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ABSTRACT: In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear
mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for
general additive mappings. In 1982-2004 J.M. Rassias established the Hyers-Ulam stability
for the Ulam problem of linear and nonlinear mappings. In 1983 F. Skof was the first
author to solve the Ulam problem for additive mappings on a restricted domain. In 2005
V.A. Faiziev and P.K. Sahoo established on groups the stability of a Jensen type functional
equation introduced by J.M. Rassias and M.J. Rassias in 2003. In this paper we investigate
the Ulam stability of generalized functional additive mappings on Banach Spaces and
groups. In this paper we consider also the problem of stability for functional equations of
the form f(xnyn) = nf(x) + nf(y), n � � on groups.
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1. INTRODUCTION

In 1940,1960 and 1964 S. M. Ulam ([26]) proposed the Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?”

In 1941 D. H. Hyers ([16]) solved this problem for linear mappings. In 1951
D. G. Bourgin ([2]) was the second author to treat the Ulam problem for general
additive mappings. In 1978, according to P.M. Gruber ([15]), this kind of stability
problems is of particular interest in probability theory and in the case of functional
equations of different types. In 1980, I. Fenyö ([13]) established the stability of the
Ulam problem for other mappings. Other interesting stability results have been achieved
also by the following authors: P. W. Cholewa ([3]), St. Czerwik ([4]), and H. Drljevic
([5]). In 1982-2004 J. M. Rassias ([18]-[22], [24]) and in 2003 J.M. Rassias and M. J.
Rassias ([23]) established the Ulam stability for different mappings. In 1999 P.Gavruta
([14] ) answered a question of J.M.Rassias ([20]) concerning the stability of the Cauchy
equation. See also papers of C. Badea [1] and S. M. Jung [17].

In 2005 V. A. Faiziev and P. K. Sahoo ([6]) established on groups the stability
of a Jensen type functional equation introduced by J. M. Rassias and M. J. Rassias
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in 2003. In this paper we investigate the Ulam stability of generalized functional
additive mappings Banach Spaces and groups.

Throughout this paper, let X be a real normed space and Y be a real Banach
space in the case of functional inequalities, as well as let X and Y be real linear
spaces for functional equations.

Definition 1.1: A mapping A : X � Y is called additive if A satisfies the functional
equation

A(x
1
 + x

2
) = A(x

1
) + A(x

2
), (1.1)

for all x
1
, x

2
 � X.

Definition 1.2: A mapping A : X � Y is called generalized additive if A satisfies
the functional equation

A(a
1
x

1
 + a

2
x

2
) = a

1
A(x

1
) + a

2
A(x

2
), (1.2)

for a fixed pair of real numbers a
1
, a

2
 � � and all x

1
, x

2
 � X.

Throughout this paper we denote m = a
1
 + a

2
.

Definition 1.3: A mapping f : X � Y is called approximately odd if f satisfies the
functional inequality

��
 
f(x) + f(–x)������, (1.3)

for some fixed ��� 0 and all x � X.

Theorem 1.4: (Hyers [16] ). If a mapping f : X � Y satisfies the approximately
additive inequality

���f(x1
 + x

2
) – f(x

1
) – f(x

2
)������,

for some fixed � > 0 and all x
1
, x

2
 � X, then there exists a unique additive mapping

A : X � Y, satisfying the formula

� � � �lim 2 2 ,n n

n
A x f x�

��
�

equation (1.1) and inequality

���f(x) – A(x)������

for some fixed � > 0 and all x � X. If, moreover, f is measurable or f(tx) is continuous
in t for each fixed x � X, then A(tx) = tA(x) for all x � X and t � �.
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2. STABILITY OF GENERALIZED ADDITIVE EQUATION (1.2)

Employing the above Theorem 1.4 (Hyers’ direct method [16]), we prove the
following Theorem 2.1 on Banach Spaces.

