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ABSTRACT: We study some four point boundary value problems. We develope the
generalized method of quasilinearization to obtain a monotone sequence of solutions of
linear problems converging uniformly and rapidly to a solution of the problem in the C1

norm. We improve some previously studied results, by allowing weaker hypotheses on the
nonlinearity.
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1. INTRODUCTION

In the present paper, we study approximation of solutions of second order nonlinear
differential equations with four point boundary conditions (BCs) of the type,

x�(t) = f(t, x, x�), t ��I = [a, b],

x(a) = x(c), x(b) = x(d), (1.1)

wehere a < c ��d < b. We approximate our problem by a sequence of linear problems
to obtain a monotone sequence of approximants. We show that under suitable
conditions, the sequence converges quadratically to a solution of the original problem.
We note that (1.1) is a problem at resonance since any constant function is a solution
of the linear equation x��= 0 with the four point BCs.

Existence theory for solutions of the four point boundary value problems has
been presented in a number of papers by Rachunkova [3, 4, 5]. In theorem 1 of [4],
Rachunkova, proved existence of solutions for the four point boundary value problem
(1.1) under various combinations of sign conditions on the function f(t, x, x�). The
results of [4] has been generalized by R.A. Khan and R.R. Lopez [2]. They established
existence of solutions under more general conditions, of the existence of lower and
upper solutions which are not necessarily constants. They also developed the
generalized quasilinearization technique to approximate a solution of the boundary
value problem (1.1). Under suitable conditions on  f, they proved in [2] the existence
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of a monotone sequence of solutions of linear problems converging uniformly and
quadratically to a solution of the problem (1.1) in the C1 norm. In this paper, we
generalize the results of [2] by allowing weaker hypotheses on f. We do not require
H( f ) ��0 on I × �2, as was assumed in theorem 4 of [2], where

H( f )  = (x – y)2 f
xx

(t, z
1
, z

2
) + 2(x – y)(x��– y�)f

xx�(t, z1
, z

2
)

+ (x��– y�)2f
x�x�(t, z1

, z
2
), (1.2)

z
1
 lies between x and y, and z

2
 lies between x��and y�. The expression (1.2) is known

as the quadratic form of f. Moreover, we replace the conditions

� f
x�(t, x, y

1
) – f

x�(t, x, y
2
)����L�y

1
 – y

2
�, y

1
, y

2
 ���. (t, x) ��I × [min �, max �],

f
x�(t, x, P) ��2LP, f

x�(t, x, –P) ��–2LP, (t, x) ��I × [min �, max �),

where P > max{������, ������}, assumed in [1], by much weaker condition of the type

f
x�(t, x, P) ��0, f

x�(t, x, –P) ��0 for (t, x) ��I × [min �, max �],

and prove that the conclusion is still valid. Hence we enlarge the class of nonlinear
four point problems to which the generalized method of quasilinearizations is
applicable.

2. UPPER AND LOWER SOLUTIONS

We recall the concept of lower and upper solutions for the BVPs (1.1), [1].

Definition 2.1: Let ����C2(I). We say that � is a lower solution of (1) if

��(t) � f(t, �(t), ��(t)), t � I

�(a) ���(c), �(b) ���(d).

An upper solution � of the BVP(1.1) is defined similarly by reversing the
inequalities.

Definition 2.2: A continuous function ��: [0, �) ��[0, �) is called a Nagumo
function if

0
.

( )
sds

s

�
� ��� �

We say that f : I × � × � � � satisfies the Bernstein-Nagumo condition on I
relative to �, �, if there exists a Nagumo function � such that

f(t, x, y) sgn(y) ���(�y�) on I × [�, �] × �, (2.1)

f(t, x, y) sgn(y) ��–�(�y�) on [a, b] × [�, �] × �, (2.2)
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For u � C(I) we write ��u�� = max{�u(t)� : t ��(I)} and for v � C1(I) we write ��v��
1

= ��v�� + ��v���. The following theorems is known, see [2].

Theorem 3: Assume that � and � are respectively lower and upper solutions of
(1.1) such that �(t) ���(t), t � I. If f : I × �2 � � is continuous and satisfies the
Bernstein-Nagumo condition, then there exists a solution  x(t) of the boundary value
problem (1) such that

�(t) ��x(t) ���(t), t ��I.

Moreover, there exists a constant C > max{������, ������} depends on �, � and �
such that �x�(t)��< C on I.

