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p-LAPLACIAN AND NONSMOOTH POTENTIAL
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ABSTRACT: In this paper we consider a nonlinear eigenvalue problem driven by the p-
Laplacian dierential operator with a nonsmooth potential function (hemivariational
inequality). Using a variational approach based on the nonsmooth critical point theory, we
prove the existence of at least two nontrivial positive solutions as the positive parameter
moves in a half-line. By strengthening the hypotheses we show that the solutions are strictly
positive. Finally if the hypotheses are symmetric in R, then we have at least four solutions
of constant sign.
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1. INTRODUCTION

Let Z ���� be a bounded domain with a C2-boundary �Z. In this paper we study the
following nonlinear eigenvalue problem with a nonsmooth potential

(hemivariational inequality):

2(|| ( ) || ( )) ( , ( ))

1 .

p

z

div Dx z Dx z j z x z a.e. on Z,

x| =0, p

�

�

� �� ���� �
� �

� � �� �� �
(1.1)

In problem (1.1), � � � is a positive parameter, j(z, x) is a measurable function
which is locally Lipschitz and in general nonsmooth in the x-variable and by �j(z, ·)
we denote the generalized subdifferential of j(z, ·). We are interested in the existence
of multiple nontrivial positive solutions for problem (1.1) as � > 0 varies in a half-
line.

Problem (1.1) has been investigated primarily in the context of semilinear
equations (i.e. p = 2) with a smooth potential function (i.e. j(z, ·) � C1(�) and so
�j(z, ·) is single-valued, see Section 2). We mention the works of Allegretto-Nistri-
Zecca [1], Cac-Fink-Gatica [2], Castro-Shivaji [3], Dancer [7], Hai [14], Lions [17],
Maya-Shivaji [18] and the references therein. Problems driven by the p-Laplacian
differential operator, were investigated by Guo [12], Guo-Yang [13], Hai-Schmitt
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[15], Hai-Shivaji [16] and Perera [21]. With the exception of Perera [21], the rest
deal with problems defined on a ball or on an annulus and focus on existence and
uniqueness questions. Perera [21] has the most general result in this direction, which
substantially improves the multiplicity theorem of Maya-Shivaji [18] even in the
context of semilinear problems. Our work here extends that of Perera [21].

Corresponding eigenvalue problems for hemivariational inequalities (i.e.
problems with a nonsmooth potential), were studied by Chang [4], Filippakis-
Gasinski- Papageorgiou [8], Goeleven-Motreanu [11] and Motreanu [19]. They all
deal with semilinear problems (i.e. p = 2) and only Filippakis-Gasinski-Papageorgiou
[8] address the question of existence of multiple positive solutions.

Hemivariational inequalities arise in the study of many complicated mechanical
and engineering problems, where the relevant energy functionals are neither convex
nor smooth (the so-called superpotentials). For example this is the case of
nonmonotone multivalued interface laws or constitutive relations that occur in certain
contact and friction processes, as well as of phenomena related to large displacements
and deformations expressed by nonlinear strain-displacement laws. Moreover,
eigenvalue problems such as (1.1) arise in the study of steady states of diffusion
problems (see Cohen-Keller [6]) and in the stability analysis of mechanical systems
(such as, for example, beam buckling). For a variety of applications of hemivariational
inequalities, we refer to the book of Naniewicz-Panagiotopoulos [20].

Our approach is variational based on the nonsmooth critical point theory. The
basis for this theory, is the subdifferential theory for locally Lischitz functions, due
to Clarke [5]. In the next section, for easy reference, we recall the basic definitions
and facts from these theories, which will be used in the analysis of problem (1.1).
Our basic references are the books of Clarke [5] and Gasinski-Papageorgiou [9].

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and X * its topological dual. By �·, ·� we denote the duality
brackets for the pair (X,X*). A function � : X � � is said to be locally Lipschitz, if
for every x � X we can find a neighborhood of U of x � X and a constant k

U
 > 0

(depending on U) such that

|�(y) - �(z)| ��k
U
||y - z|| for all y, z � U.

Recall that if � X � � is continuous convex, then it is locally Lipschitz. Similarly
if � � C1(X). If � : X � �, is a locally Lipschitz function, the generalized directional
derivative of � at x � X in the direction h � X, is defined by
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It is easily seen that h � �0(x, h) is continuous, sublinear and so it is the support
function of a nonempty, w*-compact and convex set ���(x) � X* defined by

�� (x) = {x* � X* :�x*, h� ���0(x; h) for all h � X}.

