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MULTIPLE POSITIVE SOLUTIONS FOR A CLASS
OF ONHOMOGENEOUS ELLIPTIC EQUATIONS ON

PERIODIC DOMAINS

Tsing-San Hsu

ABSTRACT: In this article, we consider the following problem

–�u + u = f(x, u) + h(x) in �, u > in �, u ��H
0
1 (�), (*)

where 0 ��f(x, u) ��a
0
u + b

0
up–1 for all x ���, u ��0 with a

0
 �������, b

0
 > 0, 2 < p < (2N/(N

– 2)), if N ��3, 2 < p < � if N = 2 and � is a smooth periodic domain in �N. We prove that
(*) has at least two positive solutions if

1
2( 2)

( )�
� �

�
� p p

pH
h C S

and h � 0, h ��� 0 in �, where S is the best Sobolev constants in � and

C
p
 = b

0
–1/(p–2) (p –2)(p–1)–(p–1)/(p–2) (1 – a

0
)(p–1)/(p–2).
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1. INTRODUCTION

In this paper, we shall study the multiplicity of solutions of semilinear elliptic
equations

1
0

( , ) ( ) in ,

( ), 0 in ,

�� � � � ��
�
� � � ��

u u f x u h x

u H u (1.1)

where � is a smooth domain in �N, h ��H–1(�), N ��2 and 2 < p < 2*, 
2

2
2

� �
�
N

N
 for

N � 3, 2*���� for N = 2, and the nonlinear function f(x, t) satisfies the following
assumptions:

(
 
f1) f(x, t) � C1(� × �, �) and 

0
lim ( , ) ( , 0)
�

� �
�

� �t

f f
x t x

t t
 uniformly in x ���;

(
 
f2) there exist a

0
 �[0, 1) and b

0
 > 0 such that
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0 < f(x, t) � a
0
t + b

0
tp–1 for x ���, t > 0,

where 2 < p < 2*;

(
 
f3) there exists a constant � > 2 such that

0 < �F(x, t) � f(x, t)t, for all x ���, t � 0

where 
0

( , ) ( , )� �
t

F x t f x s ds;

(f4) thre exists f � �� �  such that lim ( ) ( )
� ���

� �
x

f x t f t  uniformly for bounded

t > 0, ( ) ( )� �f x t f t , for all x ���, t � 0, and 
( )

lim
t

f x t
t��

�
� �  uniformly in

x ���;

(f5) f(x, �) ��C2(0, +�) and 
2

2
( ) 0f x t

t

�
� �

�
 for all x ���, t ��0;

(f5)* f(x, t)/t is strictly increasing in t uniformly in x ��� in the following sense:

� �1 2
1 2

, ,

( , )
inf 0 for all 0 .

t r r x

f x t
r r

t t� ��

� � � � � �� �� � �

Let

S = inf{��(��u�2 + u2)dx : u ��H
0
1(�), ���u�

pdx = 1},

C
p
 = b

0
–1/(p–2)(p – 2)(p – 1)–(p–1)/(p–2)(1 – a

0
)(p – 1)/(p – 2).

We also assume that:

(h1) 1
/ 2( 2)

( )
.p p

pH
h C S�

�
�
�

(h2) 1
2( 2)

( )
.p p

pH
h C S�

� �
�
�

If � is bounded, see Bahri-Berestycki [2], Bahri-Lions [3], Tanaka [16] and the
references therein for similar problems. If � is the whole space �N, Adachi-Tanaka
[1], Cao-Zhou [6], Hirano [10], Jeanjean [12] and Zhu [18] have showed the existence
of at least two positive solutions of (1.1) under some suitable conditions. For � is an
infinite strip, Hsu [11] has studied the multiplicity of positive solutions of similar
problems. The main aim of this paper is to study (1.1) on the general periodic domains
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(see Definition 2.1). In this paper, we used the fact that the concentration compactness
principle holds on periodic domains and some ideas of Adachi-Tanaka [1] and
Cao-Zhou [6], to prove our main results.