Theorem 2.1: If a mapping f : X � Y satisfies the approximately generalized
additive inequality

��
 
f(a

1
x

1
 + a

2
x

2
) – a

1 
f(x

1
) – a

2 
f(x

2
)������, (2.1)

for some fixed � > 0, and for a fixed pair of real numbers a
1
, a

2
 � � such that m = a

1

+ a
2
 � �1 and a

i
 ��0; i = 1, 2 then inequalities

� � 1
0 ,

1
f

m
� �

� (2.2)

� � � � 2
,

1
f x f x

m
� � � �

� (2.3)

� � � � � � 21
1 1 2

1
0 ,

1

m a
f x a f a x a f

m
� � �

� � �� � �
� (2.4)

hold for all x � X, and there exists a unique generalized additive mapping A : X � Y,
satisfying formula

� �
� �
� �

lim if 1
,

lim if 1

n n
n

n n
n

m f m x m
A x

m f m x m

�
��

�
��

� ��� �
���

(2.5)

equation (1.2) and inequality

� � � �
1

f x A x
m
�

� �
� (2.6)

for all x � X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x
� X, then A(tx) = tA(x) for all x � X and t � �.

Proof: Substituting x
1
 = x

2
 = 0 in (2.1), one gets inequality (2.2). We assume �m�

> 1. If we replace x
1
 = x

2
 = x in (2.1), we find inequality

��
 
f(mx) – mf(x)������, (2.7)
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holds for all x � X, and �m� > 1. Thus from this inequality, inequality (1.3) and
triangle inequality, we get

�m����
 
f(–x) + f(x)��������– [

 
f(mx) – mf(x)]�� + ���– [

 
f(–mx) – mf(–x)]��

+ ��
 
f(–mx) + f(mx)]�� ��� + � + � = 2� + �,

or

� � � �� � � �� � �
2 1

f x f x
m m , for m � 0

or

� � � � 2
,

1
f x f x

m
� � � � � �

�  for �m� > 1.

We assume �m� < 1. If we replace 1 2

x
x x

m
� �  in (2.1), we obtain inequality

�
 
f(x) – mf(m–1x)������, (2.8)

holds for all x � X, and �m� < 1. Denote � = m–1 � 0, ��� > 1. Similarly, one gets

������ f(–x) + f(x)������� – [
 
f(�x) – ��f(x)]�� + �� – [

 
f(–�x) – ��f(–x)]��

+ �� f(–�x) + f(�x)��������� + ���� + � = 2���� + �,

or

� � � � 2 1
,f x f x

�
� � � � � � �

� �  ��� 0,

or

� � � � 2 2
,

1 1
f x f x

m

�
� � � � � � � �

� � �  for �m� < 1.

Therefore the proof of the above inequality (2.3) is complete.

Assume a
1
 � 0. Substituting x

1
 = a

1
–1x, x

2
 = 0 in (2.1) and employing the triangle

inequality and inequality (2.2), one finds inequality (2.4).
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Assuming �m� > 1, we get from inequality (2.7) and the triangle inequality the
basic inequality

� � � �1 1
f x m f mx

m
�� � �  for m � 0, (2.9)

and thus the general inequality

�� f(x) – m–n f(mnx)������� f(x) – m–1 f(mx)�� + m–1�� f(mx) – m–1 f(m2x)��

+ ... + m–(n–1)�� f(mn–1x) – m–1 f(mnx)��

1

1 1 1
1 ... nm m m

�

� �
� �� � � � �
� �
� �

1
,

1

n
m

m

�
�

� �
� (2.10)

for all x � X, and �m� > 1.

Similarly, assuming �m� < 1, we find from inequality (2.8) and the triangle
inequality the other general inequality

�� f(x) – mnf(m–nx)�� � �� f(x) – mf(m–1x)�� + m�� f(m–1x) – mf(m–2x)��

+ ... + |m|n–1�� f(m–(n–1)x) – mf(m–nx)��

� �(1 + �m� + ... + �m�n–1) (2.11)

=
1

,
1

n
m

m

�
�

�

for all x � X, and �m� < 1.

