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MULTIPLE POSITIVE SOLUTIONS FOR A CLASS
OF ONHOMOGENEOUS ELLIPTIC EQUATIONS ON
PERIODIC DOMAINS

Tsing-San Hsu

ABSTRACT: In this article, we consider the following problem
—Au+u=flx,u)+h(x)inQ,u>inQ, u € H} (Q), *)

where 0 <f(x, u) <au + bOu”*1 forallx € Q, u>0with a, €[0, 1), b,> 0, 2 <p < 2N/(N
-2)),if N23,2 <p<oif N=2and Q is a smooth periodic domain in R". We prove that
(*) has at least two positive solutions if

[

p/2(p-2)
H(Q) < CPS

and 7> 0, h #0 in Q, where S is the best Sobolev constants in Q and
Cp — ball(p—Z) ([? —2)([?— 1)7(,;71)/(,;72) (1- ao)(p—l)/(p—Z).
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1. INTRODUCTION

In this paper, we shall study the multiplicity of solutions of semilinear elliptic
equations

{—Au+u = f(x,u)+h(X)inQ,

ue Hy(Q),u>0inQ, (.1

) .. . ~ 2N
where Q is a smooth domainin RY, h € H'(Q),N>2and2<p<2’, 2 = N_2 for
N >3, 2" = for N =2, and the nonlinear function f(x, t) satisfies the following

assumptions:

. of of ) .
(fH)fix, 1) e C'(Q xR, R) and MQE(X, t) :E(X’ 0) uniformly in x € Q;

(f2) there exist a, €[0, 1) and b, > 0 such that
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O<flx,n)<ajpt+bp " forx e Q,1>0,
where 2 <p <27
(f3) there exists a constant 0 > 2 such that

0<OF(x, 1) <fix,t)t,forallx € Q,t>0
where F(xt) = E f(x,s)ds;
(f4) thre exists f:R — R such thatllfm f(x,t)= ?(t) uniformly for bounded

t>0, f(xt)> T(t) ,forallx € Q, >0, and lim S(x%1) =oo uniformly in

t—w© t

x e Q;

2

0
(f5) fix, -) € CX0, +o0) and gf(X,l)ZO forallx e Q,r>0;

(f5) f(x, 1)/t is strictly increasing in 7 uniformly in x € Q in the following sense:

inf ﬁ(f(x’t)jmfor all0<r, <7,

te[rl,rz],er al‘ t

Let
S =inf{],(|Vul* + w?)dx : u € H(Q), | JuPdx=1},
C,, — bg””’*z)(p —2)(p— 1)y -] — ao)m— Dip=2)

We also assume that:

() A g < C, 8720

h2) |l ) <C,S77

If Q is bounded, see Bahri-Berestycki [2], Bahri-Lions [3], Tanaka [16] and the
references therein for similar problems. If Q is the whole space R”, Adachi-Tanaka
[1], Cao-Zhou [6], Hirano [10], Jeanjean [12] and Zhu [18] have showed the existence
of at least two positive solutions of (1.1) under some suitable conditions. For Q is an
infinite strip, Hsu [11] has studied the multiplicity of positive solutions of similar
problems. The main aim of this paper is to study (1.1) on the general periodic domains
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(see Definition 2.1). In this paper, we used the fact that the concentration compactness
principle holds on periodic domains and some ideas of Adachi-Tanaka [1] and
Cao-Zhou [6], to prove our main results.

Now, we state main results in the following:

Theorem 1.1: Let Q be a smooth domain in R, If (f1) (f2), (k1) hold, h(x) >0
and h(x) #0 in Q, then problem (1.1) has at least one positive solution.

Theorem 1.2: Let Q be a periodic domain in RY and A(x) > 0, h(x) #0, h(x) €
LX(Q) N LY(Q) (< NI2if N>4, g=2if N=2,3) hold. If (f1) — (f5) and (h1)"
hold, then problem (1.1) has at least two solutions, one of which is a local minimizer
of I(u).

Theorem 1.3: Let Q be a periodic domain in R". If (f1) — (f4) and (f5)" hold,
then there exists a constant M > 0 such that if h(x) > 0, h(x) # 0 and ||h||H,1(Q) <M,

then problem (1.1) has at least two solutions, one of which is a local minimizer
of I(u).