3. GENERALIZED QUASILINEARIZATION TECHNIQUE

Now, we generalize the results of [2], by not demanding H(f) ��0 on I × �2, and also
impose less restrictive conditions on f. Since f is continuous and bounded on
I × [min �, max �] × [–C, C], there always exists a function � such that

H(f + �) � 0 on I × [min �, max �] × [–C, C], (3.1)

where ��� C2(I × �2) and is such that

H(�) � 0 on I × [min �, max �] × [–C, C], (3.2)

where C > max{������, ������} is as given in Theorem 2.3. Define q : � � � by

, if ,

( ) , if ,

, if ,

C x C

q x x x C

C x C

��
�� ��
�� � ��

a retraction onto [–C, C]. Clearly, q is continuous and bounded. Also, define q : �
� �  by

z(x) = x – q(x), x � �, (3.3)

then z is continuous and maps the interval [–C, C] onto the point 0 (origin). Moreover,
z(x) � 0 for �x� > C. Define F : I × �2 � � by F(t, x, x�) = f(t, x, x�) + �(t, x, x�) where
�(t, x, x�) = �(t, x, z(x�)). Then F ��C2(I × �2) and

H(F) ��0 on I × [min �, max �] × [–C, C]. (3.4)

We note that �(t, x, x�) = �(t, x,  0) for �x�����C, for example, � may be of the form

�(t, x, x�) = a(t, x) + b(t, x)(x��– q(x�))r.
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We state and prove our main result:

Theorem 3.1: Assume that

(B
1
) �, ����C2(I) are lower and upper solutions of (1) such that �(t) ���(t) on I.

(B
2
)  f � C2[I × �2] satisfies a Bernstein-Nagumo condition on I relative to �, �.
Moreover,

f
x
(t, x, x�) ��0 on I × [min �, max �] × [–C, C], and (3.5)

f
x�(t, x, C) ��0, f

x�(t, x, –C) ��0 for every (t, x) ��I × [min �, max �]. (3.6)

Further, assume that (3.4) holds for some function ����C2(I × �2).

Then, there exists a monotone sequence {w
n
} of solutions converging uniformly

and quadratically to a solution of the problem.

Proof: We consider the following four point boundary value problems (BVP)

x�(t) = f(t, x, q(x�)) , t ��I,

x(a) = x(c), x(b) = x(d). (3.7)

We note that any solution x ��C1(I) of the BVP (3.7) such that �x�����C on I, is a
solution of the original problem (1.1). But, as in the proof of the first part of theorem
(3.1) of [1], any solution x of (3.7) with ����x ��� on I, must satisfies �x�����C on I, and
hence is a solution of (1.1). Thus, it is enough to study (3.7). Using Taylor’s theorem
about (t, y, q(y�)), we obtain

f(t, x, q(x�)) = f(t, y, q(y�)) + F
x�(t, y, q(y�))(q(x�) – q(y�))

– [�(t, z, 0) – �(t, y, 0)] + 
1
2

H(F), (3.8)

where

H(F) = (x – y)2 F
xx

(t, �
2
, �

2
) + 2(x – y)[q(x�) – q(y�)]

F
xx�(t, �1

, �
2
) + [q(x�) – q(y�)]2 F

x�x�(t, �1
, �

2
), (3.9)

�
1
 lies between x and y, and �

2
 lies between q(x�) and q(y�). We note that

q(x�), q(y�) ��[–C, C] for all x�, y�����.

Hence, in view of (8), we have

H(F) ��0 for every (t, x, x�), (t, y, y�) ��I × [min �, max �] × �,

and consequently, (1) takes the form
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f(t, x, q(x�)) ��f(t, y, q(y�)) + [F
x
(t, y, q(y�)) – �

x
(t, y, 0)](x – y)

+ F
x�(t, y, q(y�))[q(x�) – q(y�)], (3.10)

for every (t, x, x�), (t, y, y�) ��I × [min �, max �] × � and

–�(t, x, 0)(x – y) ��–�
x
(t, �(t), 0)(x – y) for x ��y. (3.11)

where y ������x. Substituting in (14), we get

f(t, x, q(x�)����f(t, y, q(y�)) + [F
x
(t, y, q(y�)) – �

x
(t, �(t), 0)](x – y)

+ F
x�(t, y, q(y�))(q(x�) – q(y�)), x ��y (3.12)

on I × [min �, max �] × �. Define k on I × �4 by

k(t, x, x�; y, y�) = f(t, y, q(y�)) + [F
x
(t, y, q(y�) – �

x
(t, �(t), 0)] (x – y)

+ F
x�(t, y, q(y�))[q(x�) – q(y�)]. (3.13)

