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Abstract: The analytical study of an infinite, lubricated slider bearing consisting of connected surfaces with a second and
third order (non-Newtonian) fluid as lubricated is considered. The homotopy analysis method (HAM) for strongly non
linear problems is used to give explicit analytic solution of the problem. The velocity profile and pressure distribution for
inclined slider bearing is calculated approximately. The variation of pressure and from that the load carrying capacity of
the bearing is presented for a range of fluid and bearing parameters.
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1. INTRODUCTION

The presenceof fluid film greatly reducesthe diding friction
between solid objects. The enormous practical importance
of this effect has stimulated a great deal of research both
theoretical and experimental. The problem of dlider bearing
with non-Newtonian lubricants is difficult to analyze
mathematically because of the nonlinear character of the
governing equations of motion. Numerical methodsremain
available, but are somewhat more costly. In this paper, we
revisit the problem discussed by [1,13] and solved it
approximately by homotopy analysis method introduced by
Shijun Liao[2, 3]. The homotopy analysisisa powerful new
analytic method that remains valid even with strong
nonlinearity and with no small or large parameter. The
method is successfully applied [4- 9] to discuss different
problems of fluid flow. We see from our solution that
homotopy analysis method is more general than the
perturbation method. In 2002, Muhammet Y Urisoy [1]
employed the perturbation method to study the problem by
introducing asmall parameter. We see from the solution and
numerical plots that homotopy analysis is with good
agreement with the perturbation method.

Second and third grade (Non-Newtonian) fluids are
considered by many researchers[21-23] dueto its practical
importance and with the devel opment of modern industrial
materials. Some relevant studies on non-Newtonian
lubrication in bearing have been published. Harnoy and
Hanin [10] studied e stico-viscousIubricantsin dynamically
| caded bearing. Bourgin [11] applied the congtitutiverdation

of second order fluid to study of non-Newtonian lubrication
with perturbation approach. Rajagopal [12] carried out a
study of the creeping flow. Kacou, Rajagopal & Szeri [13]
studied the flow of second and third grademodd in journal
bearing. J.A. Tichy [14] studied the non-Newtonian
lubrication with convected Maxwell moddl. Y Uriisoy [15]
has studied the pressure distribution in aslider bearing with
Powell-Eyring model and constructed a perturbation
solution. YUrtsoy & Pakdemirli [16] studied theflow in a
dlider bearing with aspecial third gradefluid. Buckholz [17]
used a power law model as anon-Newtonian lubricantin a
dlider bearing. Agrawal [18] studied the magnetic fluid based
porousinclined slider bearing. Bhat and Patdl [15] used the
magnetic fluid based secant shaped porous slider bearing.
Ng. and Saibel [19] used athird gradefluid and studied the
flow occurring in the dider bearing. Ng. and Saibel [20]
used a third grade fluid and studied the flow occurring in
the dider bearing.

2. ANALYSIS

Consider the two dimensional bearing (Fig. 1), in which the
planey = 0 moveswith constant velocity U in thex-direction
and thetop of the bearing (the dider) isfixed. It isassumed
that thefluidinertiaissmall, the sideleakageisnegligible,
and theflow isincompressible and laminar.

The non-dimensional basic lubrication equations for
second and third gradefluid flow in thefilm region [1, 13]
are
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Figure 1: Two Dimensional Bearing
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It follows from Eq. (5) and Eq. (6) that
P =p (7)

and thusthemodified pressure doesnot vary acrossthefilm
thickness.
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The dimensionless boundary conditions of the problem
are

u(0)=1, u(p)=0, +(0)=0, w()=0 9)
where 1, 1, andA; arematerial constants.

We note that the Eq. (1) serves only to determine the
vanishing small velocity component v, given the dominant
component u by Eq. (8).

In this paper we now employ the homotopy analysis
method to sol ve the viscous flows of non-Newtonian second
and third gradefluidsin adider bearing and propose ana ytic
solution of Eq. (8) and Eq. (9).

