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Abstract: The analytical study of an infinite, lubricated slider bearing consisting of connected surfaces with a second and
third order (non-Newtonian) fluid as lubricated is considered. The homotopy analysis method (HAM) for strongly non
linear problems is used to give explicit analytic solution of the problem. The velocity profile and pressure distribution for
inclined slider bearing is calculated approximately. The variation of pressure and from that the load carrying capacity of
the bearing is presented for a range of fluid and bearing parameters.
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1. INTRODUCTION

The presence of fluid film greatly reduces the sliding friction
between solid objects. The enormous practical importance
of this effect has stimulated a great deal of research both
theoretical and experimental. The problem of slider bearing
with non-Newtonian lubricants is difficult to analyze
mathematically because of the nonlinear character of the
governing equations of motion. Numerical methods remain
available, but are some what more costly. In this paper, we
revisit the problem discussed by [1,13] and solved it
approximately by homotopy analysis method introduced by
Shijun Liao [2, 3]. The homotopy analysis is a powerful new
analytic method that remains valid even with strong
nonlinearity and with no small or large parameter. The
method is successfully applied [4- 9] to discuss different
problems of fluid flow. We see from our solution that
homotopy analysis method is more general than the
perturbation method. In 2002, Muhammet Yürüsoy [1]
employed the perturbation method to study the problem by
introducing a small parameter. We see from the solution and
numerical plots that homotopy analysis is with good
agreement with the perturbation method.

Second and third grade (Non-Newtonian) fluids are
considered by many researchers [21-23] due to its practical
importance and with the development of modern industrial
materials. Some relevant studies on non-Newtonian
lubrication in bearing have been published. Harnoy and
Hanin [10] studied elstico-viscous lubricants in dynamically
loaded bearing. Bourgin [11] applied the constitutive relation

of second order fluid to study of non-Newtonian lubrication
with perturbation approach. Rajagopal [12] carried out a
study of the creeping flow. Kacou, Rajagopal & Szeri [13]
studied the flow of second and third grade model in journal
bearing. J.A. Tichy [14] studied the non-Newtonian
lubrication with convected Maxwell model. Yürüsoy [15]
has studied the pressure distribution in a slider bearing with
Powell-Eyring model and constructed a perturbation
solution. Yürüsoy & Pakdemirli [16] studied the flow in a
slider bearing with a special third grade fluid. Buckholz [17]
used a power law model as a non-Newtonian lubricant in a
slider bearing. Agrawal [18] studied the magnetic fluid based
porous inclined slider bearing. Bhat and Patel [15] used the
magnetic fluid based secant shaped porous slider bearing.
Ng. and Saibel [19] used a third grade fluid and studied the
flow occurring in the slider bearing. Ng. and Saibel [20]
used a third grade fluid and studied the flow occurring in
the slider bearing.

2. ANALYSIS

Consider the two dimensional bearing (Fig. 1), in which the
plane y = 0 moves with constant velocity U in the x-direction
and the top of the bearing (the slider) is fixed. It is assumed
that the fluid inertia is small, the side leakage is negligible,
and the flow is incompressible and laminar.

The non-dimensional basic lubrication equations for
second and third grade fluid flow in the film region [1, 13]
are
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On defining the generalized pressure
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It follows from Eq. (5) and Eq. (6) that

)(** xpp � (7)

and thus the modified pressure does not vary across the film
thickness.
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The dimensionless boundary conditions of the problem
are

� � � � � � � � 0,00,0,10 ���� bvvbuu (9)

where 321 and, ���  are material constants.

We note that the Eq. (1) serves only to determine the
vanishing small velocity component v , given the dominant
component u by Eq. (8).

In this paper we now employ the homotopy analysis
method to solve the viscous flows of non-Newtonian second
and third grade fluids in a slider bearing and propose analytic
solution of Eq. (8) and Eq. (9).