Then, k is continuous and bounded on I × [min �, max �] × � × [min �, max �]
× ��and satisfies the following relations

� �� � � �
� �� � � �

, , , , ; , ,

, , , , ; , ,

f t x q x k t x x y y

f t x q x k t x x x x

� � � ���
�

� � ����
(3.14)

for x � y and for every (t, x, x�), (t, y, y�) � I × [min �; max �] × �. By the mean value
theorem, there exist c

1
; c

2
 depending on y, y� respectively, such that

f(t, y, q(y�)) – f(t, �(t), ��(t)) = f
x
(t, c

1
, c

2
)(y – �(t))

+ f
x�(t, c1

, c
2
)[q(y�) – ��(t)], t � I, (3.15)

where �(t) � c
1
 � y and c

2
 lies between q(y�) and ��(t) on I. Define

l(t, x, x�, y, y�) = f(t, �(t), ��(t)) + f
x
(t, c

1
, c

2
)(x – �(t))

+ f
x�(t, c1

, c
2
)[q(x�) – ��(t)]. (3.16)

Then, l is continuous and bounded on I × [min �, max �] × � × [min �; max �]
× � and in view of (3.15), satisfies the following relations

� � � �� �
� � � �� � � � � �� �

, , ; , , , ,

, , ; , , , .

l t y y y y f t y q y

l t t t y y f t t t

� � � ���
�

� � �� � � � ���
(3.17)
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Now, we define

� �
� �
� �

, , ; , , if ,
, , ; ,

, , ; , , if .

k t x x y y x y
g t x x y y

l t x x y y x y

� �� ��� � � �
� � ���

(3.18)

Clearly, g is continuous and bounded I × [min �, max �] × � × [min �, max �]
× � and therefore satisfies a Bernstein-Nagumo condition on I. For every (t, y, y�) �
I × [min �, max �] × �, we consider the four point BVP

x�(t) = g(t, x, x�, y, y�), t � I,

x(a) = x(c), x(b) = x(d), (3.19)

Using (3.14), (3.17), and (3.18) the choice of C, we have the following relations

g(t, �(t), ��(t); y, y�) = l(t, �(t), ��); y, y� = f(t, �(t), ��(t)) ����(t), t ��I,

g(t, �(t), ��(t); y, y�) = k(t, �(t), ��); y, y� � f(t, �(t), ��(t)) ����(t), t ��I,

which imply that �, � are lower and upper solutions respectively of (23) for every
(t, y, y�) � I × [min �, max �] × �. Since g satisfies the Nagumo condition, hence
there exists a constant C

1
 > max{������, ������} depends on �, �, and a Nagumo function,

such that any solution x of (3.19) with the property �(t) ��x(t) ���(t), t ��I must
satisfies �x�(t)��� C

1
 on I.

Now, we develop the iterative scheme of linear problems. As a first
approximation, we choose w

0
 = � and consider the linear four point boundary value

problem

x�(t) = g(t, x, x�; w
0
, w�

0
), t ��I

x(a) = x(c), x(b) = x(d). (3.20)

Using (B
1
), (3.14) and (3.18), we obtain,

g(t, w
0
(t), w�

0
(t); w

0
(t), w�

0
(t)) = f(t, w

0
(t), w�

0
(t), t ��I,

g(t, �(t), ��(t); w
0
(t), w�

0
(t)) = k(t, �(t), ��(t); w

0
(t), w�

0
(t)) ��f(t, ��(t)) ����(t), t ��I,

which imply that w
0
 and � are lower and upper solutions of (3.20) respectively.

Hence, by Theorem 2.3, there exists a solution w
1
 of (3.20) such that

w
0
 ��w

1
 ����and �w�

1
����C

1
 on I.

Using (3.14), (3.18) and the fact that w
1
 is a solution of (3.20) and w

1
 � w

0
 on I,

we obtain
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w�
1
(t) = g(t, w

1
(t), w�

1
(t); w

0
(t), w�(t))

= k(t, w
1
(t), w�

1
(t); w�(t), w��(t)) � f(t, w

1
(t), q(w�

1
(t))), (3.21)

which implies that w
1
 is a lower solution of (3.7).

In view of (3.14), (3.18), (3.21) and (B
1
), we can show that w

1
 and � are lower

and upper solutions of the problem

x�(t) = g(t, x, x�; w
1
, w�

1
); t � I

x(a) = x(c), x(b) = x(d). (3.22)

Hence, by Theorem 2.3, there exists a solution w
2
 of (3.22) such that

w
1
 ��w

2
 ����and �w�

2
����C

1
 on I.

