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REFINED HYERS-ULAM SUPERSTABILITY OF
APPROXIMATELY ADDITIVE MAPPINGS
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ABSTRACT: In 1940 (and 1964) S.M. Ulam proposed the well-known Ulam stability
problem. In 1941 D.H. Hyers solved the Hyers-Ulam problem for linear mappings. In
1951 D.G. Bourgin has been the second author treating the Ulam problem for general
additive mappings. In 1978 according to P.M. Gruber this kind of stability problems is of
particular interest in probability theory and in the case of functional equations of different
types. In 1982-2004 we established the Hyers-Ulam stability for the Ulam problem for
different mappings. In 1992-2000 we investigated the Ulam stability for Euler-Lagrange
mappings. In this article we solve the Ulam superstability problem for approximately additive
functional equations being exactly additive.
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1. INTRODUCTION

In 1940 (and 1964) S. M. Ulam [28] proposed the Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true ?”

In particular he stated the stability question:

“Let G
1
 be a group and G

2
 a metric group with the metric � �� � �, . Given a constant

� > 0, does there exist a constant c > 0 such that if a mapping f : G
1
 � G

2
 satisfies

�(f(xy), f(x)f(y)) < c for all x, y � G
1
, then a unique homomorphism h : G

1
 � G

2

exists with �(f(x), h(x)) < � for all x � G
1
?”

In 1941 D. H. Hyers [13] solved this problem for linear mappings. In 1951 D.G.
Bourgin [3] was the second author to treat the Ulam problem for general additive
mappings. In 1978, according to P. M. Gruber [12], this kind of stability problems is
of particular interest in probability theory and in the case of functional equations of
different types. In 1980 and in 1987, I. Fenyö [7, 8] established the stability of the
Ulam problem for quadratic and other mappings. In 1987 Z. Gajda and R. Ger [10]
showed that one can get analogous stability results for subadditive multifunctions.
Other interesting stability results have been achieved also by the following authors:
J. Aczél [1], C. Borelli and G. L. Forti [2, 9], P. W. Cholewa [4], St. Czerwik [5],
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and H. Drljevic [6], and Pl. Kannappan [15]. In 1982-2004 we [16-27] solved the
above Ulam problem for different mappings. In 1999 P. Gavruta [11] answered a
question of ours [18] concerning the stability of the Cauchy equation. In 1998 S.-M.
Jung [14] and in 2002-2003 we [25,26] investigated the Hyers-Ulam stability for
additive and quadratic mappings on restricted domains. In 1992-2000 we ([19], [21-
24]) investigated the Ulam stability for Euler-Lagrange mappings.

We introduce the name “eustathy” derived from the Greek word eustathia:
stability [Greek eu : well, (h)estamae : stand]. In this paper we impose the following
problem which we call it eustathy problem:

“Are there any correspondences satisfying a certain property approximately
and having the property exactly?”

Here we provide an answer to our above problem by proving a theorem that
approximately additive mappings can be exactly additive. In this article we solve
the Ulam (eustathy) problem for approximately additive functional equations being
exactly additive (that is, superstability).

Definition 1.1: Let X and Y be real linear spaces. Let � = (�
1
, �

2
, ..., �

p
)���Rp –

{(0, 0, ..., 0)}. Then a mapping A : X � Y is called additive, if the additive functional
equation

� ���
��

���
�

�
��
�

� p

i
ii

p

i
ii xAaxaA

11
(*)

holds for every x
i
 � X (i = 1, 2, ..., p), where p is arbitrary but fixed and equals to 2,

3, ... and any fixed � �
�

� � � � ��
1

0 : 0 1
p

i
i

m a .

Definition 1.2: Let X and Y be real normed linear spaces. Let � = (�
1
, �

2
, ..., �

p
)

� Rp – {(0, 0, ..., 0)}. Then a mapping f : X � Y is called approximately additive, if
the approximately additive functional inequality

 � � � �pr

p

i
ii

p

i
ii x,...,x,xcKxfaxaf 21

11

 ����
�

�
��
�

�
��
��

, (**)

holds for every (x
1
, x

2
, ..., x

p
) � Xp, where p is arbitrary but fixed and equals to

2, 3, ..., with a real constant c � 0 (independent of x
1
, x

2
, ..., x

p
 ��X), any fixed � (�0):

0 < 
�

� ��
1

1
p

i
i

m a  and any fixed real (1�) r � 0:



Refined Hyers-Ulam Superstability of Approximately Additive Mappings 177

� �
�

� �

�

� �

� � �
� �� � �

� � �� � �
�� � � �

� � �� � � ��
� � � ��

� �

� �

1

1 1

1 2

1

1 1

, if 1

, ,..., ,

, if 0  1

rp p
rr

i i
i i

r r p rp p
rr

i i
i i

p x x r

K K x x x

x p x r
(1.1)

holds for every (x
1
, x

2
, ..., x

p
) � Xp.