2. PRELIMINARIES

In this section, we shall give some notations and some known results. Let H,(£2) be
the Sobolev space of the completion of C°(€2) under the norm |||, where

Jul=(, (Ivuf+ )

Throughout this paper, we denote <, > the usual scalar product in H(€2), the
universal constants by C and C, (i = 1, 2, ...) unless some special statement is given,

and set ||u||p = (J.Q|u|pdx)l/p for 1 <p<oandu e L/(Q), U, = SX‘EJ£|U(X)| for u €

0 0? ) )
L*(©), and denote ax f(x 1) and el f (X, t) by f'(x, ) and f"(x, 1), respectively, in
what follows.
Definition 2.1: Let Q be a domain, there is a partition {Q } of Q and points

{y.}-, in R" satisfying the following conditions:

(i) {y.}., forms a sub-group of R,
(i) € is bounded;
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(i) Q =y +Q,.

Then Q is called a periodic domain.

Now, we give some typical examples of periodic domains:
Example 2.2: QO = R" is the whole space.

Example 2.3: Q = O x R” is an infinite strip in R", where O is a bounded
domainin R", m+n+N,m=>1andn<1.

Example 2.4: Q ={(y, z) € R" xR". r, <|y| <r,} is an infinite hole strip, where
m+n=N,m=>1,n>1andr,>r >0.

We seek solutions of (1.1) as critical points of the functional / associated with (1.1)
and given by

| (u) = %.[Q [|Vu|2+ uzj dx— J'Q F(X, u*)dx—J.Q hudx.

where F (x,u) :I: f(xt)dt forallx € Q andu € R.

Since we look for only positive solutions, we may assume without loss of
generality that

fix,t)=0forall x e Q and ¢ <0.
Then I(u) belongs to C'(H(€2), R) under assumptions (f1) — (f2). Moreover, we

have

Lemma 2.5: Assume (f1) and (f2), >0 and suppose that u € H(€2) is a critical
point of I(u). Then u(x) is a nonnegative solution of (1.1). Moreover, if u # 0 or
h #0, then u is a positive solution of (1.1).

Proof: Suppose that I'(u) = 0, then for all y € H (), <I'(u), \ >=0. Thus u is
a weak solution of
—Au + u = fix, u*) + h(x) in Q,
and by (f2) and & >0, fix, u*) + h(x) is nonnegative. Then by the maximum principle

we have that u is nonnegative. If u #0 or & #0, we can see that f{x, u*) + h(x) >0 and
Sfix, u*) + h(x) #0, then u is a positive solution of (1.1).

Let us now introduce the equation at infinity associated with equation (1.1) ina
periodic domain Q.



Multpiple Positive Solutions for a Class of Nonhomogeneous Elliptic... 141

{ ~Au+u= f(u)in Q,
@.1)

ueHé(Q),u >01in Q,

and its associated energy functional I defined by
w 1 2 2 =/ 4
I"(u)= IQ [5(|Vu| +|u| )—kF(u )}dx, ue Hy(Q),

where F(U) = jo T (t)dt.

If (f1) — (f3) hold, using results of Chen-Tzeng [7, Remark 5], we know that
(2.1) has a ground state w(x) > 0 in € such that

S*=1"(w)= supI” (1w). 2.2)

Let us recall that a sequence {u,} c H (1) (Q) is called a (PS) -sequence for I(u) if

I'(u) —> cand I'(u ) > 0 as n — . We say also [ satisfies (PS) -condition if any

(PS) -sequence possesses a strongly convergent sequence in H}(Q). We need the

following concentration compactness principle which provides a precise description
of a behavior of (PS) -sequence for I.

Lemma 2.6: Assume (f1) — (f4) hold. Let {u } be a (PS) -sequence of I. Then
there exists a subsequence (still denoted by {u }) for which the following holds:
there exist an integer / > 0, sequence {x;} < Q, asolution i of (1.1) and solutions u/,
1 <i<[lof (2.1), such that, for some subsequence {u }, as n — oo, we have

u, — 0 weakly in H,(Q),
|

L(u,)— 1 (T)+ D17 (),
i=1

u, —(U+ leui (X— XL)J —> 0 strongly in H,(Q)

i=1

‘XL‘%“% )ﬂiq—x.i‘—)‘)oforlﬁi;éjél,

where we agree that in the case [ = 0 the above holds without ', x'.
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Proof: Lemma 2.6 can be derived directly from the arguments in Bahri-Lions
[4] (or [13], [14], [15], [17]). Thus we omit the proof here.

We also quote an asymptotic behavior of the solution of (1.1) at infinity in Hsu
[11].

Lemma 2.7: Let Q be a C"! unbounded domain in R, If (f1), (f2), (k1) hold and
Ue Hy(Q) is a weak solution of (1.1) in Q, then u € L*(Q) and |Iim u(x)=0.

Proof: See Hsu [11] for the proof.

3. THE PROOFS OF THE MAIN RESULTS

In this section, we give the proofs of our main results. Repeating the same arguments
explored by Cao-Zhou [6], we can deduce Theorem 1.1.