Let us denote,

� �
� �
� �

if 1
,

if 1

n n

n n n

m f m x m
f x

m f m x m

�

�

� ��� �
���

for all x � X.
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Therefore from inequalities (2.10)-(2.11), we obtain the general inequality

� � � � � �
� � � � � �

1
1 if 1

1
,

1
1 if 1

1

n

n

n
n

f x f x m m
m

f x f x m m
m

�� � � � � �� ��
�
� � � � � �
� ��

(2.12)

for all x � X.

Following the proof of our theorems ([18]-[24]), we easily prove that sequence
{ f

n
(x)} is a Cauchy sequence and thus convergent, because Y is a complete space. In

fact, assuming �m� > 1, and k � n > 0 and setting h = mnx, one gets from (2.10), that

�� f
k
(x) – f

n
(x)�� = ��m–k f(mkx) – m–n f(mnx)��

= �m�–n ��
 
f(h) – m–(k–n) f(mk–nh)��

� �m�–n 

� �
1

1

k n
m

m

� �
�

�
� (2.13)

= 1

n k
m m

m

� �
�

�
�

� 0,
1

n
m

m

�

� �
�  as n ���,

holds for all x � X. In addition, assuming �m� < 1, and k � n > 0 and setting � = m–nx,
one gets from (2.11) that

��
 
f
k
(x) – f

n
(x)�� = ��mkf(m–kx) – mnf(m–nx)��

= �m�n ��
 
f(�) – mk–n f(m–(k–n)�)��

� �m�n
1

1

k n
m

m

�
�

�
� (2.14)

= 1

n k
m m

m

�
�
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� 0,
1

n
m

m
� �

�  as n ���,

holds for all x � X.

Therefore formula (2.5) exists. Thus from inequalities (2.1) and (2.12), one proves
that there exists a generalized additive mapping A : X � Y, satisfying inequality
(2.6).

Let us denote,

� �
� �
� �

if 1
,

if 1

n n

n n n

m A m x m
A x

m A m x m

�

�

� ��� �
���

for all x � X.

Following the proof of (2.12), we easily prove that

A(x)
n
 = A(x)

for all x � X and all n � �.

This formula is important for the proof of the uniqueness of a generalized additive
mapping A : X � Y.

The rest of the proof of this theorem is omitted as analogous to the proof of our
theorems ([18]-[24]). Similarly, we prove the last assertion of this theorem 2.1 that
if, f is measurable or f(tx) is continuous in t for each fixed x � X, then A(tx) = tA(x)
for all x � X and t � �, completing the proof of this theorem.

Note that a similar stability result for the generalized additive mapping is also
considered in [1], and [17].

3. AUXILIARY RESULTS

Note if in the equation (1.1) we take a
1
 = n, a

2
 = m � �, and x

1
 = x, x

2
 = y � X then

this equation can be rewritten as

f(nx + my) = nf(x) + mf(y)

and can be considered on any abelian group G. This m is different from the above
employed m = a

1
 + a

2
 on Banach Spaces. If we rewrite the latter equation in the form

f(xnym) = nf(x) + mf(y),
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then it can be considered on any group G. In the following part of the paper we
consider a particular case of the last equation. Namely, we will consider the equation

f(xnyn) = nf(x) + nf(y).

Suppose that G is an arbitrary group and E is an arbitrary real Banach space.

Definition 3.1: We will say that a mapping f : G � E is a n-additive mapping if
for any x, y � G we have

f(xnyn) – nf(x) – nf(y) = 0. (3.1)

We denote the set of all n-additive mappings from G to E by Adn(G; E).

If n = 1, then 1-additive mapping is simply additive one. In what follows we will
assume that n � 2.

Definition 3.2: We will say that a mapping f : G � E is an n-quasiadditive
mapping if there is c > 0 such that for any x, y � G we have

�� f(xnyn) – nf(x) – nf(y)���� c. (3.2)

It is clear that the set of n–quasiadditive mappings is a linear real space. Denote
it by KAn(G; E). From (3.2) we obtain

��
 
f(xn) – nf(x) – nf(1)���� c,

therefore

��
 
f(xn) – nf(x)���� d = c + n��

 
f(1)��, (3.3)

From (3.3) it follows that

��
 
f((xn)n) – nf(xn)���� d,

or

��
 
f(xn2) – nf(xn)���� d,

Now using (3.3) we get

��
 
f(xn2) – n2f(x)���� d + dn.