The multifunction x � �� (x) is called the generalized subdifferential of ��. If �
is also convex, then the generalized subdifferential coincides with the subdifferential
�

c
� in the sense of convex analysis, which is defined by

�
c
��(x) = {x* � X* : �x*, h� ����(x + h) - ��(x) for all h � X} for all x � X.

If ���C1(X), then

���(x) = {��(x)} for all x � X.

If ���� X � � are two locally Lipschitz functions, then

�(� + �) � �� + �� and �(��� = ��� for all ��� �.

If � : X � � is a locally Lipschitz function, then x � X is a critical point of �, if
0 ���� (x). In this case c = ��(x) is a critical value of �. If x � X is local extremum
of � (i.e. a local minimum or a local maximum), then x � X is a critical point of �.

It is well-known that in the smooth critical point theory, crucial role plays a
compactness type condition, known as the “Palais-Smale condition” (PS-condition
for short). In the present nonsmooth setting, this condition takes the following form:

A locally Lipschitz function � : X � �, satisfies the nonsmooth Palais-Smale
condition (the nonsmooth PS-condition for short), if any sequence {x

n
}

n �1
 such

that  n
n

x
1

sup | ( ) |
�

� � ��  and m(x
n
) = inf{||x*|| : x* � �� (x

n
)} � 0 as n � �, has

a strongly convergent subsequence.

Evidently, since for � � C1(X) we have ���(x) = {��(x)}, we see that for smooth
� the above definition coincides with the classical one.

The following is a nonsmooth version of the well-known “Mountain Pass
Theorem”.

Theorem 2.1. If X is a reflexive Banach space, � : X � � is a locally Lipschitz
function which satisfies the nonsmooth PS-condition and there exist x

0
, x

1
 � X and

� > 0 such that
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(i) || x
1
 - x

0
|| > � and

(ii) max{��(x
0
), ��(x

1
)} < c

0
 = inf{�(y) : ||y - x

0
|| =�� }

then � has a critical point x � X with critical value c = ��(x) � c
0
 defined by the

minimax relation

df

t
c t

|0,1|
inf max ( ( )),
��� �

� � �

where

df

C X x x0 1{ ([0,1], ) : (0) , (1) }.� � �� � � � �

Finally by �
1
 we denote the first (principal) eigenvalue of the negative p-Laplacian

with Dirichlet boundary condition, i.e. of p
p W Z1,

0( , ( )).�� We know that �
1
 > 0 and

it has the following variational characterization

p
p p

p
p

Dx
x W Z x

x
1,

1 0

|| ||
inf : ( ), 0

|| ||

� �� �� � � �� �
� �� �

(see Gasinski-Papageorgiou [10], p.732).

3. MULTIPLE POSITIVE SOLUTIONS

The hypotheses on the nonsmooth potential function j(z, x) are the following:
H(j): j : Z × � � � is a function such that j(z, 0) = 0 a.e. on Z and

(i) for all x � �, z � j(z, x) is measurable;

(ii) for almost all z � Z, x � j(z, x) is locally Lipschitz;

(iii) for almost all z � Z, all x ���, and all u � �j(z, x), we have

|u| ���(z) + c|x|r–1

with ��� L�(Z)
+
, c > 0, 1 ��r < p* = 

Np
if N p

N p

if N p

;
� �� ��
��� ��

(iv)for almost all z � Z and all x ��0, we have
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pc
j t x x

p
0( , ) �  for some c

0 
>

 
0;

(v) p
x

j z x

x

( , )
lim sup 0

��
�  uniformly for almost all z ��Z ;

(vi) there exists v
0
 > 0 such that �

Z
 j(z, v

0
)dz > 0;

(vii) there exists � > 0 such that j(z, x) ��0 for a.a. z � Z and all

0 ��x ���.

Remark 3.1. These hypotheses are more general than those used by Perera [21],
where j(z, ·) � C1(�) and f(z, x) = �j(z, x) satisfies |f(z, x)| � c|x|p–1 for a.a. z � Z, all
x � � and with c > 0. The following nonsmooth locally Lispchitz functions j

1
 and j

2
,

satisfy hypotheses H(j) (for simplicity we drop the z-dependence):

p p

p

x x x if x
j x

x if x
p p

1

| | ln | | | | | | 1
( ) 1 1

| | 1 | | 1

� � �
�� �
� � � ��

�

and  
p rj x x c x x with r p p c

p r p
*

2
1 1 1 1

( ) | | max{ | | , | | } 1 , .�� � � � � � � �
�

Also the C1-function j
3
(x) (again we drop the z-dependence) that follows, satisfies

hypotheses H(j), but not those of Perera [21]:

p rj x x x x with r p p
p r

*
3

1 1 1
( ) | | max{ | | , | | } 1 .�� � � � � � �

�

We introduce the Lipschitz continuous truncation function �
+
 : � � �

+ 
defined

by

0 0
( ) .

