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A CLASS OF SECOND ORDER DIFFERENCE EQUATIONS
WITH DELAYS AND IMPULSES

Hong Zhang & Lansun Chen

ABSTRACT: This paper is devoted to the investigation of the oscillation of a class of
second-order nonlinear impulsive delay difference equations. Some interesting results are
obtained by using analysis technique and impulsive difference inequality, and some
examples which illustrate that impulsive perturbations play a very important role in giving
rise to oscillations of equations are also included.
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1. INTRODUCTION

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of ordinary differential equations. On the other hand,
the theory of impulsive differential equations has attracted the interest of many
researchers in the past 20 years since they provide a natural description of several
real processes subject to certain perturbations whose duration is negligible in
comparison with the duration of the process. Such processes are often investigated
in various fields of science and technology such as physics, ecology, optimal control,
etc. Recently, the corresponding theory for impulsive differential equations has been
studied by several authors. (see[1-5] and the references therein). Only a few papers
are impulsive difference equations [6, 7].

In this paper, we consider the following impulsive delay difference equation:

Ala, (A x(n—=1)+Ax(n—-1))) + f(n,x(n—1)) =g(x(n)),a>0, n#n,, ke N,
a, A, x(n) =b.(a, (A, x(n —1))),
a, Ax(n) =b(a, (Ax(n, —1))),

(1.1)

where Ax(n) = x(n + 1) — x(n), A x(n) = x(n + 1) — ox(n), [ € N, N is the natural

number set, 0 <n, <n <..<n,<.. andlim_ n =o.
—o k
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Throughout this paper, we assume that the following conditions hold:

(cl)uf(n, u) > O(u # 0) and there exists a nonnegative sequence {p } such that

f(n,u) S

n’

u

(c2) {bk}:) 1S a positive sequence;

(c3) {an }:) 1S a positive sequence;

(c4)vg(v) <0(v #0).
For convince, we let
Nln,n)) ={njne N,n <n<n,},
Nln,n)) ={njneN,n <n<n,},
Nl[n,©) ={njn € N,n <n < o}
and
S(n) =a, (Ax(n—1)+ Ax(n-1)).
By a solution of Eq. (1.1), we mean a real valued sequence {x(n)} defined on
NIn, — I, o) which satisfied Eq. (1.1) for n > n. It is obvious that Eq. (1.1) has a

unique solution {x (n)} ,» under the initial conditions
g =

xizyi;izno—l,...,no, (1.2)
in which y(i =n -1, ..., n ) are given real constants.

A solution of Eq. (1.1) is said to be nonoscillatory if this solution is eventually
positive or eventually negative. Otherwise, this solution is said to be oscillatory.

2. SOME LEMMAS

Lemma 2.1: Assume that

{Am(n) Slnm(n)+qn,n¢nk,keN,

m(nk +1)Sbkm(nk)+ek,
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where {/ } and {q } are two real valued sequences and [ > -1, ¢,, b, are constants
and b, > 0. Then

<m(n)) [T b [I (+0)+> e[l b I @1+1)

ng<ni <n 110<i<11,i¢11k,keN ng<me<n  m<n;<n m<i<n,i#n;, jeN

+ Z ku H (1+lx)qi,n2n0. (2.1)

i=ny, i#n, i<n<n i<s<n,s#n

Proof: this lemma is a discrete version of Theorem 1.4.1 in [8] and Lemma 2.2
in [9]. The proof can be followed from mathematical induction and direct analysis:

Ifn e N[no’ 1 1, m(n) < m(no) Hl10<i<n(1 + li ) + Z:nlo Hi<s<n (1 + lS )qi’ ObViouSIY’

for n € N[n,, n ], (2.1) holds. We might assume for n € N[n, np], (2.1) also holds,
thus, forn € N(np, np+1], we get

n—1

m(np +1) [T a+0)+> TT(1+1)q,

l‘lp <i<n l:ﬂp 1<s<n

IA

m(n)

n—1

(bpm(np)+ep) 11 (1+1)+> [T(+1)q.

l1p<l<l‘l l:ﬂp 1<s<n

IA

from the induction hypothesis, the above inequality turns into

no<m<n, ng<i<n,,i#n, keN ny<m<n, n<n;<n, m<i<n,,i#n;, jeN

m(n)S{b{m(no) H b, H (1+li)+ Z e, H b, H (1+li)

+ npzl IT & (1+1)) ]+e} 1+li)+§H(l+lx)qi’

i=ng,i#n i<m <n, i<s<n, vink n,<i<n i=n,, i<s<n

which on simplification gives the estimate (2.1) for n € N[n,, n..l This completes
the proof.

Lemma 2.2: Let x(n) be a solution of Eq. (1.1). Suppose that there exists some
N* > n such that x(n) > 0 for n > N", and the following conditions holds:

(h1)(c1) = (c4);
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(h2)for all sufficiently large n,zn, the following inequality hold:

11522 )(2,:1) H b, = +oo.