Now, we state main results in the following:

Theorem 1.1: Let � be a smooth domain in �N. If (f1) (f2), (h1) hold, h(x) � 0
and h(x) ��� 0 in �, then problem (1.1) has at least one positive solution.

Theorem 1.2: Let � be a periodic domain in �N and h(x) � 0, h(x) ��� 0, h(x) �
L2(�) ��Lq(�) (q < N/2 if N ��4, q = 2 if N = 2, 3) hold. If (f1) – (f5) and (h1)*

hold, then problem (1.1) has at least two solutions, one of which is a local minimizer
of I(u).

Theorem 1.3: Let � be a periodic domain in �N. If (f1) – (f4) and (f5)* hold,

then there exists a constant M > 0 such that if h(x) ��0, h(x) ��� 0 and 1 ( )� �
�

H
h M,

then problem (1.1) has at least two solutions, one of which is a local minimizer
of I(u).

2. PRELIMINARIES

In this section, we shall give some notations and some known results. Let H
0
1(�) be

the Sobolev space of the completion of C
0
�(�) under the norm �����, where

� �� �1 2
2 2

�

�
� � � ��u u u dx

Throughout this paper, we denote <, > the usual scalar product in H
0
1(�), the

universal constants by C and C
i
 (i = 1, 2, ...) unless some special statement is given,

and set � �1�

�
� �

pp

p
u u dx  for 1 � p < � and u � Lp(�), sup ( )

�
��

�
x

u u x  for u �

L�(�), and denote ( )
�

�
�

f x t
t

 and 
2

2
( )

�
�

�
f x t

t
 by f �(x, t) and f �(x, t), respectively, in

what follows.

Definition 2.1: Let � be a domain, there is a partition {�
n
} of �  and points

1{ }�
�n ny  in �N satisfying the following conditions:

(i) 1{ }�
�n ny  forms a sub-group of RN;

(ii) �
0
 is bounded;
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(iii) �
n
 = y

n
 + �

0
.

Then � is called a periodic domain.

Now, we give some typical examples of periodic domains:

Example 2.2: � = �N is the whole space.

Example 2.3: � = O × �n is an infinite strip in �N, where O is a bounded
domain in �m, m + n + N, m � 1 and n � 1.

Example 2.4: � ={(y, z) � �m × �n: r
1
 < �y� < r

2
} is an infinite hole strip, where

m + n = N, m � 1, n � 1 and r
2
 > r

1
 > 0.

We seek solutions of (1 1)�  as critical points of the functional I associated with (1 1)�
and given by

2 21
( ) ( )

2
� � �� �� �� � �� �

� � � � � � �� � �I u u u dx F x u dx hudx

where
0

( ) ( )� � ��
u

F x u f x t dt  for all x ��� and u � �.

Since we look for only positive solutions, we may assume without loss of
generality that

f(x, t) = 0 for all x ��� and t � 0.

Then I(u) belongs to C1(H
0
1(�), �) under assumptions (f1) – (f2). Moreover, we

have

Lemma 2.5: Assume (f1) and (f2),  h � 0 and suppose that u � H
0
1(�) is a critical

point of I(u). Then u(x) is a nonnegative solution of (1.1). Moreover, if u ��� 0 or
h ��� 0, then u is a positive solution of (1.1).

Proof: Suppose that I�(u) = 0, then for all ��� H
0
1(�), < I�(u), ��>= 0. Thus u is

a weak solution of

–�u + u = f(x, u+) + h(x) in �,

and by (f2) and  h ��0, f(x, u+) + h(x) is nonnegative. Then by the maximum principle
we have that u is nonnegative. If u ��� 0 or h ��� 0, we can see that f(x, u+) + h(x) � 0 and
f(x, u+) + h(x) ��� 0, then u is a positive solution of (1.1).

