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1. INTRODUCTION

In this paper we study the existence of positive solutions for the following nonlinear
scalar boundary value problem

px t x t j t x t a.e. on T= b

x x b p

2(| ( ) | ( )) ( , ( )) [0, ],

(0) ( ) 0, 1

�� �� � � ���� �
� �

� � � � �� �� �
(1.1)

Here the potential function j : T × � � � is measurable in t � T and only locally
Lipschitz (hence in general nonsmooth) in the x � � variable. Then �j(t, x) denotes
the generalized (Clarke) subdifferential of j(t, ·). In the past the problem of existence
of positive solutions for scalar boundary value problems was studied by many authors,
primarily in the context of semilinear (i.e. p = 2) equations. We mention the works
of the Erbe-Hu-Wang [5], Erbe-Wang [4], Liu-Li [7], Njoku-Zanolin [9], Wang
[16], which deal with semilinear equations. In Erbe-Hu-Wang [5], Erbe-Wang [4]
the authors deal with the the so-called sublinear and superlinear problem: i.e. if f(x)
represents the right hand side nonlinearity,  they assume

x x

f x f x
x x0 0

( ) ( )
lim , lim 0

� �� �
� �� �  (sublinear case) and 

xx

f x f x
x x0

( ) ( )
lim 0, lim

� ����
� � ��

(superlinear case) and their approach uses degree theory and in particular the fixed
point index and Krasnoselskii’s theorem on fixed points for maps of the compression-
expansion type. Similar is the work of Wang [16], who deals with the sublinear case
for a semilinear elliptic equation on an annulus. Liu-Li and Njoku-Zanolin use weaker
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conditions on the asymptotic behavior at +� and 0+ of the ratio 
f x

x
( )

,  however

always avoiding any interaction with the spectrum of the negative scalar Laplacian
(nonresonance). The method of Liu-Li is similar to that of Erbe-Hu-Wang and Erbe-
Wang and it is based on degree theoretic arguments. The work of Njoku-Zanolin,
combines degree theory with estimates for the time map. Recently the attention
shifted to equations driven by the scalar p-Laplacian. In this direction we have the
works of De Coster [3], Ben Naoum-De Coster [8] and Wang [17]. De Coster and
Ben Naoum-De Coster use the method of upper-lower solutions in conjunction with
the time map, while Wang extends the semilinear work of Erbe-Wang. None of the
aforementioned works treats the resonant case. Resonant problems were first studied
in the celebrated paper of Landesman- Lazer [6], who produced some sucfficient
conditions for the existence of solutions to some smooth, semilinear Dirichlet
problems. Since then these conditions are known as Landesman-Lazer conditions
(LL-conditions for short). Resonant problems are important since they arise often in
Mechanics.

In this paper we establish the existence of at least one nontrivial positive solution
under complete resonance at +�. At 0+ we allow only partial interaction with the
spectrum of the negative scalar p-Laplacian with Dirichlet boundary conditions
(nonuniform nonresonance).

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and X * its topological dual. By �·, ·� we denote the duality
brackets for the pair (X,X*). A function � : X � � is said to be locally Lipschitz, if
for every x � X we can find a neighborhood of U of x � X and a constant k

U
 > 0

(depending on U) such that

|��(y) - ��(z)|  �  k
U
|| y - z| for all y, z � U.

Recall that if � : X � � is continuous convex, then it is locally Lipschitz. Similarly
if � �C1(X). If � : X � �, is a locally Lipschitz function, the generalized directional
derivative of � at x � X in the direction h � X, is defined by

x x

x h x
x h0

0

( + ) - ( )
( ; ) lim sup .

��
��

� � � � �
� �

�

It is easily seen that h � �0(x; h) is continuous, sublinear and so it is the support
function of a nonempty, w*-compact and convex set ���(x) � X* defined by



Positive Solutions for Boundary Value Problems withe Scalar-p-Laplacian 35

��(x) = {x* � X* : �x*, h� ���0(x; h) for all h � X}.

The multifunction x � ��(x) is called the generalized subdifferential of �. If � is
also convex, then the generalized subdifferential coincides with the subdifferential
�

c
� in the sense of convex analysis, which is defined by

�
c
�(x) = {x* � X*: �x*, h� ���(x + h) - �(x) for all h � X} for all x � X.

If � � C1(X), then

��(x) = {��(x)} for all x � X.

If �,� : X � � are two locally Lipschitz functions, then

�(� +� ) � �� + �
 
� and �(��) = ��� for all �� �.

If ��: X � � is a locally Lipschitz function, then x � X is a critical point of��, if
0 � ��(x). In this case c = �(x) is a critical value of �. If x � X is local extremum of
�(i.e. a local minimum or a local maximum), then x � X is a critical point of �.