3. HOMOTOPY ANALYSISMETHOD

3.1. Basic ldea

To explain the basic idea of homotopy analysis method,
let us consider the differential equation

Nu(v)=0 (10)
inwhich § isanonlinear operator, and u(y) isan unknown
function of the independent variable. Let u,(y) denote an
initial approximation u(y) and ¢ denotesan auxiliary linear
operator with the property

fu=0Wheny =0 (11)

We then construct afamily of equations, the so-called
homotopy

Alp(v:q)ql=0-q)[p(yiq) - uo ()]
+qN[p(yiq)]

whereg < [0,1] is an embedding parameter and ¢(y;¢) isa

(12)

functionof ¥y andq . Wheng =0 andg =1, we have
alp(via)aly—o = tIt(via)-uo (v)]

and
alp(viq)alg=1 =N ¢(v: 1) (13)
respectively.
From Eg. (12) it follows that
o(v:0)=u_(») (14)
isthe solution of the equation
Alg(viq)ql,, =0 (15)
and
#(vi1)=u(y) (16)
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istherefore the solution of the equation
Hlo(y:a);aly=1 =0 (17)
Thuswhen the embedding parameter ¢ increasesfrom
0to 1, thesolution ¢(y;¢) of the equation
Hp(viq)q]=0 (18)
depends upon the embedding parameter ¢ and variesfrom

initial approximation u, () tothesolution u(y) of Eq. (10).

In topology this kind of continuous variation is called
deformation.

3.2. Velacity Profile
Tofind theve ocity profile, we definethe nonlinear operator

N (y,q)] as

* 2~ ~ 2~
Nir(v.q)]= ‘ZC +2 ';iyz’q)ﬂi{a”gi’q)a ';iyz,q)

3~ 3~ ~ 2~
+7(g)2 i(y.q) il q)ﬁa';g,zq)_ 5'4(6?!1)5 gx(gy,q)}
dit(yq)\ &%(y.q)
+6/13( ;» ] P~ 19

Further more we construct the Zeroth-order deformation
equation

-g)fa(v.q)-u.()]=-aXl(vg)] (20
subject to the boundary conditions
i(v.q)=1 a y=0
(21)

ﬁ(y,q):O a y=»>b
where u, (y) isaninitial guess approximation and¢ isan
embedding parameter such that ¢ < [0,1]. We choose the

auxiliary linear operator ¢, (which isthelinear part of the
Ea. (8)

dz
{=—F+
i (22)
and theinitial guess approximation
dp (v® b y
==L | 1-Z
wb)="5 ( 2 2 )\ (23)

which can be obtained by solving Eq. (8) with 4, = 4; =0
subject to the boundary conditions (9). Obviously,

wheng =0 andg =1 wehave
#(y.0)=u,(y) y>0 (24)
and
#(y2)=uly) (25)

respectively.

Therefore, according to Eq. (24) and Eq. (25) the
variation of ¢ from 0 to 1 isjust the continuous variation
i(y,q) from the initial guess approximation u, (y) to the
unknown solution u(y) of the original Eq. (8). Thiskind
of continuous variation is called deformation in topology.
Assumethat the deformation #(y, ¢) governed by Egs. (19)-
(25) is smooth enough sothat

ufk)(y)zak”(y'CI) k>1

oq" (26)

q=0
namely, the f -th order deformation derivative exists. Then,
in view of equation (24) and Taylor’s formula, we
expandii(y, ) in the power series

7(r.q) = Wpi{M}qk

27
“| Tk (27)
We naotethat the convergenceregion of the aboveinfinite

seriesisindependent upon (= 0). We define
u(y)

”k()’):Tv

Using Egs. (25), (27) and (28), we get atg =1, the
important relationship

k=1 (28)

0

”(J’):Z”k ()

k=0

(29)

between the initial guess approximation u,(y) and the
unknown solution u(y). Now differentiating the Zeroth-
order deformation Egs. (19) and (20), k -timeswith respect

tog andthensdting ¢ =0 weobtainfor k¢ >1 thek-thorder
deformation equation

4 [”k (J’) - Ikuk—l(y)] =-R, (J’) (30)
with the boundary conditions
u, (0)=u, (p)=0 (31) inwhich
1 " N[u(y,
RN, (J’) = (k _1) ﬁq[k(ly q)] (32
and
0, k<1
X = {1, k> 2 (33)

where prime denotes derivatives with respect toy .

By putting ¢ =1 in Egs. (30) - (32), weobtain first order
solution.

In particular differentiating Eq. (19) with respect tog,
we obtain



58

(l—q)f{%z’q)—o}—[E(y,q)—uo(y)]: {ygyzﬁh {5u(y ) 0% (y.q)

Ox (’3)/2

+;(y,q)%+u(y )i 0a) 0i(r.g) 0%y, q)} 6/13(617()”‘])J2 0%i(y.q)
Y

ox0oy? dy Oy 0x dy oy?
_dp” | | 9%u(v.g),  [ou(y.q)d%u(y.q), 2%u(y.q)0* u(y q) 5u(y q)
T g — A > +v(v.q)
dx 6)/ Gq ox Gy Gq 8yc’9q 6)/ 6
ov(y.q)%i(y.q) , ~ 0%u(y.q), ouly.q)d%uly, q) ou(y.q) %u(y, q) (34)
+ 3 +u(y,q) 5
oq dy 0x0y “0q oq oxoy? Oy 0yoxdq