We define

J(u)

1
E,[Q(WUF+(1_80)U2)dx—%J.Q|U|pdx—IQ hudx,
A ={ueH(Q):<J(u),u>=0},

2 2
A = {u e A:ful” —ap Jul, ~ b (p-Du] > O}.
First, we quote the following theorem for the special case f(x, u) = au + b’ in
Cao-Zhou [6].
Theorem 3.1: Let Q2 be a smooth domain in R" and 4 satisfy (41). Then

¢, =1infJ =infJ
A A*

is achieved at a point w, € A* which is a critical point for J. Moreover, if h(x) > 0 and
h(x) # 0, then w, is a positive solution of the following equation.

{—Au +u=agu+bu’" +h(x)in Q,

ueHé(Q),u>0in Q. @.1

Proof: Modifying the proof Cao-Zhou [6, Theorem 2.1]. Here we omit it.

Proof of Theorem 1.1: It follows from Theorem 3.1 that under conditions of
Theorem 1.1, (3.1) has a positive solution w,. By (f2), w, is a weak supersolution of
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(1.1). On the other hand, 0 is a subsolution of (1.1). Thus, by the standard barrier
method, (1.1) has a solution u such that 0 <u, <w, (see [9]). Since h(x) >0 and A(x)
# 0, by the maximum principle, we have that u, > 0. Thus we complete the proof of
Theorem 1.1.

Next, we look for another positive solution of (1.1) by mountain pass type
argument. We introduce the following auxiliary problem:

{—Au +u= f(x,u)+Ah(x)in Q,

we H(Q),u>0in Q%> 0. (3-2),

If (h1)* holds, then there exists A, > 1 such that

%ol 1) = 2ol 10 < €87 /2P =2

H'(Q) H'(Q)

namely, (h1)* still holds for h = A h. Therefore, it follows from Theorem 1.1 that
(3.2), hasa positive solution u Wthh is a supersolution of (1.1). As in the proof of
Theorem 1.1, we can find a ml(r)nmal solution u of on the interval [0, u, ], that is
0 <u <u, (see [9] for the definition of minimal solution). Now, we shall prove that
u, is also a local minimizer of /(). Similarly as in Cao-Zhou [6], we have

Lemma 3.2: Assume (f1) — (f5) hold, the minimization problem

inf{ jQ [|w|2 +(1- f'(x,0)° jdx ve H)(Q), jQ (f (x,uy)— f'(x,00)v’dx = 1}.

can be achieved by some u,> 0 Furthermore, p > 1.

Proof: By (f1) and (f2), we have that f'(x, 0) <a, € [0, 1),
[l [[7f + a= £y jax = a-af

Indeed, by the definition of u we know that 0 < p < +o0. Let {v } < H (Q2) be a
minimizing sequence of p that is

Jo FCott) = £ O2de = Tand ||

i}dx—)uasn—)oo.
This implies that {v } is bounded in H;j(€2), then there is a subsequence, still
denoted by {v } and some v, € Hj(Q)such that
v — v, weakly in H (Q),

v — v, almost everywhere in Q,
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v — v, strongly in L} (Q)for2<s<?2".
Thus,

r (= fx, 02 |dx = .

J;) UVVO‘Z + _fr(x,O))v(f]dx < liglijnf jQ [‘an
To prove that v achieves, p it suffices to show that

JQ (f'(x,uo)—f'(x,O))védx =1.
By Lemma 2.7 and (f1), we have f"(x, u,) — f'(x, 0) as |x| — oo, it follows that
there exists a constant C > 0 such that
|f'(x, uy) = f'(x, 0)] < Cforall x € Q.

Furthermore, for any ¢ > 0, there exists R > 0 such that for x € Q and |x| > R,
|f'(x, u)) —f'(x, 0)| < &. Let B, = {x € R": |x| < R}, then we have

2
v, —vo‘ dx‘

. ¢ G = (x,0)

2
v, —VO‘ dx

< J, ol Cuttg) = (x,0)

<€l

It follows from the Sobolev embedding theorem that there exists n,, such that for

n2 n,
IBRmQ

Since {v,} is bounded in H)(2), this implies that there exists a constant C, > 0
such that
J.Q\BR

Therefore, we conclude that forn > n,

v =vifdes [ |F G = f (x,0)

2
v, —VO‘ dx.

2
v, —VO‘ dx+8_[
O\By

2
v, —vo‘ dx <e.

2
v, —VO‘ dx <C,.

UQ F(xuy)y, —vo\zdx‘ <Ce+Ce.