— <n, <
m=0 (X 1 an o M SESn;+m

Then
A x(n,_)+Ax(n,_)=0,A x(n)+Ax(n) 20,n € N[n,,n,_)n —1>N).
Proof: Firstly, we show that
Ax(n, —1)+Ax(n - 1)20
for any n_> N". Otherwise, there exists some j such that
Aax(nj -1+ Ax(nj -1)<0
for nj ; 1 > N£, from Eq:(1:1), (c2) and (c3), we get
a (Ax(n)+Ax(n)) = b(a, A x(n—1)+b(a Ax(n —1))
nj a J J Joony a J Jo oy J
= ba (Ax(n—1)+x(n-1))<0.
Jnj o J
Let
anjfl(Aax(nj -1+ Ax(n. -1)=-B P >0),
From Eq. (1.1), forn e N(n_. ,n_),i=1,2, .., we have

=17

AS(n) = Aa,_ (A x(n—1) + Ax(n—-1))) = —f(n, x(n - 1)) + g(x(n)) < —p (x(n—-1)).

Hence, S(n) is monotonically decreasing in N, . n,). So,
- (A x(n -1+ A)c(nj+1 -1)) < anj(Aax(nj) + Ax(nj))
= —bj.B <0
and
@y (A x(n -1+ A)c(nj+2 -1)) < anj+l(Aax(nj+l) + Ax(n. D)

= jH(anJ - A, x(n -1)) +bj+1(a " Ax(n. -1))
= ij . (A x(n -1) +Ax(n D) _—ij ,B
< 0.

By induction, we obtain

an(Aax(n)+Ax(n))S—B H b, <0,

n; <m<n
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that is

A () ax(n) <=2 T b,

n njSm<n

Now we go on the following calculation

o+l oa+l)b, a,
x(nj+1)_( : )x(nj)ZX(nj"‘l)—% a;f x(nj—l)ﬁ—%bj,
x(nj+2)—(a+1) x(nj)é(a—kl)ﬁb— B H b,,

J
2. 2anj 2anj+l n;<ny<n;+1

x(nj+3)—Mx(nj)S—(a+l)ZB ‘ H b, —

23

[T .

2 ]
2 : 2an 2 2an 11 n; <nk<n 41 Zan 12 n; <nk<n +2

By induction, we obtain

n—n;+1 n—n;
x(n+1)£(a;1J b, Byt x(nj—l)—(aTHj ZLbj

a

nj

(a+l B a+l B
(2) 2a Hb(jza [1 &

n; 41 n; <nk<n +1 n]»+2 annk <n,+2

a—-1 P
T, 5 by—-— H by, (2.2)

2 2an71 niSnk <n-1 11 n; <nk<n

in view of x(n) > 0, it follows from (42) that the right side of (2.2) converges to —o,
however, the left side of (2.2) is eventually positive, which is a contradiction.

Therefore
Ax(n —1)+Ax(n, -1)>20,n, - 12N".

By (¢2),forVn >N, a (A X)) +Ax(n))=b, a, (A x(n~1) + Ax(n, - 1)) 2 0.
Because S(n) is monotomcally decreasing in N(n__. , n_], we get S(n) 20 forn €
N(n. n..l which implies

i l’

j+i-1? ]+1
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A x(n) + Ax(n) 2 0.
This completes the proof.

Remark 2.3: Suppose that x(n) is eventually negative, if (h1) and (h2) hold true,
then we get A x(n,— 1)+ Ax(n, — 1) <0, A x(n) + Ax(n)<0,n € N[n,n_)(n —1>N").

3. OSCILLATION CRITERIA

Theorem 3.1: Suppose that condition (k1) and (42) hold, and for all sufficiently
large n,
J

" a+l
> »ll 2, — +90(n — ) G.1)

i=n;+1, i#n; n;<n<i

holds. Then every solution of Eq. (1.1) is oscillatory.

Proof: If Eq. (1.1) has a nonoscillatory solution x(72), Without loss of generality,
we might assume that x(n) > 0(n > n,)). From lemma 2.2, get A x(n) + Ax(n) 20, n €

Nn,n_ In >n +0D,k=1,2,...
Let
w(n) _ a, (Aax(n—1)+Ax(n—l))
x(n—l)
Then

w(n)20k=1,2,..),wn)=0n=n).
Using Eq. (1.1) and (c1), we get
a, (Aax(n) +Ax(n)) a, (Aax(n —1) + Ax(n — 1))

Awln) = x(n+1—l) - x(n—l)

A(anfl (Aax(n—1)+ Ax(n—l)) a, (Aax(")"' Ax(n))
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_ _f(n,x(n—l)Jrg(x(")) 4 (Aax(")+Ax(n)Ax(n_l)) <-p
x(n-1) x(n=0)x(n+1-1) -

a, (Aax(nk ) +A, (nk ))
x(m +1-1)

w(n, + 1)

ba, (Ax(n —1)+Ax(n,—1))  2p,

= < )w(nk),

x(nk+1—l) _(a+1

It follows from the above inequalities that w(n) satisfies the following difference
inequalities

Aw(n)é—pn,n;tnk,keN,

w(n, +1)< 2b, w(n,).