Let us now introduce the equation at infinity associated with equation (1.1) in a
periodic domain �.
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1
0

( ) in

( ) 0 in

u u f u

u H u

� �� � � ���
�

� � � � ����
(2.1)

and its associated energy functional I� defined by

� � � �2 2 1
0

1
( ) , ( ),

2
I u u u F u dx u H� �

�

� �� � � �� � �� �� ��

where 
0

( ) ( )� �
u

F u f t dt .

If (f1) – (f3) hold, using results of Chen-Tzeng [7, Remark 5], we know that
(2.1) has a ground state ( ) 0w x �  in � such that

� � � �
0

sup
t

S I w I tw� � �

�
� � � (2.2)

Let us recall that a sequence 1
0{ } ( )nu H� �  is called a (PS)

c
-sequence for I(u) if

I�(u
n
) � c and I�(u

n
) � 0 as n ���. We say also I satisfies (PS)

c
-condition if any

(PS)
c
-sequence possesses a strongly convergent sequence in 1

0 ( )H � . We need the

following concentration compactness principle which provides a precise description
of a behavior of (PS)

c
-sequence for I.

Lemma 2.6: Assume (f1) – (f4) hold. Let {u
n
} be a (PS)

c
-sequence of I. Then

there exists a subsequence (still denoted by {u
n
}) for which the following holds:

there exist an integer l � 0, sequence {x
n
i} ���, a solution u  of (1.1) and solutions ui,

1 � i � l of (2.1), such that, for some subsequence {u
n
}, as n ���, we have

�nu u  weakly in 1
0 ( )H � ,

� � � �
1

( )�

�

� � ��
l

i
n

i

I u I u I u

� �
1

0
�

� �
� � � �� �
� �

�
l

i i
n k

i

u u u x x  strongly in 1
0 ( )H �

��� � ��i i j
n n nx x x  for 1 ��i ��j ��l,

where we agree that in the case l = 0 the above holds without ui, x
n
i.
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Proof: Lemma 2.6 can be derived directly from the arguments in Bahri-Lions
[4] (or [13], [14], [15], [17]). Thus we omit the proof here.

We also quote an asymptotic behavior of the solution of (1 1)�  at infinity in Hsu
[11].

Lemma 2.7: Let � be a C1,1 unbounded domain in �N. If (f1), (f2), (h1) hold and
1
0 ( )� �u H  is a weak solution of (1.1) in �, then u � L�(�) and 

| |
lim ( ) 0
��

�
x

u x .

Proof: See Hsu [11] for the proof.

3. THE PROOFS OF THE MAIN RESULTS

In this section, we give the proofs of our main results. Repeating the same arguments
explored by Cao-Zhou [6], we can deduce Theorem 1.1.

We define

J(u) = � �� �2 2 0
0

1
1 ,

2 � � �
� � � � �� � �

pb
u a u dx u dx hudx

p

� = {u � H
0

1(�) : < J�(u), u >= 0},

�+ = � �2 2

0 02
: ( 1) 0 .�� � � � �p

p
u u a u b p u

First, we quote the following theorem for the special case f(x, u) = a
0
u + b

0
up–1 in

Cao-Zhou [6].

Theorem 3.1: Let � be a smooth domain in �N and h satisfy (h1). Then

0 inf infc J J
�� �

� �

is achieved at a point w
0
 ���+ which is a critical point for J. Moreover, if h(x) ��0 and

h(x) ��� 0, then w
0
 is a positive solution of the following equation.

1
0 0

1
0

( ) in

( ) 0 in

pu u a u b u h x

u H u

���� � � � � ���
�

� � � � ����
(3.1)

Proof: Modifying the proof Cao-Zhou [6, Theorem 2.1]. Here we omit it.