Take € — 0, we obtain that
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[ (£ ()~ F (30)) i =1.

Hence

'[Q[‘Vvo‘er(l—f'(x,O))vg]dx > .

This implies that v achieves p. Clearly, v | also achieves . Hence we may assume
that v, > 0 in Q and v, satisfies

=Av, + (1 =f"(x, 0)v, = u(f' (x, uy) = f'(x, 0))v,. (3.3)
By the maximum principle for weak solutions (see Gilbarg-Trudinger [8, Theorem
8.19]), (f1) and (f5)", we deduce that v, >0 in Q.

We shall now prove that p > 1. By the definition of U, and u, we obtain
—A(uko —-u,) + (Mko -u) = flx, uko) - fix, uy)) + (A, — Dh(x)
> f'(x, uy) (uko —uy) + (A, — Dh(x) (3.4)
(by f"(x, u) 20 for x € Q)
Multiplying (3.4) by v, and integrating it on €, we get

[V (1, =10 ) Vo + | (1, =1y ) vy
> [ £/ Coug)(m, —ttg) vodr+ [ (N = 1) h(x)w,dx
> ij'(x, )y, =y ) vy 3.5)
By (3.3), we have
ij(u% — ) Vg + [ (16, =1y ) voelx
=u_(F(xay) = F(2,0)) (10, ) vocx+ [ £ (x,0)(1, =1y )voclx. (3.6)
By (3.5) and (3.6) we deduce that

uj x uo (x O))(u% uo)vodx > I x uo) f'(x,O))(uxU —u, )vodx,
which implies that p > 1.
By the fact that p > 1, we have

_[Q (|Vv|2 +(1—f'(x,0)) )dx> u-[ x uo) I (x,O))vzdx (3.7)
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forallv e H (Q).

Lemma 3.3: If (f1) — (f5) and (21)" hold, then u, is a local minimizer of /, that
is, there exists an g > 0 such that

I(u, +v) > I(uy) for all v e H)(Q), |v||< ¢, (3.8)
In particular, we can find a suitable k > 0 such that
I(u,+v) > I(u,) +« for [v]| = ¢ (3.9)
Proof: By (3.7), for every v € H (), we have

1 1
Iu, +v) = E"u()”2 +§”v”2 + IQ (Vuovv + uov)dx

—JQ F(x,u0 +v)dx—jQ huodx—JQ hvdx
= I(uo)+%.'-Q (|Vv|2 +(1—f’(x,0))v2)dx

—J.Q(F(x,uo +v)—F(x,uo)—f(x,uo)v—%f’(x,O)vzjdx

- I(uo)+%[1—ljjﬂ (|Vv|2 +(1—f’(x,0))v2)dx

1)

+ijﬂ(|w|2 +(1—f’(x,0))v2)dx

—J.Q(F(x,uo +v)—F(x,uo)—f(x,uo)v—%f’(x,O)vzjdx

v

1) B (1= )
1,

-1
1) B e

F(x,uy+v)=F(x, uy))—f (x,uo)v—; 1(x, ug)v? \dx
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- '[ I (XU +8)—f (1)~ f '(X,uo)s)dsdx

From Lemma 2.7, we deduce that u, € L*(€2) and limm_> i, (x) =0. Thus, by (1)

and (f2), we obtain

f(x,uo +s)—f(x,u0)—f’(x,uo)s

hm = 05
s—0 Ky
and
0 < limsup f sty +9)= f(xm) = F' ()5 <b,.

—1
5§00 Sp

This implies that for any & > 0 there exists C_> 0 such that

fOuy +5)— f(xuy)— f'(x,u,)s < 8s+C8s”’l, forxeQ, s>0.

Therefore, by (3.10) and the Sobolev inequality, we have
I I f(xuy+s)- (x,uo)—f'(x,uo)s)dsdx

< j IM f(xuy+s)- (x,uo)—f'(x,uo)s)dsdx

IA

€ 2
SM
2

Thus, for any € > 0 there exists C_> 0 such that

-1
Iy +v)> I(uo)+(“2—u—§j”v”2 c

Taking € = ¢ > 0 small enough, we have

1ty +v) 2 1 (1) + 2L o for o] <,

for which we deduce (3.8) and (3.9) for suitable « > 0.
For p>0, we denote B ={u € H)(Q) : |lull < p}.

(3.10)
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Lemma 3.4: Assume that (f1) — (f4) hold. Then there exists a constant M > 0
such that if h(x) Q 0, h(x) £0, ||A]

. < M, then we have

() there exists a constant p, > 0 such that

I(u) >0 forallu e aBpo,
(ii) there exists u, € B, is alocal minimizer of /, that is
(i) = 1r11;f I(u) <0.
Moreover, u, is a positive solution of (1.1).

