stavros Papastavrou, George Samaras and Evaggelia
Pitoura, “Mobile Agent for WWW Distributed Database
Access”, Proceedings of IEEE International Conference
on Data Engineering (ICDE99), 1999.

[5] Gian Pietro Picco and Mario Baldi, “Evaluating
Tradeoffs of Mobile Code Design Paradigms in Network
Management Applications”, Proceedings of 20th
International Conference on Software Engineering,
ICSE98, Kyoto, Japan IEEE CS Press, 1998.

[6] D.B. Lange and M. Oshima, Seven Good Reasons for
Mobile Agents. Communication of the ACM, 42(3): 8-
91, March 1999.

[7] Christian Collberg, Clark Thomborson, “Software
watermarking: Models and Dynamic Embeddings”. In
Symposium of Principles of Programming Languages
(POPL), pages 311-324, 1999

[8] G. Ramalingam. The Undecidability of aliasing. ACM
Toplas, 16(5): 1467-1471, September 1994.

[9] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG,
or a Cyclic Graph? A Shape Analysis for Heap-directed
Pointers in C. In POPL’96, pages 1-15, St. Petersburg
Beach, Florida, 21-24 January 1996.

[10] D.B. Lange and M. Oshima, Programming and
Deploying Java Mobile Agents with Aglets, Addison
Wesley.

[11] T. Sander and C.F. Tschudin. Protecting Mobile Agents
against Malicious Hosts. In Mobile Agents and Security,
volume 1419 LNCS. Springer-Verlag, 1998.

[12] O. Esparza, M. Soriano, J.L. Mu˜noz, and J. Forn´e. Host
Revocation Authority: A way of Protecting Mobile

54 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 1, January 2007

Agents from Malicious Hosts. International Conference
on Web Engineering (ICWE 2003), LNCS. Springer-
Verlag, 2003.

[13] Vigna J., Cryptographic Traces for Mobile Agents, in:
Giovanni Vigna (Ed.), Mobile Agent Security, LNCS
1419, 1998, Springer, pp 137-153

[14] Fritz Hohl. A Framework to Protect Mobile Agents
by using Reference States. In International
Conference on Distributed Computing Systems, pages
410-417, 2000.

[15] Hyungjick Lee, Jim Alves-Foss and Scott Harrison. “The
use of Encrypted Functions for Mobile Agent Security”.
In the Proceedings of 37th Hawaii International
Conference on System Sciences 2004.

[16] O. Esparza, M. Fernandez, M. Soriano, J.L. Munoz, and
J.Forne. “Mobile Agent Watermarking and
Fingerprinting: Tracing Malicious Hosts”. In Database
and Expert System Applications (DEXA 2003), volume
2736 of LNCS. Springer-Verlag, 2003.

[17] O.Esparza, M.Soriano, J.L.Munoz, and J.Forne.
“Detecting and Proving Manipulation attacks in Mobile
Agent System”. In First International Workshop, MATA
2004, Florianopolis, Brazil, October 20-22, 2004.

Proceedings, Volume 3284 of LNCS. Springer Verlag,
2004.

[18] Fritz Hohl, “Time Limited Black box Security: Protecting
Mobile Agents from Malicious Hosts”, LNCS, Volume
1419, Springer-Verlag London, UK 1998.

[19] Pavel Kouznetsov. Jad-the fast java decompiler, version
1158e for Linux on Intel platform. Avaliable http://
kpdus.tripod.com/jad.html, 5 august, 2001.

[20] Jerome Miecznikowski. Dava Decompiler, part of SOOT,
a Java Optimization Framework, Version 7.1.09.
Avaliable http://www.sable.mcgill.ca/software/soot/ 17
December, 2003.

[21] Peter Ryland. Homebrew decompiler, version 0.2.4.
Avaliable http://www.pdr.cx/projects/hbd/, 15 february,
2003. Available http://www.pdr.cx/projects/hbd/.

[22] Christian Collberg, Clark Thomborson, and Douglas
Law. Breaking Abstraction and unstructuring data
structures. In IEEE international conference on computer
languages, ICCL’98, Chicago, IL, May 1998.

[23] Tian, Jun. “Wavelet-based Reversible Watermarking for
Authentication”. Proc. SPIE Vol. 4675, p. 679-690,
Security and Watermarking of Multimedia Contents IV,
Edward J. Delp; Ping W. Wong; Eds.