Proof of Theorem 1.1: It follows from Theorem 3.1 that under conditions of
Theorem 1.1, (3.1) has a positive solution w

0
. By (f2), w

0
 is a weak supersolution of
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(1.1). On the other hand, 0 is a subsolution of (1.1). Thus, by the standard barrier
method, (1.1) has a solution u

0
 such that 0 � u

0
 � w

0
 (see [9]). Since h(x) � 0 and h(x)

��� 0, by the maximum principle, we have that u
0
 > 0. Thus we complete the proof of

Theorem 1.1.

Next, we look for another positive solution of (1.1) by mountain pass type
argument. We introduce the following auxiliary problem:

1
0

( ) ( ) in

( ) 0 in 0

u u f x u h x

u H u

�� � � � � � ���
� � � � � �� � � ��

(3.2)�

If (h1)* holds, then there exists �
0
 > 1 such that

1 10 0( ) ( )
2 ( 2)p

pH H
h h C S p� �� �

� � � � � �

namely, (h1)* still holds for h�0
 = �

0
h. Therefore, it follows from Theorem 1.1 that

(3.2)�0
 has a positive solution u�0

which is a supersolution of (1.1). As in the proof of
Theorem 1.1, we can find a minimal solution u

0
 of on the interval [0, u�0

], that is
0 <u

0
 < u�0

 (see [9] for the definition of minimal solution). Now, we shall prove that
u

0
 is also a local minimizer of I(u). Similarly as in Cao-Zhou [6], we have

Lemma 3.2: Assume (f1) – (f5) hold, the minimization problem

� �2 2 1 2
0 0inf (1 ( 0)) ( ) ( ( ) ( 0)) 1v f x v dx v H f x u f x v dx

� � �� �
� �� �� �

� �� � � � � � � � � � � � �� �
can be achieved by some u

0 
> 0 Furthermore, � > 1.

Proof: By (f1) and (f2), we have that f �(x, 0) � a
0
 � [0, 1),

2 22
0(1 ( 0)) (1 )v f x v dx a v

� �
� �
� �� � �

�� � � � � � ��
Indeed, by the definition of � we know that 0 < � < +�. Let {v

n
} � H

0
1(�) be a

minimizing sequence of � that is

22 2
0( ( ) ( 0)) 1 and (1 ( 0)) asn n nf x u f x v dx v f x v dx n

� �
� �
� �� � � �

� � �� � � � � � � � � � ���� �
This implies that {v

n
} is bounded in H

0
1(�), then there is a subsequence, still

denoted by {v
n
} and some v

0
 � H

0
1(�)such that

v
n
 ��v

0
 weakly in H

0
1(�),

v
n
 � v

0
 almost everywhere in �,
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v
n
 ��v

0
 strongly in Ls

loc
(�) for 2 � s < 2*.

Thus,

2 22 2
0 0(1 ( 0)) lim inf (1 ( 0))n nn

v f x v dx v f x v dx
� � � �
� � � �
� � � �� ���� � � �

� �� � � � � � � � � � ��� �
To prove that v

0
 achieves, µ it suffices to show that

� � � �� � 2
0 00 1f x u f x v dx

�
� �� � � � ��

By Lemma 2.7 and (f1), we have f �(x, u
0
) � f �(x, 0) as �x�����, it follows that

there exists a constant C > 0 such that

�
 
f �(x, u

0
) – f

 
�(x, 0)� � C for all x ���.

Furthermore, for any ��> 0, there exists R > 0 such that for x ��� and �x� ��R,
�
 
f �(x, u

0
) – f �(x, 0)��< �. Let B

R
 = {x ���N : �x� < R}, then we have

2

0 0( ( ) ( 0)) nf x u f x v v dx� �

�
� � � ��

�
2 2

0 0 0 0( ) ( 0) ( ) ( 0)
R R

n nB \ B
f x u f x v v dx f x u f x v v dx� � � �

�� �
� � � � � � � � �� �

�
2 2

0 0
R R

n nB \ B
C v v dx v v dx

�� �
� � � � �� �

It follows from the Sobolev embedding theorem that there exists n
1
, such that for

n � n
1
,

2

0
R

nB
v v dx

��
� � ���

Since {v
n
} is bounded in H

0
1(�), this implies that there exists a constant C

1
 > 0

such that

2

0 1
R

n\ B
v v dx C

�
� � ��

Therefore, we conclude that for n � n
1
,

2

0 0 1( ) nf x u v v dx C C
�

� � � � � � ���
Take ��� 0, we obtain that
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� � � �� � 2
0 00 1f x u f x v dx