It follows that

��
 
f((xn)n2) – n2f(xn)���� d + dn.

Again using (3.3) we obtain

��f(xn3) – n3f(x)���� d + dn + dn2.
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Continuing this way we get

��
 
f(xnk) – nkf(x)���� d(1 + n + n2 + ... + nk–1) � dnk.

It follows that

� � � �
�� �

� � � � � � �� �
� �

2 11 1
... .

k
kn

k k k k k

n n n
f x f x d d

n n n n n (3.4)

Now for any m � � we have

� � � �1
.

mk mn n
k

f x f x d
n

�
� � (3.5)

It follows that

� � � �1 1 1
.

k m mn n
k m m m

f x f x d
n n n

�

� � � (3.6)

From the latter it follows that the sequence

� �1 kn
k

f x k
n
� ��� �
� �

�

is a Cauchy sequence. Since the space E is complete, the above sequence has a limit
and we denote it by �

m
(x). Thus

� � � �1
lim .

kn
n kk

x f x
n��

� � (3.7)

From (3.4) it follows that

���
n
(x) – f(x)���� d, x � G. (3.8)

Lemma 3.3: For any x � G and any q � � we have

�
n
(xnq) = nq�

n
(x). (3.9)

Proof:

�
n
(xnq) = � ���

� �
� �
� �

1
lim

k
q n

n
k k f x

n
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= � �lim
k q

q
n

k k q

n
f x

n

�

�� �

= nq�
n
(x).

Lemma 3.4: Let f � KAn(G; E) such that

��
 
f(xnyn) – nf(x) – nf(y)���� c �x, y � G.

Then �
n
 � KAn(G; E).

Proof: From (3.3) it follows that

���f(x
nyn) – f(xn) – f(yn)���� c + 2d.

Now using (3.8) we have

����
n
(xnyn) – �

n
(xn) – �

n
(yn)���� c + 2d + 3d.

Therefore, from (4.9) we obtain

���
n
(xnyn) – n�

n
(x) – n�

n
(y)���� c + 5d.

This completes the proof of the lemma.

Definition 3.5: By n – (G; E)-pseudoadditive mapping we will mean an n – (G;
E)-quasiadditive mapping f such that f(xnk) = nkf(x) for any x � G and any k � �.

Remark 3.6: If f � PAn(G; E), then:

1. f(x–nk) = –nkf(x) for any x � G and k � �;

2. if y � G is an element of finite order, then f(y) = 0;

3. if f is a bounded mapping on G, then f � 0.

Proof: Let for some c > 0 the following relation hold

��
 
f(xnyn) – nf(x) – nf(y)���� c.

Then we have

��
 
f(1) – nf(y) – nf(y–1)���� c,

��nf(y) + nf(y–1)���� c
2
 = c + ||f(1)��, for any y � G,

It follows that for any k � N we have

��nf(ynk) + nf((ynk)–1)���� c
2
,

��nf(ynk) + nf((y–1)nk)���� c
2
,

nk+1��
 
f(y) + f((y–1))���� c

2
.
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The last inequality is equivalent to the next one ��
 
f(y) + f(y–1)���� 2

1k

c
n �  for all

y � G and all k � �. The latter implies f(y–1) = –f(y). Thus for any k � � we have
f(y–nk) = f((ynk)–1) = –f(ynk) = –nkf(y). Hence, the assertion 1 is established.

Now let us verify 2: Let x be an element of order q. Then there exist k and p
such that k > p and the following relation holds:

xnk = xnp

It follows that

f(xnk) = f(xnp)

and

nkf(x) = npf(x)

(nk – np)f(x) = 0.

and we see that f(x) = 0.