Proof: See Adachi-Tanaka [1, Lemma 2.1, Propostion 2.2].

Let i be a ground state solution of (2.1), then we have S =1" (VT/) =
sup,., I ().

Lemma 3.5: If (f1) — (f5) hold, then

(i) there exists 7, > 0 such that I(u0 +th/) < I(uo) forz>1;
(ii) Stlzl(l)bl(uo +tW) < I(u0)+S°°.
Proof: (i) By (f3) and (f5), forall x € Q, 7,1, >0,

{ fxt, +1,)> f(x,t)+ f(x,t,),
fGot +1,) # f(x,0)+ f(x,1,).

By (3.11) and (f4), we have

(3.11)

I(uy+1w) = % NS +§ [ (73T 72 )x+2, (v, Vp +1,7) dx
—LF(x, u, +M)dx—jghu0dx—tIQthx

= I(uy)+I” (M)—IQ(F(X, uo+tv_v)—F(x,%)—F(tw)—;f(x,uo)v_v)dx
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= I(u0 +I _[J.m x u0+s f(x,uo)—f(x,s))dsdx
<I(uy)+1” (tw). (3.12)

B, (f4),so I” (IW) — —o0 as t — oo. Hence (i) holds.
(i1) From (i), we know that

sup/ (u, +1w)=supl (u,+1w).

t20 t<tq

By the continuity of / (uo + tv_v) as a function of 7 > 0 and /(0) = u,, we can find

some 7, € (0, 7)) such that

sup I (uy +1w) <1 (uy)+S.

0<t<ty

Thus, we only need to show that

sup I (uy +1w) <I(uy)+S".

1 <t<t,

To this end, by (3.11) and (3.12), we have

sup I (uy +1w)<1I(u,)+S” —1nfj I (x,uy+5))

1 <t<t,
<1<t 15110

_f(x’uo)_f(X,S)dsdx < I(u0)+S°°
Therefore (ii) holds.

Remark 3.6: We replace u, and (f5) by %, and (f5)", respectively. From (f5)", we

can easily deduce that (3.11) holds. Therefore, repeating the same argument in Lemma
3.5, we have

(i) there exists #,> 0 such that | (T, +tW) < | (T) for r > z;

(i) Sup! (T +tW) < 1 (Ty )+ S”™.
t>0
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Proof of Theorem 1.2: We shall use the Mountain Pass Lemma without the
(PS) condition in Brezis-Nirenberg [5] to obtain the existence of the second positive
solution. For this purpose, fixing 7, large enough such that (i) in Lemma 3.5 holds

||t0v_v|| > &, for g, chosen in Lemma 3.3.
Let u, be the minimum solution. Set

' ={p e C([0,1], H,(Q)) : p(0) = u,, p(1) = u, +1,i},

c =inf max I(p(s)).

pel’ s€[0,1]
By Lemma 3.3 and Lemma 3.5, we have
K+ I(u) <c<I(u)+S". (3.13)

Applying the Mountain Pass Lemma of Brezis-Nirenberg [5], there exists a
(PS) -sequence {u } such that

I(u)—c,
I'(u ) — 0 strongly in H'(Q).

Thus, by Lemma 2.6, there exist a subsequence (still denoted by {u }), an integer
[>0, sequence {x'} in Q, 1 <i</, asolution # of (1.1) solutions «' of (2.1) such that

We shall show that & is a solution different from u. In fact, by (3.13), we have
c=1G0) = I(uy)+ k> () if 1 =051 (uy)+S" >c21(w)+S” if [>1.

This implies that u # u,. Applying the maximum principle again, we have u >0
in Q. Hence we have completed the proof of Theorem 1.2.

Proof of Theorem 1.3: By Lemma 3.4, we have already shown the existence of

one positive solution u, as a minimizer of /() in Bpo' Here, we assume that
1(ity ) =inf{I(u):u e Hy(Q),I'(u) =0}. (3.14)

If not, clearly /() has a critical point different from #, and (1.1) has at least two
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positive solutions. Under (3.14), by Lemma 2.6, (PS) -condition holds for
ce(—oo,l(ﬁo)+S°°).
Set

r={pec([0.1],Hy(®)): p(0) =, p(1) =5, +1,7},

<=ifmat (P )
where 7, is defined as in Remark 3.6(i). By Lemma 2.6, Lemma 3.4, Remark 3.6 and
applying the Mountain Pass Lemma of Brezis-Nirenberg [5], we can use the same
argument in the proof of Theorem 1.2 to obtain the conclusion of Theorem 1.3.
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