�
� �� � � � ��

Hence

� �� �2 2
0 01 0v f x v dx

� �
� �
� �� � �

�� � � � � ���
This implies that v

0 
achieves �. Clearly, �v

0
� also achieves �. Hence we may assume

that v
0
 ��0 in ��and v

0
 satisfies

–�v
0
 + (1 – f �(x, 0))v

0
 = �(

 
f �(x, u

0
) – f �(x, 0))v

0
. (3.3)

By the maximum principle for weak solutions (see Gilbarg-Trudinger [8, Theorem
8.19]), (

 
f1) and (

 
f 5)*, we deduce that v

0
 > 0 in �.

We shall now prove that ��> 1. By the definition of u�0 
and u

0
, we obtain

–�(u�0
 – u

0
) + (u�0

 – u
0
) = f(x, u�0

) – f(x, u
0
) + (�

0
 – 1)h(x)

> f �(x, u
0
) (u�0

 – u
0
) + (�

0
 – 1)h(x) (3.4)

(by f
 
�(x, u) � 0 for x ���)

Multiplying (3.4) by v
0
 and integrating it on �, we get

� � � �
0 00 0 0 0u u v dx u u v dx� �� �

� � � � �� �
� � �� � � �

00 0 0 0 01 ( )f x u u u v dx h x v dx�� �
� � � � � �� �

> � �� �
00 0 0f x u u u v dx��

� � � �� (3.5)

By (3.3), we have

    � � � �
0 00 0 0 0u u v dx u u v dx� �� �

� � � � �� �
� � � �� �� � � �� �

0 00 0 0 0 00 0f x u f x u u v dx f x u u v dx� �� �
� � �� � � � � � � � � �� � (3.6)

By (3.5) and (3.6) we deduce that

� � � �� �� � � � � �� �� �
0 00 0 0 0 0 00 0f x u f x u u v dx f x u f x u u v dx� �� �

� � � �� � � � � � � � � � �� �
which implies that � > 1.

By the fact that � > 1, we have

� �� �� � � � � �� �2 2 2
01 0 0v f x v dx f x u f x v dx

� �
� � �� � � � � � � � �� � (3.7)
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for all v ��H
0
1(�).

Lemma 3.3: If (
 
f 1) – (

 
f 5) and (h1)* hold, then u

0
 is a local minimizer of I, that

is, there exists an �
0
 > 0 such that

I(u
0
 + v) > I(u

0
) for all v ��H

0
1(�), ��v������

0
. (3.8)

In particular, we can find a suitable ��> 0 such that

I(u
0
 + v) > I(u

0
) + � for ��v���= �

0
. (3.9)