~ azﬁ(y,q)53l7(y,q)}+ 613{2(05(%q)J5217(%(1)azﬁ(y,qh(@ﬁ(y,q)f 5317(%(1)”

dydq  dydxdq dy oy? ay? dy dy2oq

Making use of Eq. (26) and settingg =0, we have

2 3 3 2 2 *
/{u(l)} lﬁu {8u08uo+vca u°+uc o u, au 8u0}+613(8i] 8u°_dL]

Ox 8y2 8y3 8x8y2 Oy Oxdy oy 8y2 dx (35)
and making use of Eg. (22), we have
@) (2 * (.2
du _ _aldfdp |y _yb {1_1} |, [ [y b
dy? de| de| 2 2 b\ dx x| 2 2
ofa-2 || d ||y, b L\ dfdp [ b} 1
b))dx\ dx dx 2) bldx| dx 2) b
(36)

3 2 *\ 2
_613 d_p y2+b__by +i d_p — ﬂ_l dL
dx 4 b2 Ldx b dx
Now integrating Eq. (36) twice with respect to y , and using the boundary conditions (31), we have
* 4 3 3 2 3 * * 4 3 3
W d| G|y by by \y7 3 by Ndp |\ Jdp [y by by,
de\ de\ 24 12 24 2 6b 3 ) dx de\24 12 24
22y by lld(dp) [ (0 by® By 3® vdfdp [y By*
2 6b 3 ))dx| dx dc| 6 4 1 2b 2|dx| dx| 6 4

+\3
b’y ¥ .y dp” | [y* 0% by By [dp | ¥y
o e m— = | BAg | o | | S e -
2] 2v 2 dx 1112 8 6 24| dx 2b 2b (37)

Summing up theresult, wewrite
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* 2 * 4 3 3 2 3 *
u(y) =27 Yo [ v d]dp bL+b_y N A
x|\ 2 2 b dx\ dx 12 24 2 6b 3 ) dx

dp (¥t b By (20 by iﬂ_ﬂﬁ_£+ﬁ Ly
dx (24 12 2 2 6 3 )|dr| dr (6 4 12) 2 2

2 ;2 2 N a4 42 2 3,3
LA [dp” _bL+b_y SR | I VR /-0 N A o
dx dx 4 1 2 2 dx 12 8 6 24 (38)
* 2 *N2( 2 3
dp | y° v |l | (¥ _»" by
dx )| 2b% 2b dx 2 3 6
Eq. (38) is the analytical solution of the problem by by b d (5 dpt b2 ap
using HAM. [1261 2 h {[mde[]
4. PRESSURE DISTRIBUTION b5 ap b3\ d(dp) b2 ab?
Using the continuity equation together with the derived +[120dx_24J [ dx] 144 dx }
velocity profile, one may find the ordinary differential (43)
equation for the pressure distribution. Integrating the ) b° [dp J b [dp ]
3
continuity equation v(0)=v(b)=0 240( dx ) 12
b ou b v whereC isconstant of integration.
.[0 ady = —L ady =v(0)-v(b)=0 (39) After simplification wewrite (43) as
with . 5
A 6 120 [1d[b°dp b Ydp
jb %y=0 (40) dx  p? B3 p%dx( 10 dx 2 )| dx
o 0 Ox b dp’ _1\d(dp’) 1ab
Substituting Eq. (38) into Eq. (40), we get 0 o 2 el i Fear
(44)
3 L+ 5 .+ .3 * | BE[dp 1(dp" || _
4 _b_dLJré_/h d|b>dp _b” | dp. o 3{20( dx ] +;,2( dx J}
de| 12 dx 2 dx| 120 dx 24 ) dx
b5 an’ b3\ d (d b2 db? Again we wish to solve (44) for p" by using HAM. We
—L—— p construct the Zeroth-order deformation equation as in Eq.
] 3 ) (42) '
b> | dp b | dp
64 +—|— 1|} |=0 3 &
3 240( dx J 12( dx J (1—q)ze[1;;*()6,q)_p:(x)]=_qﬁzff"f’angfi)_hc+
X 2
- 3\
An approximate solution will be searched for the above ll{;;[lbzo & agj’q) 24] 4 agj’q)
equation since it variable coefficient and highly nonlinear
differential in p” . The associated boundary conditions are . b° dp(x.q) b°)d diz‘*(x,q) b2 db?
120  dx 24 | dx dx 144 144 (45)

Integrating Eq. (41) w.r.t. x 210l ~ ar o

P (0)=p"(1)=0 (42) [(r*( )JS [f*( )]
6 B{bS P (xa)| | b[dp (x.q H
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subject to the boundary conditions

7 (x,q)=0 at x:O}

7 (xg)=0 a x=1 (46)
taking theinitial guess approximation as
* 6x(b—-r 6x(l-x+rx—r
b (X) ) bz((1+ r)) ) ((1—()( + rx)2 (1+ V))J (47)
where
b(x) = (1—x + rx), r= by (48)
by

istheinclined dider in whichb, isthemaximum andb, is
the minimum value of p . Definingthelinear operator as

oot

dx

and an embedding parameter ¢ such that ¢ € [0,1].