0

if x
x

x if x�

��
� �

��
�

We set j
+
(z, x) = j(z, �

+
 (x)). Clearly for every x � �, z � j

+
(z, x) is measurable,

while for almost all z � Z, x � j
+
(z, x) is locally Lipschitz. Moreover, from the

nonsmooth chain rule (see Clarke [5], p.42), we have
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t

if x

z x t j z if x

j z x if x
+ [0,1]

{0} 0

j ( , ) { ( ,0)} 0 .

( , ) 0
�

� �
�� � � ��
�� ��

(3.1)

Note that j
+
(z, x) = 0 a.e. on Z, for all x ��0.

For � > 0, we consider the functional pW z1,
0: ( )�

�� ��  defined by

p
p Z

x Dx j z x z dz
p

1
( ) || || ( , ( ))�

� �� � ���  for all px W z1,
0 ( ).�

We know (see for example Gasinski-Papageorgiou [9], p.59), that �
��  is Lipschitz

continuous on bounded sets, hence it is locally Lipschitz.

Proposition 3.2. If hypotheses H(j) hold, then for every 0, �
�� � � is coercive on

pW Z1,
0 ( ).

Proof. By virtue of hypothesis H(j)(v), given � > 0 we can find M = M(�, �) > 0
such that

( , ) ( , ) | |pj z x j z x x
p�
�

� � � �  for a.a. z � Z and all x � M. (3.2)

On the other hand using the mean value theorem for locally Lipschitz functions
(see Clarke [5], p.41) and hypothesis H(j)(iii), we can find c

1
 = c

1
(�, � ) > 0 such that

�j
+ 
(z, x) ��c

1
 for a.a. z � Z and all x < M (3.3)

(recall that j
+ 
(z, x) = 0 a.e. on Z, for all x ��0). Combining (3.2) and (3.3), we have

1( , ) | |pj z x x c
p�
�

� � �  for a.a. z � Z and all x � �. (3.4)

Then for every px W Z1,
0 ( ),�  we have

p
p Z

x Dx j z x z dz
p

1
( ) || || ( , ( ))�

� �� � ���

p p
p pDx x c

p p 2
1

|| || || ||
�

� � �  for some c
2
 = c

2
 (�, �) > 0 (see(3.4))
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p
pDx c

p 2
1

1
(1 ) || ||

�
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� (3.5)

(recall the variational characterization of �
1
 > 0).

Choose 0 < � < �
1
. Then from (3.5) and Poincare’s inequality, it follows that �

��
is coercive.

Proposition 3.3. If hypotheses H(j) hold, then for every 0, �
�� � �  is bounded

below and satisfies the nonsmooth PS-condition.

Proof. Since �
��  is coercive (see Proposition 3.2), it is bounded below (see also

(3.5)).

Now suppose that p
n nx W Z1,

1 0{ } ( )� �  is a sequence such that

nx M1| ( ) |�
�� �  for some M

1
 > 0, all n � 1 (3.6)

and m�(xn
) � 0 as n � �. (3.7)

Recall that n nm x x x x* *( ) inf{|| || : ( )}.�
� �� ���

Since 
p p

nx W Z W Z
p p

1, 1, *
0

1 1
( ) ( ) ( ) ( 1)� � �

��� � � � �
�  is nonempty and weakly

compact in W–1,p� (Z) and the norm functional in a Banach space is weakly lower

semicontinuous, by the Weierstrass theorem, we can find n nx x* ( )�
���� such that

n nm x x*( ) || ||� �  for all n � 1.

Let A : p pW Z W Z1, 1,
0 ( ) ( )� ��  be the nonlinear operator defined by

p
NZ

A x y Dx Dx Dy dz2( ), || || ( , )�� � �    for all px y W Z1,
0, ( )� .

Hereafter by �·, ·� we denote the duality brackets for the pair (W–1,p� (Z), pW Z1,
0 ( )).