The assertion 3 is obvious.

We denote by B(G; E) the space of all bounded mappings on a group G that take
values in E.

Theorem 3.7: For an arbitrary group G the following decomposition holds

KAn(G; E) = PAn(G; E) � B(G; E).

Proof: It is clear that PAn(G; E) and B(G; E) are subspaces of KAn(G; E), and
PAn(G; E) � B(G;E) = {0}. Hence the subspace of KAn(G; E) generated by PAn(G;
E) and B(G; E) is their direct sum. That is PAn(G; E) � B(G; E) � KAn(G; E). Let us
verify that KAn(G; E) � PAn(G; E) ��B(G; E). Indeed, if f � KAn(G; E), then the
function �

n
 defined by the formula (3.7) is an element of PAn(G; E). Now from the

relation (3.8) it follows that

���
n
(x) – f(x)���� d, x � G.

So, �
n
 – f � B(G; E).

Definition 3.8: A quasicharacter of a semigroup S is a real-valued function f on
S such that the set {

 
f(xy) – f(x) – f(y) � x, y � S} is bounded.

Definition 3.9: By a pseudocharacter of a semigroup S we mean its
quasicharacter f that satisfies f(xn) = nf(x) for all x � S and all n � �.
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The set of all (S; E)-quasiadditive mappings is a vector space (with respect to
the usual operations of addition of functions and their multiplication by numbers),
which will be denoted by KAM(S; E). The subspace of KAM(S; E) consisting of
(S; E)-pseudoadditive mappings will be denoted by PAM(S; E) and the subspace
consisting of additive mappings from S to E will be denoted by Hom(S; E). We say
that an (S; E)-pseudoadditive mapping � of the semigroup S is nontrivial if ���
Hom(S; E).

The space of quasicharacters will be denoted by KX(S), the space of
pseudocharacters will be denoted by PX(S), and the space of real additive characters
on S will be denoted by X(S).

4. STABILITY

Suppose that G is a group and E is a real Banach space.

Definition 4.1: We shall say that the equation (3.1) is stable for a pair (G; E) if
for any f : G � E satisfying functional inequality

���f(x
nyn) – nf(x) – nf(y)���� c �����x, y � G

for some c > 0 there is a solution j of the functional equation (3.1) such that the
mapping j(x) – f(x) belongs to B(G; E).

It is clear that the equation (3.1) is stable on G if and only if PAn(G; E) =  Adn(G;
E).

Theorem 4.2: Let E
1
, E

2
 be Banach spaces over reals. Then the equation (3.1) is

stable for pair (G; E
1
) if and only if it is stable for pair (G; E

2
).

Proof: Let E be a Banach space and � be the set of reals. Suppose that the
equation (3.1) is stable for the pair (G; E). Suppose that (3.1) is not stable for the
pair (G, �), then there is a nontrivial real-valued n-pseudoadditive function f on G.
Now let e � E and ��e�� = 1. Consider the mapping � : G � E given by the formula
�(x) = f(x) � e. It is clear that � is a nontrivial n-pseudoadditive E-valued mapping,
and we obtain a contradiction.

Now suppose that the equation (3.1) is stable for the pair (G, �), that is, PAn(G;
�) = Adn(G, �). Denote by E* the space of linear bounded functionals on E endowed
by a functional norm topology. It is clear that for any � � PAn(G, H) and any ��� H*

the function ��� � belongs to the space PAn(G, �). Indeed, let for some c > 0 and any
x; y � G we have ���(xnyn) – n�(x) – n�(y)���� c. Hence

������(xnyn) – �����(xn) – �����(yn)� = ��(�(xnyn) – �(xn) – �(yn))����c�����.
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Obviously, �����(xnk) = nk�����(x) for any x � G and for any n � �. Hence the
mapping �� ��� belongs to the space PAn(G, �). Let f : G � H be a nontrivial
n-pseudoadditive mapping. Then there are x, y � G such that f(xnyn) – nf(x) – nf(y) �
0. Hahn-Banach Theorem implies that there is a � � H* such that �(

 
f(xnyn)– nf(x)–

nf(y)) � 0, and we see that ��� f is a nontrivial n-pseudoadditive real-valued mapping
on G. This contradiction proves the theorem.