(49)

Settingg =0 and g =1 in Eq. (38) respectively, we get

7 (x0)=p.(x) x>0 (50)

and

7 (x)=p"(x) (51)
Therefore, according to Eq. (50) and Eg. (51), thevariation

of ¢ from O to 1 is just the continuous variation p"(x,q)
from theinitial guessapproximation p (x) totheunknown

solution p”(x) of Eq. (44). Assume that the deformation

Namely, the k-th order deformation derivative exists.
Then, according to Eq. (50) and Taylor’s formula, we
have

© *(k)
5 v)=p! <x>+z{ﬁ°7‘ﬂqk

(53)
k=1
Defining
*(k)
d@=ﬂﬂw (54)

Using Egs. (51), (53) and (54), weget at g = 1, theimportant
reationship

P 0= pi)

k=0

(55)

between the initial guess approximation p’ (x) and the
unknown solution p” (x). Setting g = 0 in Eq. (45), we get
7 (x,0)= p!(x) (56) In particular, differentiating (45) w. r.
t. ¢ , making use of (52) and setting g =0, we have

o] _{E_EJZ_C}

b2 dp. _1)d[dp. +1@}
10 dx 2 )dx| dx 6 dx

57
7 (x,q) governed by Eq. (45) and Eq. (51) is smooth , i
enough so that 62 b*(dp.. L1 dp;
5 (5.q) $120( dx | p2| dx
*(k y
pc( )(x):aq—k . kZl (52)
p
Making use of EqQ. (49), we get,
3( 1 2r —2x — 2rx — 23r% + x% + 2r%x
r—
dp:(l) ~ 12r 12C B +2r3x —2r%x2 1 r%x% 11
dx (r+1)(rx—x+1)3 (1—x+rx)3 ! 5(r+1)2(rx—x+1)5
3 6(r—1)(r2x—x—2r+1 rlx— x—11r +1)+ (r—l)}+6/1 54(r—1)3(x+rx—1)3
5(r + 1)2 (rx - X+ 1)5 6 5(r + 1)3 (rx - X+ 1)7 (58)

LS+ —1)H

(r + 1)(rx - X+ 1)5
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Integratingw.r.t. x, gives

p*(l) _ { 6C “D— 6r
’ (r —1)(rx -Xx+ 1)2 (r —1)(r + 1)(rx -Xx+ 1)2
157rx — 23x —162r + 26177 + 29x” —30x° + 20x” — 5x° + 23r%x + 30rx® ~157r°x
— 40rx® +15rx° —58-2x2 + 60r2x3 — 20r2x* — 60r3x3 + 2974x? — 5r2x° + 80r3x* - 30r-%x3
W —25r3x° = 20r%x* + 30r°x3 + 25r%x° — 40r°x* +5r°x° + 20r%x% —15%%° +5-'x° + 9

30(r + 1)2 (rx -x+ 1)4
l{SOrx —105x —15r + 272 =137 +105x2 — 35x3 —157x2 + 78-2x — 30r3x j (59)
—210r%x? +105r2x> + 30r3x? +105r*x? - 105-*x® —15-°x? + 35r°x3 + 35
25(r - 1)(r + 1)3 (rx - x+ 1)6

where p isconstant of integration.
Now using the boundary conditions (46), we get

40321275 + 78512, — 38881315 —1280r° 4, + 1872425 + 25r° 4,
150r(r - 1)(r + 1)3 (rx —-x+ 1)2

{1872/13 +1305r, — 38884, — 90012 —1800r> — 900r* — 810r2, — 25r %j
W) | _

P, =

18724, +1260r4, +1152r1, 128534,

L 1872r% 45 = 2572y +25r°4, + 25r°4, ) 6r
300r* —300r? — 1507 +150r-° (r =) + Lrx - +2)?