It is easy to see that A is monotone, continuous, hence maximal monotone. We know
that for every n � 1

n n nx A x u* ( )� ��
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with 
r

n n nu L Z u z j z x z
r r
1 1

( )( 1), ( ) ( , ( ))�
�� � � ��

�
a.e. on Z (see Gasinski-

Papageorgiou [9], p.59). Because of (3.6) and the coercivity of �
��  (Proposition

3.2), we have that n nx W Z1,
1 0{ } ( )� � is bounded. So by passing to a suitable

subsequence if necessary, we may assume that

w

nx x�  in pW Z1,
0 ( )  and x

n
 � x in Lp(Z) and in Lr(Z) (recall r < p*).

From (3.7), we have

n n n n n nZ
A x x x u x x dz x x| ( ), ( ) | || ||� �� � � � ��  with n 0� � . (3.8)

Hence �
n
 ||x

n
– x|| � 0 as n � �. Also because of hypothesis H(j)(iii), the sequence

{u
n
}

n � 1 
� Lr�(Z) is bounded. Therefore

n nZ
u x x dz( ) 0� ��  as  n ���.

and so from (3.8) it follows that

n nA x x xlim ( ), 0� � (3.9)

But A being maximal monotone, it is generalized pseudomonotone (see Gasinski-
Papageorgiou [10], p.330). Hence from (3.9), we infer that

�������(x
n
), x

n
� � ��(x), x�,

��||Dx
n
||

p
 � ||Dx||

p
 as n � �.

We also have w
nDx Dx���  in Lp(Z,�N). Since the Lebesgue space Lp(Z,�N) is

uniformly convex it has the Kadec-Klee property (see Gasinski-Papageorgiou [10],
p. 911). Therefore it follows that

Dx
n
 � Dx in Lp(Z,�N) as n � �.

From this and Poincare’s inequality, we conclude that

nx x�  in pW Z1,
0 ( ),

�
�� �  satisfies the nonsmooth PS-condition.
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Using this Proposition and Theorem 2.1.6, p.144, of Gasinski-Papageorgiou [9],
we obtain the following corollary.

Corollary 3.4. If hypotheses H(j) hold, then for every �� > 0 we can find
px W Z1,

0 0 ( )�  such that

1,
0 0( ) inf ( ) : ( )px x x W Z� �

� �� �� � � �� �
Proposition 3.5. If hypotheses H(j) hold, then we can find �� > 0 such that for all

we have �������we have

x0( ) 0�
�� �

with px W Z1,
0 0 ( )� as in Corollary 3.4.

Proof. We consider the integral functional � 
+
 : Lp(Z) �  � defined by

Z
x j z x z dz( ) ( , ( ))� �� � �

Clearly�
+
 is continuous and because of hypothesis H(j)(vi), for the constant

function v
0
 � Lp(Z), we have

�
+
(v

0
) > 0.

Since the Sobolev space pW Z1,
0 ( )  is embedded densely in Lp(Z), we can find

pu W Z1,
0 0 ( )� such that

�
+
(u

0
) > 0.

Recall that j
+
(z, x) = 0 a.e. on Z, for all x � 0. So u u0 0( ) ( ) 0�

� �� � � � and so we

may assume without any loss of generality that u
0 
� 0, u

0
 � 0 (because �

+
(0) = 0 <

�
+
(u

0
)). Then

p
p Z

u Du j z u z dz
p0 0 0
1

( ) || || ( , ( ))�
� �� � ���

p
pDu u

p 0 0
1

|| || ( ).�� ���

Since �
+
(u

0
) > 0, we see that if we choose �� > 0 large, then for  ��� ��, we have
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p
p Z

u Du j z u z dz
p0 0 0
1

( ) || || ( , ( ))�
� �� � ��� < 0,

x u0 0( ) ( ) 0� �
� �� � � � � .

Proposition 3.6. If hypotheses H(j) hold, then for every ��> 0 the origin is a

strict local minimizer of �
�� .

Proof. We argue indirectly. So suppose that the proposition is not true. Then we

can find p
n n nx W Z x1,

1 0{ } ( ), 0� � �  for all n ��1 such that

||x
n
|| � 0 as n � � and nx( ) (0) 0� �

� �� � � � � for all n � 1. (3.10)

Since j
+
(z, x) = 0 for a.a. z � Z, all x ��0, from the inequality in (3.10), we deduce

that nx 0� �  for all n �1. Also because ||x
n
|| � 0, by passing to a suitable subsequence

if necessary, we may assume that

x
n
(z) � 0 a.e. on Z.