In what follows the space KAn(G; �) will be denoted by KXn(G), the space PAn(G;
�) will be denoted by PXn(G), the space An(G, �) will be denoted by Xn(G).

Corollary 4.3: The equation (3.1) over a group G is stable if and only if PXn(G)
= Xn(G).

Due to the previous theorem we may simply say that equation (3.1) is stable or
not stable.

Now our goal is to show that, in general, the equation (3.1) is not stable on a
group. First we recall some facts from the paper [8].

Let F be a free group over group alphabet X such that �X��� 2. Recall that a word
1 2

2
... n

i ni i iv x x x�� �� (�
i
 � {1, –1}, xij

 � X) is reduced if 1

1

k k

k ki ix x �

�

� ���  k = 1, 2, ..., n – 1.

By the length of v we mean the number n which we denote by �v�. Let � �� 1 2

2

i i

ii iv x x

�

�

� �
1

1
... i in n

ni nx x be a reduced word. We recall (see [8]) that the set of “beginnings” �(v)

and the set of “ends” �(v) of the word v is defined as follows: if n � 1, then �(v) =
�(v) = {�}, where � is empty word. If n � 2, then

� � � �1 2 2 1 2

2 1 2 1
, , , ..., ..., ii i i i i n

i i ni i i i i iv x x x x x x
�

�� � � � �� ��

� � � �12

2 1
... , ..., , ,i i i ii n n n n

n n ni i i i nv x x x x x�

�

� � � ��� ��

Denote by E the set of words w such that �(w) � �(w) = Ø and w is not conjugate
to w–1 in F. In [8] for any w � E was constructed a pseudocharacter e

w
.

Lemma 4.4: The system of pseudocharacters few {e
w
; w � E} has the following

properties:

(1) �e
w
(uv) – e

w
(u) – e

w
(v)��� 15 for any u, v from F and any w from E;

(2) if �w
1
� < �w

2
�, then e

w2
(w

1
) = 0;
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(3) if �w
1
� = �w

2
� and w

1
 � w

2
, then e

w2
(w

1
) = 0;

(4) e
w
(w) = 1 for each w � E;

(5) e
w
(w

1
) = –1 if w

1
 is conjugate to w–1.

Proof: See [8].

From this lemma we get the following one

Lemma 4.5: If w � E and w = uv, such that �u� � 1, �v��� 1, then for any n � � we
have:

1. unvn � E;

2. e
w
(unvn) – e

w
(un) – e

w
(vn) = 1.

Remark 4.6: In general, equation (3.1) is not stable on a group G.

Proof: It is clear that for any n � N we have the following including PX(G) �
PXn(G). Let � be a nontrivial pseudocharacter of G. Suppose that there is j � Xn(G)
such that the mapping ��– j is bounded. Then there is c > 0 such that ��(x) – j(x)���
c for any x � G. Hence for any k � � we have c ����(xnk ) – j(xnk)� = nk��(x) – j(x)� and
we see that the latter is possible if �(x) = j(x). So, ��� PX(G) � Xn(G).

Now let F be a free group over a group alphabet X such that �X��� 2.

From the previous lemma it follows that for any w � E we get e
w
 ��Xn(F).

Note that in papers ([8]-[10]) full description of the spaces of pseudocharacters
on free groups, free products of groups as well as some extensions of free groups
was given. In the papers [11] and [12] an application of pseudocharacters e

w
, w � E

to a problem of expressibility in group theory was given.

Definition 4.7: For n � N the group G is said to be n-abelian if for any x, y the
following relation holds:

(xy)n = xnyn.

It is easy to check that if a group G is n-abelian, then for any k � N we have

(xy)nk = xnk ynk.

Theorem 4.8: If G is n-abelian group, then PXn(G) = X(G). Therefore the equation
(4.1) is stable on G.