Again, w
2
 can be shown to be a lower solution of (3.7). Continuing this process,

we obtain a monotone sequence {w
n
} of solutions satisfying

w
0
 ��w

1
 ��w

2
 ��w

3
 ��... ��w

n–1
 ��w

n–1
 ��w

n
 ���, t ��I.

That is,

w
0
(t) ��w

n
(t) ���(t) and �w�

n
(t)����C

1
, n ���, t � I, (3.23)

where w
n
 is a solution of the problem

x�(t) = g(t, x, x�; w
n–1

, w�
n–1

), t ��I

x(a) = x(c), x(b) = x(d).

Since g(t, w
n
, w

n
�; w

n–1
, w�

n–1
) is bounded, we can find a constant A > 0 (independent

on n) such that

�g(t, w
n
, w

n
�; w

n–1
, w�

n–1
)��� A on I.

Using the relation � � � � � �� � ��� � �
t

a
x t x a x s ds, we obtain

� � � � � �11, , ; , ,��� � �� � � ���
t

nn n n n ns
w t w s g u w w w du A t sw (3.24)

for any s, t � I, (s ��t). The inequalities (3.23) and (3.24) imply that the sequences
{w

n
( j)}( j = 0, 1) are uniformly bounded and equi-continuous on I and hence the

Arzelà-Ascoli theorem guarantees the existence of subsequences and a function x �
C1(I) with w

n
( j)( j = 0, 1) converging uniformly to x( j) on I as n ���. Passing to the

limit, we obtain g(t, w
n
, w�

n
; w

n–1
, w�

n–1
) ��f(t, x, q(x�)). Thus, x is a solution of the

boundary value problem (3.7).
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Quadratic Convergence: Now, we show that the convergence of the sequence
of solutions is quadratic. For this, we set e

n
(t) = x(t) – w

n
(t), t ��I, where x is a

solution of the problem (1.1). Then, e
n
 ��C2(I) and e

n
(t) ��0, t ��I. Moreover, the

BCs imply that

e
n
(a) = e

n
(c), e

n
(d) = e

n
(b). (3.25)

Hence, that there exist t
1
 ��(a, c) and t

2
 ��(d, b) such that

e�
n
(t

1
) = 0, e�

n
(t

2
) = 0. (3.26)

Moreover, we have,

1 1( ) ( ) ( ) [ ( , , ) ( , ,0)] ( , , ; , ), .� ��� �� � � �� � �n n n n n ne t x t w t F t x x t x g t w w w w t I (3.27)

Applying Taylor’s theorem about (t, w
n–1

, q(w�
n–1

)) and using (3.18) and the
definition (3.13) of k, we obtain

e�
n
(t) = � �� � � �� �1 11 1 1, , , ,� �� � ��� �n nn x n nf t w q F t w q ew w

� �� � � �� � � � � �� �1 1 11 1

1
, , , ,

2
� � �� � ���� � � �� � ��n n nx n nF t w q x q H F f t w qw w w

� �� � � � � �� �� �1 11 1, , , , 0 , , (� ��� �� �� � � � �� � �� �n n nx n x n x nF t w q t a F t w q qw w w

� � � � �1 1( )) , ,0 , ,0� �� � � � �� �� � �n nq t x t ww

= � �� � � � � �� � � �� �1 11 1, , , ,� ��� � �� �� � �n n nx n n x nF t w q e t F t w q x qw w w

� � � � � � � �1

1
, ,0 , ,0 , ,0

2 �� � � � � � � �� �� �n x nH F t x t w t a

= � �� � � � � �� � � �� �1 11 1, , , ,�� �� �
�� �� � �x n n x nn n nf t w q e t F t w q x qw w w

� � � � � � � � � �1 1

1
, , 0 , ,0 , , 0 , , 0 ,

2 � �� � � � � � � � � �� �� �x n n n x nH F t w e t x t w t a

where

H(F) = e2
n–1

F
xx

(t, �
1
, �

2
) + 2e

n–1
(x��– q(w�

n–1
)) F

xx�(t, �1
, �

2
) + (x��– q(w�

n–1
))2F

x�x�(t, �1
,

�
2
), w

n–1
(t) ���

1
 ��x(t), �

2
 lies between q(w�

n–1
(t)) and x�(t). In (3.28), we used the

notation a
n
 = w

n
 – 2

n–1
 and the fact that e

n–1
 – a

n
 = e

n
. In view of (6), we have
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�(t, x, 0) – �(t, w
n–1

, 0) ���
x
(t, w

n–1
, 0)e

n–1
.