Be Egorov’s theorem, we know that given � > 0, we can find Z�  a closed subset

of Z such that NZ Z| \ |� � � (by | · |
N
 we denote the Lebesgue measure on �N) and

x
n
(z) � 0 uniformly for z Z .��

Therefore, if ��> 0 is as in hypothesis H(j) (vii), we can find n
0
 = n

0
(�) � 1 such,

that

|x
n
(z)| ��� for all z Z��  and all n � n

0
.

So by virtue of hypothesis H(j)(vii), we have

j
+
(z, x

n
(z)) � 0 a.e. on Z�  for all n � n

0
. (3.11)

Then, if n ��n
0
, we have

p
n n p nZ

x Dx j z x z dz
p

1
( ) || || ( , ( ))�

� �� � ���

p
n p n nZ Z Z

Dx j z x z dz j z x z dz
p \

1
|| || ( , ( )) ( , ( ))

� �
� �� �� ��� �
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p
n p nZ Z

Dx j z x z dz
p \

1
|| || ( , ( ))

�
�� ���   (see (3.11))

p
n p nZ Z

Dx j z x z dz
p \

1
|| || ( , ( ))

�

� �
�� ���

(recall that j
+
(z, x) = 0 a.e. on Z, for all x � 0)

p p
n p nZ Z

c
Dx x z dz

p p
0

\

1
|| || | ( ) |

�

� ��
� � �  (see hypothesis H(j)(iv)) (3.12)

From the Sobolev embedding theorem, we know that pW Z1,
0 ( )  is embedded

continuously in Lp(Z). So 
p

p p
nx L Z

*

( ) ( ).� �  Set 
p

p

*

1.� � �  Using Hölder’s inequality,

we have

( )
\\

( ) ( )( ( ))p Z p
n Z ZZ Z Z

x dz z x z dz
��

� �
�� �� �

\
1 1

|| || || || ( 1)p
pZ Z x

�

�
�� �� � � �

� ��

p
N n p

c
Z Z Dx

p

1

3| \ | || ||���
��  for some c

3 
> 0

p
n p

c
Dx

p

1

3 || ||
��

��
�  for all n � 1. (3.13)

Returning to (3.12) and using (3.13), we have

p
n n px c Dx

p

1

4
1

( ) (1 ) || ||� ���
�� � ���  for some c

4 
> 0, all n ��n

0
(3.14)

For given � > 0, we choose � = ��(�) > 0, such that c
1

4(1 ) 0����� �   and so from

(3.14), we see that
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nx( ) 0 (0)� �
� �� � � �   for all n � n

0
,

a contradiction to the choice of the sequence p
n nx W Z1,

1 0{ } ( ).� �

Theorem 3.7. If hypotheses H(j) hold, then there exists �� > 0 such that for every

������ problem (1.1) has at least two nontrivial solutions x x C Z1
0 1 0, ( ) .��

Proof. From Proposition 3.4 and 3.5, we know that we can find �� > 0 and r > 0
such that for every ������ we have

x x x r c0 0( ) (0) 0 inf[ ( ) :|| || ]� � �
� � �� � � � � � � � (3.15)

Here px W Z1,
0 0 ( )�  is as in Corollary 3.4. Because of (3.15) and Proposition  3.3

we can apply Theorem 2.1 and obtain px W Z1,
1 0 ( )�  such that

        c x0 1( )�
�� � (3.16)

and  x10 ( )�
���� (3.17)

From (3.15) and (3.16), we see that x
0
 � x

1
, x

0
 � 0, x

1
 � 0. Moreover, Corollary

3.4 implies that

x00 ( )�
���� . (3.18)

From (3.17) and (3.18) we see that for i = 0, 1, we have

A(x
i
) = u

i 
with u

i
 � Lr�(Z), u

i
(z) � �j

+
(z, x

i
(z)) a.e. on Z. (3.19)

On (3.19), we act with the test function p
ix W Z1,

0 ( )�� �  and we obtain

p
i p i iZ

Dx u x dz|| || ( ) 0� �� � ��  (see (3.1)),

ix 0,�� �  i.e. x
i
 � 0, x

i
 � 0, i = 0, 1.