Proof: For any x, y � G and k � N we have
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��(xnk ynk ) – �(xnk) – �(ynk)�����,

��((xy)nk) – �(xnk) – �(ynk)�����,

nk��(xy) – �(x) – �(y)�����.

From the latter relation it follows that

�(xy) – �(x) – �(y) = 0.

Therefore PXn(G) = X(G) � Xn(G).

Corollary 4.9: Let G be an arbitrary group and x, y are elements of G such that
xy = yx. Then for any f � PXn(G) we have

f(xy) = f(x) + f(y).

Proof: It is clear that subgroup of G generated by elements x and y is abelian
group. Obviously, any abelian group A is n-abelian group for any n � N. So, we can
apply Theorem 4.8.

5. METABELIAN GROUPS

Definition 5.1: We will say that a group G is metabelian if for any x, y, z the following
relation

[[x, y], z] = 1

holds. Here [a, b] = a–1b–1ab.

For example any group UT(3, K) is metabelian for any commutative field K.

In this section G denotes a metabelian group.

The following lemma can be easily proved by direct calculation.

Lemma 5.2: For any x, y, z � G and any m � N we have

� � � �
� �1

2, .
m m

m m mxy x y y x
�

� (5.1)

Theorem 5.3: PXn(G) = X(G)

Proof: From (5.1) it follows � � � �
� ��

�
1

2,
m m

mm mx y xy x y . Therefore for any k � N

and any f ��PXn(G) we get
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� � � � � �
� �

� �� � � �
� �1 1

2 2, ,

k k k k
k kk k

n n n n
n nn nf x y f xy x y f xy f x y

� �� � � �
� � � �� � �
� � � �
� � � �

Now taking into account that the group generated by [y, x] is abelian we get

� � �f(xnk ynk) – f(xnk) – f(ynk)�

= � � � �
� �

� � � �
1

2,

k k
k k k

n n
n n nf xy x y f x f y

�� �
� � � �
� �
� �

= � �� � � �
� �

� � � �
1

2,

k k
k k k

n n
n n nf xy f x y f x f y

�� �
� �� � �
� �
� �

= � � � � � �� � � � � �
1

,
2

k k

k k k
n n

n f xy f x y n f x n f y
�

� � �

= � � � �� � � � � �1
, .

2

k
k n

n f xy f x y f x f y
�

� � �

It follows that for any x, y � G the following relation holds

� � � � � � � �� �1 1
, .

2

k

k

n
f xy f x f y f x y

n

�
� � � � �

The latter is possible only if

f(xy) – f(x) – f(y) = 0, f([x, y]) = 0.

So, f � X(G). The proof is complete.

6. WREATH PRODUCT

First recall the notion of wreath product of groups.

Let A and B be arbitrary groups. For each b � B denote by A(b) a group that is
isomorphic to A under isomorphism a � a(b). Denote by
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H = A(B) = �
b�B

 A(b) the direct product of groups A(b). It is clear that if a
1
(b

1
)a

2
(b

2
)

... a
k
(b

k
) is an element of H, then for any b � B, the mapping

b* : a
1
(b

1
)a

2
(b

2
) ... a

k
(b

k
) � a

1
(b

1
b)a

2
(b

2
b) ... a

k
(b

k
b)

is an automorphism of H and b � b* is an embedding of B into Aut H. Hence, we
can form a semidirect product G = B ��D. This group is called the wreath product of
the groups A and B, and will be denoted by G = A B. Let A be an arbitrary group and
B be a cyclic group of order n with generator b. Consider the group G = A B. Denote
by D diagonal subgroup of G, i.e., subgroup consisting of elements of the form
a(1)a(b) ... a(bn–1), a � A. It is clear that D is isomprphic to A under isomorphism a
� a(1)a(b) ... a(bn–1). For any i � N denote by C

i
 a cyclic group of order n with

generator c
i
. For any group A consider the following sequence of groups G

k
.