Applying Lemma 2.1, we have

w(n+1)<w(n;) ] (ji"l)‘ Z r1l (jikl)

n;<m<n i=n;+1,i#n i<n <n

26, : 1
I1 {W(”j)— > Il }"2’%- (32)

n;<mg<n o+ 1 i=ni+l,i¢nk in,»<nk <i
By (3.1), (3.2) and w(n) > 0, we can draw a contradiction as n — o. Hence,
every solution of Eq. (1.1) is oscillatory. This completes the proof.

Corollary 3.2: Assume that (h1) and (42) hold and there exists a positive integer
k, such that o + 1 > 2D, for k> k. If

D Pi=to, (3.3)

n#ny, ,keN

then every solution of Eq. (1.1) is oscillatory.

Proof: Without loss of generality. Let k, = 1, it follows from o + 1 > 2b, that
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C o+l -
2 wll5== 2 (3.4)

i:nf+l, i#n, keN nf<nksi i:nﬁl,i;tnk,keN

Let n — oo, applying (3.3) and (3.4), we get (3.1). According to Theorem 3.1 we
obtain that every solution of Eq. (1.1) is oscillatory.

Corollary 3.3: Assume that (21) and (42) hold and there exist a positive integer

A
.. 1
k, and a positive constant A such that a; > [Mj b, for k >k .If
ny

Z n}‘pn = 400 (35)

n#n, ,keN

then, every solution of Eq. (1.1) is oscillatory.

A
1
Proof: Without loss of generality. Let k= 1, it follows from T+ > (n"” J b,
ny

4 a+1 ) o415 a+1)
S oall%t - SpettS (o+1)

i=ny,i#n, ,keN i=n, 2b1 i=n +1 2b1 2b2 2b3 v 2b]

n

y z P, 0(+1 Z P,

i=n;+1,i%n;  keN[j+1,0) 1 s=n;+1

. (a+1)j n
2b, 2b, 2b, --2b

i s=n.+1,i#n, ,keN|j+l, 00
J j 3 J

Dy

-1

1 n
—| > whp e+ Y nhp,

>
n] s=n,+1 S=n]»+l
1 n

> — spg,neN( i ]+1)
n] s=n;+1, s#n , ke N
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Let n — oo, applying (3.5), we get (3.1). According to Theorem 3.1, we get
every solution of Eq. (1.1) is oscillatory.

Remark 3.4: Using the similar method, we can discuss oscillation criteria
for the following advanced and mixed difference equations with impulsive
effect:

A(aH(Aax(n—l)+AX(n—1)))+f(”’x(””)))zo’a >0,n#n,keN,
an‘Aax(nk) =b, (a,,k,l (Aax(”k _1)))’
a, Ax(n,)=b, (a, ,(Ax(n, 1)),

(o (x(-1) Ax( 1)) x(n 1)) =) 0.m 2
an‘Aax(nk) =b, (a,,A 4 (Aax(”k _1)))’
a, Ax(n,)=b, (a, ,(Ax(n, 1)),

A0 (8o ) () () 00 )) =0, 0. K,
an‘Aax(nk )="b, (a,,A 4 (Aax(”k _1)))’
a,Ax(n,)=b, (a, ,(Ax(n, 1)),

Ao (=1 A=) £ 50 (4 0) () >0k
an‘Aax(nk )="b, (a,,A 4 (Aax(”k _1)))’
a, Ax(n,)=b, (a, ,(Ax(n, 1)),

o (1) A1) 1), ) = <) 0502
a, A,x(n)=b, (a,,A i (Aax(”k _1)))’
a, Ax(n,)=b,(a, , (Ax(n, 1)),
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4. EXAMPLES

Example 1: Consider impulsive delay difference equation:

3 Tn-3

( n jZ(nl) n 3n 1
In -
n—1 ( 2 €n

n+1)5

A{ﬁ[A;x(n—l)+Ax(n—l)B+ e x(n=1)

1
_—e—nsgn(x(n)), n#2kkeN,

iAlx(zk):—y‘_l[—l Alx(Zk—l)J, @D
2% 4 \2k—1

2

L (2k) :E(Lm(zk—u}
2k 4k \2k—1

3 Tn-3

( n jz(m) n 3 1
ln. ol S
1 1 n—1 (n_i_l); e

in which ¢, =—,a=—,p, = b, = 3k , applying
n 2 ln(n—l)

Corollary 3.2, we get every solution of Eq. (4.1) is oscillatory. But the delay difference
equation

A{ﬁ[A;x(n_l)Mx(n_l)j} =] g nx(n—l)

1
__engn(x(n)),n #2k,keN,

has a nonoscillatory solution x(n) = In n.
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Example 2: Consider impulsive delay difference equation:

A(in(Azx(n_qu(n_1))j+n3slx(n_z)

:_exp(x(n))sgn(x(n)), n#2k, keN,

3k 1
eWAzx(Zk) = 2k+3(TI)(A2X(2k—1))], (42)

e

1 3% (1
—rAx(26) =m(w(m(2k—1))}

3k

. . .. _ 1 _ _ _ . 3s-1 _ .
in which s(> 1) is integer, @, = b 2,y=1p,=n"",b,=——, applying

2k+3

Corollary 3.3, we derive that every solution of Eq. (4.2) is oscillatory.
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