Proof: By (3.7), for every v � H
0
1(�), we have

I(u
0
 + v) = � �2 2

0 0 0

1 1
2 2

u v u v u v dx
�

� � � � ��

� �0 0F x u v dx hu dx hvdx
� � �

� � � � �� � �

= � � � �� �� �2 2
0

1
1 0

2
I u v f x v dx

�
�� � � � ��

� � � � � � � � 2
0 0 0

1
0

2
F x u v F x u f x u v f x v dx

�

� ��� � � � � � � � �� �
� ��

= � � � �� �� �2 2
0

1 1
1 1 0

2
I u v f x v dx

�

� � �� � � � � �� ��� �
�

� �� �� �2 21
1 0

2
v f x v dx

�
�� � � � �

� �

� � � � � � � � 2
0 0 0

1
0

2
F x u v F x u f x u v f x v dx

�

� ��� � � � � � � � �� �
� ��

� � � � � 2

0 0

1
1

2
I u a v

� �
� �

�

� � � � � � � � 2
0 0 0 0

1
2

F x u v F x u f x u v f x u v dx
� �
� �
� �
� ��
� �

�� � � � � � � � ��

= � � � � 2

0 0

1
1

2
I u a v

� �
� �

�
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� � � � � �� �0 0 0
0

v
f x u s f x u f x u s dsdx

�
�� � � � � � �� �

From Lemma 2.7, we deduce that u
0
 � L�(�) and lim�x�����u

0
(x) = 0. Thus, by (f1)

and (f2), we obtain

� � � � � �0 0 0

0
lim 0
s

f x u s f x u f x u s

s�

�� � � � � �
� �

and

� � � � � �0 0 0
01

0 limsup
p

s

f x u s f x u f x u s
b

s �
��

�� � � � � �
� � �

This implies that for any � > 0 there exists C� > 0 such that

1
0 0 0( ) ( ) ( ) for 0pf x u s f x u f x u s s C s x s�

��� � � � � � � � � � ��� � � (3.10)

Therefore, by (3.10) and the Sobolev inequality, we have

� � � � � �� �0 0 00

v
f x u s f x u f x u s dsdx

�
�� � � � � �� �

� � � � � � �� �0 0 00

v
f x u s f x u f x u s dsdx

� �

�
�� � � � � �� �

�
2

2
p

v C v�

�
� �

Thus, for any � > 0 there exists C� > 0 such that

� � � � 2

0 0

1
2 2

p
I u v I u v C v�

� �� � �
� � � � � �� ��� �

Taking � = �
0
 > 0 small enough, we have

� � � � 2

0 0 0

1
for

4
I u v I u v v

��
� � � � � �

�

for which we deduce (3.8) and (3.9) for suitable � > 0.

For � > 0, we denote B� ={u ��H
0
1(�) :���u�� < �}.
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Lemma 3.4: Assume that (f1) – (f4) hold. Then there exists a constant M > 0

such that if h(x) ��0, h(x) ��� 0, 1 ( )H
h M� �

� � then we have

(i) there exists a constant �
0
 > 0 such that

I(u) ��0 for all u ���B�0
,

(ii) there exists  ��
00u B  is a local minimizer of I, that is

� �
��

� � �
0

0 inf ( ) 0
u B

I u I u

Moreover, 0u  is a positive solution of (1.1).

Proof: See Adachi-Tanaka [1, Lemma 2.1, Propostion 2.2].

Let w  be a ground state solution of (2.1), then we have � �� ��S I w  =

� ��
�0supt I tw .

Lemma 3.5: If (f1) – (f5) hold, then

(i) there exists t
0
 > 0 such that � � � �� �0 0I u tw I u  for t � t

0
;

(ii) � � � � �

�
� � � �0 0

0
sup
t

I u tw I u S

Proof: (i) By (f3) and (f5), for all x ���, t
1
, t

2
 � 0,

� � � � � � ��
� � � � � � ���

1 2 1 2

1 2 1 2

( ) ( ) ( )

( ) ( ) ( ).

f x t t f x t f x t

f x t t f x t f x t (3.11)

By (3.11) and (f4), we have

� �0I u tw� = � � � � � �
� � �

� � � � � � � � �� � � 0

2
2 22 2

0 0 0

1
2 2 u

t
u u dx w w dx t w u w dx

� �0 0,F x u tw dx hu dx t hwdx
� � �

� � � �� � �

= � � � � � � � � � � � �� �0 0 0 0, , ,I u I tw F x u tw F x u F tw tf x u w dx�

�
� � � � � ��
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= � � � � � � � � � �� �0 0 00
, , ,

tw
I u I tw f x u s f x u f x s dsdx�

�
� � � � �� �

� � � �0 .I u I tw�� � (3.12)

B
y
 (f4), so � �I tw� � ��  as t ���. Hence (i) holds.