G
0
 = A, G

1
 = G

0
  C

1
, ...., G

k+1
 = G

k
  C

k+1
, ... (6.1)

Let �
i
 : G

i
 � G

i+1
 be a embedding G

i
 into G

i+1
 identifying G

i
 with diagonal of

G
i+1

. Then we have the following sequence

� �� � � ��
�� ��� ��� ���� ��� ����0 1 11

0 1 1... ...k k k
k kA G G G G (6.2)

Let G be direct limit of this sequence.

Lemma 6.1: For any g � G the equation xn = g has a solution. Let f � PX(G) and
f �

G0
 � 0, then f � 0 on G.

Proof: Denote by D
k
 the diagonal subgroup of G

k
 = G

k–1
  C

k
. Then we have

G
0
 = D

1
, G

1
 = D

2
, ..., G

i
 = D

i+1
, ...

It is clear that if g � G
k
, then g can be presented in the form

� � � � � �0 1 1... .n
k k kg g c g c g c ��

Now if we set � �0
k kv c g c�  we get the equality � �� �0

n

k kc g c g� .

7. THEOREM OF EMBEDDING

Let A be an arbitrary group and let G be direct limit of the sequence (6.2). And let p

be a prime number greater than n. Let K be direct product � �
1 pi

K Z i
�

�
�� , where

Z
p
(i) is a cyclic group of order p with generator c

i
. Now consider the group

Q = G K. By the theorem 3.2 from [7] we have PX(Q) = X(G).
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Theorem 7.1: PXn(Q) = PX(Q) = X(G).

Proof: Let �G  be subgroup of Q generated by G(c), c � K. From above we know

that the equation xn = g has a solution for any �g G� . The same is true for any b � K.

It follows that �� � �� �nPX G PX G� . For any b � K and any v � �G  there are c and u

such that cn = b and un = v. It implies that (ub)n = vb. Here we use the following
notation xb = b–1xb. Then for f � PXn(Q) such that

�
 
f(xnyn) – f(xn) – f(yn)�����, �x, y � Q

we have

�
 
f(cnun) – f(cn) – f(un)�����,

�
 
f(cnun) – f(un)�����,

�
 
f(bv) – f(v)�����,

�
 
f(b

v
b) – f(vb)�����. (7.1)

Similarly

�
 
f(vb) – f(v)���,

therefore

�
 
f(bvb) – f(v)�����, (7.2)

From (7.1), (7.2) it follows

�
 
f(vb) – f(v)��� 2�,

The last relation is true for any v, so for any k � N we have

�
 
f((vk)b) – f(vk)��� 2�,

k�
 
f(vb) – f(v)��� 2�.

The latter relation is possible only if

f(vb) = f(v) (7.3)

Denote by �G
f�� . Then we have � � PX( �G, K). Now continue � onto Q by

the rule:

�(bv) = �(v). (7.4)
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It is easily verified that � becomes now an element of the space KX(Q). Now

consider the function � = f –� on Q. It is clear that � 0K G
� �� . The functions f and �

are elements of KXn(Q), so ��� KXn(Q). Therefore there is an �
1
 > 0 such that ��

(xnyn) –��(xn) –��(yn)�����
1
 for all x, y � Q. Now we have

��(cnun) – �(cn) – �(un)�����
1
,

��(cnun) –��(un)�����
1
,

��(cnun) |����
1
.

So, we see that � is a bounded function on Q. It follows that

f = � + ��� KX(Q) � PXn(Q) = PX(Q).

Now from the relation PX(Q) = X(G) follows that PXn(Q) = X(G). The proof of
the theorem is complete.

Corollary 7.2: Any group A can be embedded into a group Q such that the
equation (3.1) is stable over Q.

Proof: Let Q = G  K be the group from the above theorem. The group A is a

subgroup of G. We will identify the group G with subgroup G(1) of 
�

� �� ( ) ,
c K

H G c Q

where 1 � K. Hence, we can assume that A is a subgroup of Q. From the theorem 7.1
we have PXn(Q) = X(G). So, the equation (3.1) is stable over Q.
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