3. HOMOTOPY ANALYSIS METHOD

3.1. Basic Idea

To explain the basic idea of homotopy analysis method,
let us consider the differential equation

� �� � 0�� yu (10)

in which � is a nonlinear operator, and � �yu  is an unknown

function of the independent variable. Let � �yu�  denote an

initial approximation � �yu  and � denotes an auxiliary linear

operator with the property

0�u�  When 0�u (11)
We then construct a family of equations, the so-called

homotopy

� �� � � � � � � �� �
� �� �qyq

yuqyqqqyH

;

;1;;ˆ

�

��
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(12)

where � �1,0�q  is an embedding parameter and � �qy;�  is a

function of y and q . When 0�q  and 1�q , we have

� �� � � � � �� �yuqyqqqyH �� ��� ;0;;ˆ ��

and

� �� � � �1;1;;ˆ yqqqyH �� ��� (13)

respectively.
From Eq. (11) it follows that

� � � �yuy
�

�0;� (14)

is the solution of the equation

� �� � 0;;ˆ
0 ��qqqyH � (15)

and

� � � �yuy �1;� (16)

Figure 1: Two Dimensional Bearing
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is therefore the solution of the equation

� �� � 01qq;qy;φH ��ˆ (17)

Thus when the embedding parameter q  increases from

0 to 1, the solution � �qy;�  of the equation

� �� � 0;;ˆ �qqyH � (18)

depends upon the embedding parameter q and varies from

initial approximation � �yu�  to the solution � �yu  of Eq. (10).

In topology this kind of continuous variation is called
deformation.

3.2. Velocity Profile

To find the velocity profile, we define the nonlinear operator

� �� �qyu ,~�  as
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Further more we construct the Zeroth-order deformation
equation

� � � � � �� � � �� �qyuqyuqyuq ,~,~1 ����� �� (20)

subject to the boundary conditions

� �
� � byqyu
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at0,~
0at1,~

(21)

where � �yu�  is an initial guess approximation and q  is an

embedding parameter such that � �1,0�q . We choose the

auxiliary linear operator � , (which is the linear part of the
Eq. (8))

2
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and the initial guess approximation
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which can be obtained by solving Eq. (8) with 031 �� ��
subject to the boundary conditions (9).  Obviously,

when 0�q  and 1�q  we have

� � � � 0,0,~ �� yyuyu � (24)

and

� � � �yuyu �1,~ (25)

respectively.

Therefore, according to Eq. (24) and Eq. (25) the
variation of q from 0 to 1 is just the continuous variation

� �qyu ,~  from the initial guess approximation � �yu�  to the
unknown solution � �yu  of the original Eq. (8). This kind
of continuous variation is called deformation in topology.

Assume that the deformation � �qyu ,~  governed by Eqs. (19)-
(25) is smooth enough so that
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namely, the k -th order deformation derivative exists. Then,
in view of equation (24) and Taylor ’s formula,  we

expand � �qyu ,~  in the power series
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We note that the convergence region of the above infinite

series is independent upon � �0�h . We define
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Using Eqs. (25), (27) and (28), we get at 1�q , the
important relationship
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k yuyu (29)

between the initial guess approximation � �yu�  and the

unknown solution � �yu . Now differentiating the Zeroth-

order deformation Eqs. (19) and (20), k -times with respect

to q  and then setting 0�q  we obtain for 1�k  the k-th order
deformation equation

� � � �� � � �yyuyu kkkk ���� �1�� (30)

with the boundary conditions

� � � � 00 �� buu kk  (31) in which
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where prime denotes derivatives with respect to y .

By putting 1�k  in Eqs. (30) - (32), we obtain first order
solution.

In particular differentiating Eq. (19) with respect to q ,
we obtain
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Making use of Eq. (26) and setting 0�q , we have
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and making use of Eq. (22), we have
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Now integrating Eq. (36) twice with respect to y , and using the boundary conditions (31), we have

�
�

�

�

�
�
�

�
�
�
�

�
���

�
�

�
�
�
�

�
�

�
�
�

�
�
�
�

�
��

�
�

�
�
�
�

�

�
�

�

�
��

�
�

�
�
�
�

�
����

�
�

�
�
�
�

�
�

�
�
�

�
�
�
�

�
���

�
�

�
�

�
�

�

�
�
�
�

�
��

�
�

�
�
�
�

�
���

�
�

�
�
�
�

�
����

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��

�
�
�

�
��

�
�

�
�
�
�

�
��

�
�
�

�
��

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
����

�
�

�
�
�
�

�
���

�
�

�
��

632

22246812
6

2212

46221246362

241224362241224

322*

2

2*332243*

3

22

23*2223**32

334**32334*

1
1

by

b

yy

dx

dp

b

y

b

y

dx

dpybbyyby

dx

dpy

b

yyb

byy

dx

dp

dx

dy

b

yybbyy

dx

dp

dx

dp

dx

dby

b

yy

ybbyy

dx

dp

dx

dpby

b

yyybbyy

dx

dp

dx

d
u

�

��

(37)

Summing up the result, we write
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Eq. (38) is the analytical solution of the problem by
using HAM.