From (3.19) it follows that x
0
, x

1
 are nontrivial positive solutions of problem

(1.1). Moreover, from the nonlinear regularity theory (see Gasinski-Papageorgiou

[10], p.738), we have that x x C Z1
0 1 0, ( ) .��

Recall that the Banach space C Z1
0( )  is an ordered Banach space with order cone

given by
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C Z x C Z x z1 1
0 0( ) { ( ) : ( ) 0� � � �  for all z Z}.�

This cone has a nonempty interior given by

C Z x C Z x z1 1
0 0int ( ) { ( ) : ( ) 0� �� � �  for all 

x
z Z z

n
, ( ) 0
�

� �
�

 for all z Z}.��

If we strengthen hypotheses H(j), we can conclude that the two solutions of

problem (1.1) belong in C Z1
0int ( ) .�  So we strengthen hypotheses H(j) as follows:

H(j)�: j : Z × � � � is a function such that j(z, 0) = 0 a.e. on Z, it satisfies hypotheses
H(j)(i) � (vii) and

(viii) for almost all z � Z, all x ��0 and all u � �j(z, x), we have

pcx u with c1 0.�� � �� �

Theorem 3.8. If hypotheses H(j)� hold, then there exists �� > 0 such that for
every ������ problem (1.1) has at least two solutions

x x C Z1
0 1 0, int ( ) .��

Proof. Let x x C Z1
0 1 0, ( )��  be the nontrivial solutions obtained in Theorem 3.7.

We have

A(x
i
) = u

i
 i = 0, 1 (see the proof of Theorem 3.7).

Recall u
i
 � Lr� (Z), u

i
(z) � �j

+
(z, x

i
(z)) a.e. on Z. We have

-div(||Dx
i
(z)||p-2Dx

i
(z)) = u

i
(z) a.e. on Z,

��div(||Dx
i
(z)||p-2Dx

i
(z)) 1( )p

icx z �� �   a.e. on Z, i = 0, 1

(see hypothesis H(j)�(viii))

We can apply the nonlinear strong maximum principle of Vazquez [22] (see also

Gasinski-Papageorgiou [10], p.738), to conclude that 1
0 1 0, int ( ) .x x C Z ��

If the hypotheses in H(j) are symmetric in the positive and negative semiaxis, we
can have a multiplicity result for solutions of constant sign. So the new hypotheses
on the nonsmooth potential j(z, x) are the following:

H(j)
s
: j : Z × � � � is a function such that j(z, 0) = 0 a.e. on Z and

(i) for all x ���, z � j(z, x) is measurable;
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(ii) for almost all z � Z, x � j(z, x) is locally Lipschitz;

(iii) for almost all z � Z, all x � �, and all u � �j(z, x), we have

|u| � � (z) + c|x|r-1

with � ��L�(Z)
+
, c > 0, 1 ��r < p* ;

PN
if N p

N p

if N p

� �� �� �
��� ��

(iv) for almost all z � Z and all x � �, we have

pc
j t x x

p
0( , ) �  with c

0 
> 0;

(v) p
x

j z x

x| |

( , )
lim sup 0

��
�  uniformly for almost all z � Z;

(vi) there exist v
0
 > 0 > v

1
 such that �

Z
 j(z, v

0
)dz > 0, �

Z
 j(z, v

1
)dz > 0;

(vii) there exists � > 0 such that for almost all z � Z and all |x| ���, j(z, x) � 0.

Then working as above, separately on the positive semiaxis and on the negative
semiaxis, we obtain the following multiplicity result.

Theorem 3.9. If hypotheses H(j)
s
 hold, then there exists �� > 0 such that ������

problem (1.1) has at least four nontrivial solutions, two positive x x C Z1
0 1 0, ( )��

and two negative y y C Z1
0 1 0, ( )��� .

Again if we strengthen hypotheses H(j)
s
, we can improve the conclusion of

Theorem 3.9. So we assume the following for the nonsmooth potential j(z, x):

H(j)�
s
: j : Z × � ��� is a function such that j(z, 0) = 0 a.e. on Z, it satisfies hypotheses

H(j)
s
(i) � (vii) and

(viii) for almost all z � Z, all x � � and all u � �j(z, x), we have
1| |pc x u�� ��   with c 0.��

Then arguing as in the Theorem 3.8, this time on both semiaxes, we obtain the
following multiplicity result.

Theorem 3.10. If hypotheses H(j)�
s
 hold, then there exists �� > 0 such that for all

every �� � ��problem (1.1) has at least four solutions x x C Z1
0 1 0, int ( )��  and

y y C Z1
0 1 0, int ( ) .���
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