(ii) From (i), we know that

� � � �
0

0 0
0

sup sup
t t t

I u tw I u tw
� �

� � � �

By the continuity of � �0I u tw�  as a function of t � 0 and I(0) = u
0
, we can find

some t
1
 � (0, t

0
) such that

� � � �
1

0 0
0
sup

t t
I u tw I u S�

� �
� � � �

Thus, we only need to show that

� � � �
1 0

0 0sup
t t t

I u tw I u S�

� �
� � � �

To this end, by (3.11) and (3.12), we have

� � � � � �� �
1 01 0

0 0 00
sup inf

tw

t t tt t t
I u tw I u S f x u s�

�� �� �
� � � � � �� �

� � � � � �0 0f x u f x s dsdx I u S�� � � � � �

Therefore (ii) holds.

Remark 3.6: We replace u
0
 and (f5) by 0u  and (f5)*, respectively. From (f5)*, we

can easily deduce that (3.11) holds. Therefore, repeating the same argument in Lemma
3.5, we have

(i) there exists t
0
 > 0 such that � � � �0 0I u tw I u� �  for t � t

0
;

(ii) � � � �0 0
0

sup
t

I u tw I u S �

�
� � � �
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Proof of Theorem 1.2: We shall use the Mountain Pass Lemma without the
(PS) condition in Brezis-Nirenberg [5] to obtain the existence of the second positive
solution. For this purpose, fixing t

0
 large enough such that (i) in Lemma 3.5 holds

0 0�t w �  for �
0
 chosen in Lemma 3.3.

Let u
0
 be the minimum solution. Set

1
0 0 0 0{ ([0 1] ( )) (0) (1) }p C H p u p u t w� � � � � � � � � � � �

[0 1]
inf max ( ( ))
p s

c I p s
�� � �

� �

By Lemma 3.3 and Lemma 3.5, we have

� + I(u
0
) < c < I(u

0
) + S�. (3.13)

Applying the Mountain Pass Lemma of Brezis-Nirenberg [5], there exists a
(PS)

c
-sequence {u

n
} such that

I(u
n
) � c,

I �(u
n
) � 0 strongly in H–1(�).

Thus, by Lemma 2.6, there exist a subsequence (still denoted by {u
n
}), an integer

l � 0, sequence {x
n
i} in �, 1 � i � l, a solution u  of (1.1) solutions ui of (2.1) such that

� � � �
0

l
i

i

c I u I u�

�

� � ��

We shall show that u  is a solution different from u
0
. In fact, by (3.13), we have

� � � � � �0 0 0( ) ( ) if 0 if 1c I u I u I u l I u S c I u S l� �� � � � � � � � � � � � �

This implies that 0u u�� . Applying the maximum principle again, we have 0u �
in �. Hence we have completed the proof of Theorem 1.2.

Proof of Theorem 1.3: By Lemma 3.4, we have already shown the existence of

one positive solution 0u  as a minimizer of I(u) in B�0
. Here, we assume that

� � �� � � � � � �1
0 0inf{ ( ) ( ) ( ) 0}I u I u u H I u (3.14)

If not, clearly I(u) has a critical point different from 0u  and (1.1) has at least two
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positive solutions. Under (3.14), by Lemma 2.6, (PS)
c
-condition holds for

� �� ��� ��� �0c I u S .

Set

� � � �� � � � � �� �� � � � � � � � � � � �1
0 0 0 00 1 0 1p C H p u p u t w

� �� �
[0 1]

inf max
p s

c I p s
�� � �

� �

where t
0
 is defined as in Remark 3.6(i). By Lemma 2.6, Lemma 3.4, Remark 3.6 and

applying the Mountain Pass Lemma of Brezis-Nirenberg [5], we can use the same
argument in the proof of Theorem 1.2 to obtain the conclusion of Theorem 1.3.
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