Lemma 1.1: If K
r
 is given via (1.1), then K

r
 � 0 for any fixed real 0 � r � 1.

Proof: In fact, take a function F = F(t) = tr(t � 0 and r � R). It is clear that for
F�(t) = r(r – 1)tr–2 ��0 for r ��R : r � 1. Thus F is convex for r � 1. Therefore

� �
� �

� � � �
�� � � �

� � � �
� �

1 1

1 1
,

p p

i i
i i

F t F t
p p  or

� �

� � � �
�� � � �

� � � �
� �

1 1

1 1
rp p

r
i i

i i

t t
p p  for r � R : r � 1, and t

i
 � 0 (i = 1, 2, ..., p), where p is arbitrary

but fixed and equals to 2, 3 , ... . Taking t
i
 = ��x

i
���� 0 for x

i
 ��X(i = 1, 2, ..., p) and r �

R : r � 1, we get 
� �

� � � �
�� � � �

� � � �
� �

1 1

1 1
rp p

r

i i
i i

x x
p p

, or 
�

� �

� � � �
�� � � �

� � � �
� �1

1 1

rp p
rr

i i
i i

p x x  for r � 1.

But it is clear that 
� �

� �
� � �
� �

� �
1 1

r rp p

i i
i i

x x  for r � 0 .Therefore we have that

�

� �

� �
� � �� �

� �
� �1

1 1

0
rp p

rr
r i i

i i

K p x x

for r > 1. Similarly F�(t) = r(r – 1)tr–2 � 0 for 0 � r < 1. Thus F is concave for r � R :

0 � r < 1. Therefore 
� �

� � � �
�� � � �

� � � �
� �

1 1

1 1
rp p

r
i i

i i

t t
p p . Taking t

i
 = ��x

i
���� 0 (i = 1, 2, ..., p), we get

�

� �

� � � �
� � �� � � �
� � � �
� �1

1 1

0
rp p

rr
r i i

i i

K x p x  for 0 � r < 1, completing the proof of Lemma 1.1.
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Let us denote I
1
 = {(r, m) � R2 : 0 � r < 1, m > 1 and r > 1, 0 < m < 1 }, and I

2
 =

{(r, m) � R2 : 0 � r < 1, 0 < m < 1 and r > 1, m > 1}, such that mr–1 < 1 for any (r, m)
� I

1
, and m1–r < 1 for any (r, m) � I

2
. Note that approximately additive mappings are

not additive in case K
r
 = 1 and m > 0. In this case Y is assumed to be complete. Also

K
0
 = 0 and the singular case 

� �

� �� �1
1 1

p p

i i
i i

K x x  (�0).

2. APPROXIMATELY ADDITIVE MAPPINGS
BEING EXACTLY ADDITIVE

Theorem 2.1: Let X and Y be normed linear spaces. Let � = (�
1
, �

2
, ..., �

p
)���Rp –

{(0, 0, ..., 0)}: 
�

� � ��
1

0 1
p

i
i

m a , where p is arbitrary but fixed and equals to 2, 3, ... .

Assume in addition that f : X � Y is an approximately additive mapping satisfying
(**) with 1 � r � 0. Define

�

�

� �
� �

��
1

2

( ) if ( , )
( )

( ) if ( , )

n n

n n n

m f m x , r m I
f x  

m f m x , r m I

for all x � X and n � N
o
 = {0, 1, 2, ...}, where

I
1
 = {(r, m) � R2 : 0 � r < 1, m > 1 and r > 1, 0 < m < 1}, and

I
2
 = {(r, m) � R2 : 0 � r < 1, 0 < m < 1 and r > 1, m > 1}.

Then the formula

A(x) = f
n
(x) (1.2)

exists for all x � X and n � N
o
 and A : X � Y is the unique additive mapping

satisfying

 f(x) = A(x) (1.2a)

for all x � X.