4. PRESSURE DISTRIBUTION

Using the continuity equation together with the derived
velocity profile, one may find the ordinary differential
equation for the pressure distribution. Integrating the

continuity equation � � � � 00 �� bvv
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Substituting Eq. (38) into Eq. (40), we get
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An approximate solution will be searched for the above
equation since it variable coefficient and highly nonlinear
differential in *p . The associated boundary conditions are

� � � � 010 ** �� pp (42)

Integrating Eq. (41) w. r. t. x
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whereC  is constant of integration.
After simplification we write (43) as
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Again we wish to solve (44) for *p  by using HAM. Wee
construct the Zeroth-order deformation equation as in Eq.
(19):
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subject to the boundary conditions
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taking the initial guess approximation as
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where
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is the inclined slider in which 1b  is the maximum and 2b  is

the minimum value of b . Defining the linear operator as

dx

d
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and an embedding parameter q  such that � �1,0�q .

Setting 0�q  and 1�q  in Eq. (38) respectively, we get
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and
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Therefore, according to Eq. (50) and Eq. (51), the variation

of q from 0 to 1 is just the continuous variation � �qxp ,~*

from the initial guess approximation � �xp*
�  to the unknown

solution � �xp*  of Eq. (44). Assume that the deformation

� �qxp ,~*  governed by Eq. (45) and Eq. (51) is smooth
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Namely, the k-th order deformation derivative exists.
Then, according to Eq. (50) and Taylor’s formula, we

have
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Using Eqs. (51), (53) and (54), we get at 1�q , the important
relationship
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between the initial guess approximation � �xp*
�  and the

unknown solution � �xp* . Setting 0�q  in Eq. (45), we get
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Making use of Eq. (49), we get,
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Integrating w. r. t. x , gives
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whereD  is constant of integration.
Now using the boundary conditions (46), we get
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Therefore, the final pressure distribution would then be
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5. NUMERICAL PLOTS

In the next section, the pressure distribution in the bearing
is determined for various values of the parameter 31 , ��  and
clearance ratio r.

Fig. 2 indicates the variation of the pressure with respect

to x  when r  is fixed, 03 ��  and 1�  is varied. It is seen that

the pressure increases with increasing 1� , which mean higher

load capacity for the bearing.

In Fig. 4, for 1.031 �� �� , the dimensionless length

versus dimensionless pressure is plotted for different
clearance ratios r . It is seen that pressure build up for lower
clearance ratios.

Figure 2: 3 1 1 1 10.5, 0( 0, , 0.1, , 0.2, , 0.3)r � � � � �� � � � � � �� � �

Fig. 3 indicates the variation of the pressure with respect

to x  when r  is fixed, 01 ��  and 3�  is varied. It is seen again

that the pressure increases with increasing 3� , which mean

higher load capacity for the bearing.

Figure 3: 1 3 3 3 30.5, 0( 0, , 0.1, , 0.2, , 0.3)r � � � � �� � � � � � �� � �

Figure 4: 1 3 0( 0.3, , 0.5, , 0.7)r r r� �� � � � � �� �
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Therefore we conclude that the maximum load carrying
capacity of the bearing depends on parameter 31 , ��  of the
lubricant and clearance ratio r. The present analysis suggests
that the load capacity of a bearing lubricated with second
and third grade fluid can be obtained after giving an
appropriate design to the bearings.

6. CONCLUSION

In this paper the homotopy analysis method is successfully
applied to give an explicit analytical solution of the slider
bearing with non-Newtonian lubricants. The velocity profile
and pressure distribution in the inclined shaped slider bearing
are calculated using homotopy analysis method. In this study
we do not need the so called small parameter assumption at
all, which is necessary in the perturbation method. That is
the homotopy analysis method is independent of any small
or large quantities. The findings of the present study provide
useful information for engineers in designing and application
of bearing systems. Thus from the above discussion we
conclude that the analytical method used in this paper is to
be useful for the analysis of lubrication theory and also for
solving nonlinear problems with strong nonlinearity and with
no small or large parameter. The success of the homotopy
analysis method for considered problems verifies once again
that it is indeed in a useful analytic tool for non-linear
problems in science and engineering, although further
improvements are necessary.
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