157rx — 23x —162r + 2612 + 29x% — 30x> + 20x* — 5x° + 23r2x + 30> — 1571 3x — 40/x*

+15rx° —58r2x2 + 60r2x> — 20r%x* — 60r3x> + 29r%x? — 5-2x° + 80r3x* — 30r%x° — 25/3%°

—20r%x% + 30}”5)c33 +25¢4x5 — 40r5x* +5r5x° + 20r8x* —15-5x° + 5+ 'x% + 9 (60)
30(r + 1)2 (rx —x+ 1)4
24/1{30rx ~105x —15r + 272 —13-% +105x2 — 35x% —157x2 + 78r2x — 30rx j
—210r%x? +105-2x3 + 30r3x? +105r-*x2 —105-* x> —15-°x2 + 35-°x% + 35
25(r - 1)(r + 1)3 (rx —-x+ 1)6

Therefore, the final pressuredistribution woul d then be
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D

x D . 6x(1—x+rx—r) 6r
p :p°+ l' +...:pc+pl+...:

(1— X+ rx)2 (1+ r) (r —1)(r + 1)(rx —-r+ 1)2
18724 +1305r4, — 388815 — 90012 —1800r> — 900r* — 81024, — 2534,
{4032&13 +785r% 1, — 388831, —1280r°4, +1872r% 15 + 25r°4; )
- 150r(r - 1)(r + 1)3 (rx —-x+ 1)2
. (1872/13 +1260r4, + 115277, —1285r3 4, + 18721215 — 25r* 2, + 25r° 2, + 25}’621)
300r* —300r-2 —150r +150r°

157rx — 23x —162r + 261 + 29x% — 30x> + 20x* — 5x° + 23r%x + 30rx> — 157 3x — 40rx*
+15rx° —58r2x2 + 60r2x3 — 20r2x® — 60r3x3 + 29r%x2 — 5-2x5 +80r3x? — 30r*x® — 25/-3x°
—20r%x% + 301”5)c33 +25¢4%% — 40r5x % +5r5x° + 20r8x% —15¢8x° + 57 7% +9
A 30(r + 1)2 (rx —x+ 1)4
24/1{30rx —105x —15r + 272 —13% +105x2 — 35x% —157x2 + 78r2x — 30rx J
—210r%x? +105-2x3 + 30r3x? +105-*x2 —105-*x> - 15-°x2 + 35r°x% + 35
- 25(r — 1)(r + 1)3 (rx —x+ 1)6

5. NUMERICAL PLOTS

In the next section, the pressuredistribution in the bearing

isdetermined for various values of the parameter 4, 45 and
clearancerétior.

Fig. 2 indicatesthe variation of the pressure with respect
tox wheny isfixed, 1; =0 and 4, isvaried. It isseen that

the pressureincreaseswith increasing 4, , which mean higher
load capacity for the bearing.

P aT

0

t
03

Figure3: r=054=0(-4=0,---,4,=01-+,4,=02,---,4,=0.3)

In Fig. 4, for 4, = 153 = 0.1, the dimensionless length
versus dimensionless pressure is plotted for different

clearanceratiosy . It isseen that pressurebuild up for lower
clearanceratios.

pressure

15T

Figure 2: r=054,=0(-4=0,---,4=01,--,4=02,---,4, =03 L ‘

Fig. 3indicatesthe variation of the pressurewith respect T |
tox when p isfixed, 4, =0 and 4, isvaried. Itisseen again e

)
that the pressureincreases with increasing A5 , which mean

Q [ [E]

higher load capacity for the bearing. Figure4: 4, =A,=0(—+=03--,r=05,--,r =0.7)

(61)
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Therefore we conclude that the maximum load carrying
capacity of the bearing depends on parameter 4;, 15 of the
[ubricant and clearanceratio r. Thepresent analysis suggests
that the load capacity of a bearing lubricated with second
and third grade fluid can be obtained after giving an
appropriate design to the bearings.

6. CONCLUSION

In this paper the homotopy analysis method is successfully
applied to give an explicit analytical solution of the dider
bearing with non-Newtonian lubricants. Thevel ocity profile
and pressuredigtribution in theindined shaped dlider bearing
are cal culated using homotopy analysis method. In thisstudy
we do not need the so called small parameter assumption at
all, which is necessary in the perturbation method. That is
the homotopy analysis method isindependent of any small
or large quantities. Thefindings of the present study provide
useful information for engineersin designing and application
of bearing systems. Thus from the above discussion we
conclude that the analytical method used in thispaper isto
be useful for the analysis of lubrication theory and also for
solving nonlinear problemswith strong nonlinearity and with
no small or large parameter. The success of the homotopy
analysis method for considered problems verifiesonce again
that it is indeed in a useful analytic tool for non-linear
problems in science and engineering, although further
improvements are necessary.
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