Proof: It is useful for the following to observe that, from (**) with x
i 
= 0 (i = 1,

2, ..., p) and 0 < m � 1, we get �m – 1����f(0)���� 0, or

f(0) = 0. (1.3)

Now claim for n � N
0 
= {0, 1, 2, ...} that

f(x) = f
n
(x) (1.3a)
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holds for all x � X. For n = 0 it is trivial. From (1.1) with x
i
 = x (i � N

p
 = {1, 2, ...,

p}), we obtain

�

�

� � � � �
� �

� � � � ��

1

1

0, if  1

0, if 0 1

r r
r

r r r

p p p r
K x

p p p r  or

k
r
 = k

r
(��x��, ��x��, ..., ��x��) = ��x��r � 0 = 0, (1.4)

for every x � X and any fixed real r � R : 0 � r � 1 with p = 2, 3, ...Similarly from
(1.1) with x

i
 = m–1x (i � N

p
), we get

�
�

�

� � � � �
� �

� � � � ��

1

1

0, if 1

0, if 0 1

r r
r r

r r r

p p p r
K x m

p p p r

or

K
r
 = K

r
(m–1��x��, m–1 ��x��, ..., m–1 ��x��) = ��x��r m–r � 0 = 0, (1.5)

for every x � X and any fixed real r � R : 0 � r � 1 with p = 2, 3, ...From (1.4) and
(**), with x

i
 = x(i � N

p
), we get ��f(mx) – mf(x)���� cK

r
(��x��, ��x��, ..., ��x��) = 0, or

f(x) = m–1f(mx), (1.6)

which is (1.3a) for n = 1, if I
1
 holds. Similarly, from (1.5) and (**), with x

i
 = m–1x (m

� 0) (i � N
p
), we obtain ��f(x) – mf(m–1x)���� cK

r
(m–1��x��, m–1��x��, ..., m–1��x��) = 0 or

f(x) = mf(m–1x), (1.7)

which is (1.3a) for n = 1, if I
2
 holds.

Assume (1.3a) is true and from (1.6), with mn x on place of x, we get:

f(mn+1x) = mf(mn x) = mmn f(x) = mn+1 f(x). (1.8)

Similarly, from (1.7) with m–n x on place of x, we obtain:

f(m–(n+1)x) = m–1f(m–nx) = m–1m–n f(x) = m–(n+1) f(x). (1.9)

These formulas (1.8) and (1.9) by induction, prove formula (1.3a). It is obvious
from (1.3a) that A defines a mapping A : X � Y, given by (1.2). Finally, claim from
(**) and (1.3a) we can get that A : X � Y is additive.

In fact, it is clear from the functional inequality (**), the Lemma 1.1 and the
formula (1.3a) that the following functional inequality

� � � �� �

� �

� �
� �� �

� �
� � 1 2

1 1

, ,...,
p p

n n n n n n n
i i i i r p

i i

m f a m x a f m x m cK m x m x m x
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holds for all (x
1
, x

2
, ..., x

p
) � Xp, and all n � N

0
, with f

n
(x) = m–nf(mn x): I

1
 holds.

Therefore � � � � � ��

� �

� �
� �� �

� �
� � 1

1 2
1 1

, ,...,
p p

n r
n i i i n i r p

i i

f a x a f x m cK x x x  or

� � � ��
��

� �

� �
� � ����� �

� �
� � 1

1 1

 0,
p p

n r
i i i i r n

i i

A a x a A x m cK

because mr–1 < 1 for any (r, m) � I
1
 , or

� �
� �

� �
�� �

� �
� �

1 1

p p

i i i i
i i

A a x a A x , (1.10)

yielding that mapping A : X � Y satisfies the additive functional equation (*).
Similarly, from (**), the Lemma 1.1 and (1.3a) we get that

� � � �� � � � �

� �

� �
� �� �

� �
� � 1 2

1 1

, ,...,
p p

n n n n n n n
i i i i r p

i i

m f a m x a f m x m cK m x m x m x

holds for all (x
1
, x

2
, ..., x

p
) � Xp, and all n � N

0
, with f

n
(x) = mn f(m–n x): I

2
 holds.

Therefore � � � � � ��

� �

� �
� �� �

� �
� � 1

1 2
1 1

, ,...,
p p

n r
n i i i n i r p

i i

f a x a f x m cK x x x  or

� � � ��
��

� �

� �
� � ����� �

� �
� � 1

1 1

0
p p

n r
i i i i r n

i i

A a x a A x m cK

because m1–r < 1 for (r, m) � I
2
, implying that A : X � Y satisfies (*), completing the

proof that A can be an additive mapping in X. This completes the existence proof of
the above Theorem 2.1. The Uniqueness proof of Theorem 2.1 is clear, because if A
: X � Y and A� : X � Y are two additive mappings satisfying (1.2a) then A and A�
satisfy A(x) – A�(x) = f(x) – f (x) = 0, or A(x) = A�(x) for all x � X.
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