Consequently,

�
x
(t, w

n–1
, 0)e

n
 – [�(t, x, 0) – �(t, w

n–1
, 0)] + �

x
(t, �, 0)a

n

��[�
x
(t, �, 0) – �

x
(t, w

n–1
, 0)]a

n
 ���

xx
(t, �, 0)(� – w

n–1
)e

n–1
,

where w
n–1

 �������. We can choose r > 1 such that ��– w
n–1

 ��re
n–1

 Then, we have,

�
x
(t, w

n–1
, 0)e

n
 – [�(t, x, 0) – �(t, w

n–1
, 0)] + �

x
(t, �, 0)a

n
 ��–de2

n–1
, (3.29)

where d = r max{�
xx

(t, x, 0) : x �[min �, max �]. Using (3.29) and the assumption
(3.5), we can rewrite (3.28) as follows

� � � �� � � �� � 2
11 1

1
, , ( ) .

2
�� � ��� � � �� �n nn x n ne t F t w q x q H F d ew w (3.30)

Let

P
1
 = max{�F

xx
(t, z

1
, z

2
)�, �F

xx�(t, z1
, z

2
)�, �F

x�x�(t, z1
, z

2
)��: t ��I,

z
1
 ��[min w

0
, max �], z

2
 �[–C, C]},

then

�H(F)����P
1
(�e

n–1
� + �x� – q(w�

n–1
)�2) ��P

1
(�e

n–1
� + �e�

n–1
�)2 ��P

1
��e

n–1
��2

1
. (3.31)

Further, since �
x�(t, x, x�) = 0 for �x�����C, hence (3.30) takes the form

� � � �� � � �� � 21
11 1 1

, ,
2

n nn x n n

P
e t f t w q x q d ew w�� � �

� ��� �� � � �� � � �
� �

� �� � � �� � � �� � 21
1 11 1 1 1

, , , , .
2

n n n n nx n x n n

P
f t w q f t w q q d ew e w w w� �� �� � �

� �� � � � �� � � � � � �
� �

(3.32)

Applying the mean value theorem, we obtain

f
x�(t, wn–1

(t), q(w�
n–1

(t))) = f
x�(t, wn–1

(t), q(w�
n
(t)))

+ f
x�x�(t, wn–1

(t), �) [q(w�
n–1

(t)) – q(w�
n
(t))], (3.33)

where � lies between q(w�
n–1

(t)) and q(w�
n–1

(t). We discuss various cases:

If w�
n
(t) > C for some t ��I, then

w�
n
(t) – q(w�

n
(t)) > 0, q(w�

n
(t)) = C and q(w�

n–1
(t)) – q(w�

n
(t)) � 0.

Using the above relations, (3.4), (3.6) and (3.33), we obtain,
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[w�
n
(t) – q(w�

n
(t))]f

x�(t, wn–1
(t), q(w�

n–1
(t))) � [w�

n
(t) – q(w�

n
(t))]f

x�(t, wn–1
(t), C) � 0.

If w�
n
(t) < –C for some t � I, then

w�
n
(t) – q(w�

n
(t)) < 0, q(w�

n–1
(t)) = –C  and q(w�

n–1
(t))�– q(w�

n
(t)) � 0.

Using the above relations, (3.4), (3.6) and (3.33), we obtain,

[w�
n+1

(t) – q(w�
n+1

(t))]f
x�(t, wn

(t), q(w�
n
(t))) � [w�

n+1
(t) – q(w�

n+1
(t))]f

x�(t, wn
(t), –C) � 0.

If �w�
n+1

(t)��� C, for some t � I, then q(w�
n+1

(t)) = w�
n+1

(t), and hence for such values
of t, we get,

[w�
n
(t) – q(w�

n
(t))]f

x�(t, wn–1
(t), q(w�

n–1
(t))) = 0.

Thus for every t � I, we have,

[w�
n
(t) – q(w�

n
(t))]f

x�(t, wn–1
(t), q(w�

n–1
(t))) � 0,

and consequently, (3.32) can be rewritten as,

� � � �� � � � 21
11 1 1

,
2

n nn x n n

P
e t f t w q t d ew e�� � �

� �� � � � �� � � �
� �

(3.34)

which is the same as (3 16)�  of [2, p. 1110]. Hence following the same procedure as
was done in [2], we can get quadratic convergence of the sequence of iterates.
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