It is well-known that in the smooth critical point theory, crucial role plays a
compactness type condition, known as the “Palais-Smale condition at the level c �
�”. Here we will  use a generalized nonsmooth version of it. Let

� �X R U:� � � ���  be a functional, such that � = � + �,with � : X � ��locally

Lipschitz and � a proper, convex and lower semicontinuous functional. In the present
nonsmooth constrained setting, this condition takes the following form:

“A locally Lipschitz function � =�� + � satisfies the generalized nonsmooth
Palais-Smale condition at the level c � � (the generalized nonsmooth PS

c
-

condition for short), if any sequence {x
n
}

n � 1
 ��X such that  �(x

n
) � c and

-�
n
|| y - x

n
|| 

X
 ���0(x

n
; y - x

n
) +��(y) - �(x

n
) �y � X,

with �
n
 � 0, has a strongly convergent subsequence.”

The following is the generalized nonsmooth version of the well-known “Mountain
Pass Theorem”.

Theorem 2.1. If X is a reflexive Banach space, : X R = {+ }� � � ��  is a

functional, such that � =�� + �, with � : X � � locally Lipschitz and  ��a proper,
convex and lower semicontinuous functional, satisfies the generalized nonsmooth
PS

c
-condition and there exist x

0
, x

1
 � X and ��> 0 such that

(i) ||x
1
 - x

0
|| >�� and

(ii) max{�(x
0
), �(x

1
)} < c

0
 = inf{�(y) : ||y - x

0
|| = �}
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then � has a critical point x � X with critical value c = �(x) � c
0
 defined by the

minimax relation

df

t
c t

|0,1|
inf max ( ( )) ,
��� �

� � � � ��

where

df

C X x x0 1{ ([0, 1], ) : (0) , (1) }.� � �� � � � �

Finally by �
1
 we denote the first (principal) eigenvalue of the negative p- Laplacian

with Dirichlet boundary condition, i.e. of 1,
0( , (0, )).p

p W b��  We know that �
1
 > 0

and it has the following variational characterization

1,
1 0

|| ||
inf : (0, ), 0 .

|| ||

p
p p
p
p

x
x W b x

x

� ��� �� � � �� �
� �� �

In fact we know the full spectrum of 1,
0( , (0, ))p

p W b��  which is given by

p

p
n

p p

n dt
p

b
t

1

10
( ) ( 1) 2

(1 )

� �
� �

� � � � �
� ��� �

�

(see Gasinski-Papageorgiou [12], p.761). Also u
i 
� C1

0
 (T) is the principal eigen

function.

3. EXISTENCE OF POSITIVE SOLUTIONS

Our hypotheses on the nonsmoth potential function are the following:

H(j): j : T × � � � is a function such that j(t, 0) = 0 a.e. on T, �j(t, 0)�� �
+

a.e. on T and

(i) for all x � �, t � j(t, x) is measurable;

(ii) for almost all t � T, x � j(t, x) is a locally Lipschitz;

(iii) for every M > 0 there exists �
M
 � L�(T)

+
 such that for almost all t � T, all |x|

��M and all u � �j(t, x), we have |u| � �
M
(t);
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(iv) 11
lim

px

u

x ����
� �  uniformly for almost all t � T and all u � �j(t, x);

(v) Let g
1
(t, x) = max[u : u � �j(t, x)] and set

pj t x
g t x if x

G t x x
if x

1
1

( , )
( , ) 0

( , )
0 0

� � ��� �
� ��

 and suppose that there exists a

function G
+
 � L1(T) such that

x
G t G t x1( ) lim inf ( , )�

���
�  uniformly for almost all t � T

and 
b
G t u t dt10

( ) ( ) 0;� ��

(vi) p
x

pj t x
t

x0

( , )
lim sup ( )

��
� �  uniformly for almost all t � T, where � ��L�(T)

+
 is

such that �(t) ���� a.e. on T and the inequality is strict on a set of positive
measure.

Remark 3.1. Hypothesis H(j)(iv), says that we have complete resonance at +�.
On the other hand hypothesis H(j)(vi) implies that at 0+ there is only partial interaction
with the spectrum of the negative scalar p-Laplacian. Such a condition is often called
“nonuniform nonresonance”. If the potential j is time invariant, then this condition

says that near 0+ the “slope” p

pj t x

x

( , )
 stays strictly below �

1
. Finally hypothesis H(j)(v)

is a unilateral nonsmooth version of a generalized Landesman-Lazer type condition,
first used in semilinear problems (i.e. p = 2) by Tang [14].

By modifying j(t, x) on a Lebesgue-null subset of T, if necessary, we may assume
that (t, x) � j(t, x) is Borel measurable. Then by definition we have

xx

Qx

j t h j t xx
j t x h0

0
,

( , ) ( , )
( , ; ) lim sup ,

��
��
���

� � � ���
�

��(t, x) � j0(t, x; h) is Borel measurable.
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It follows that, if {h
m
}

m �1
 is an enumeration of the rationals in �, then

Gr�j = {(t, x, u) � T ×�� × � : uh ��j0(t, x; h) for all h ���}

  = m m
m

t x u T uh j t x h0

1

{ , , ) : ( , ; )}
�

� � � �� � �

(recall that j0(t, x, ·) is continuous)

� B(T) × B(�) × B(�).

For every ��� � we have that

{(t, x) � T × � : g
1
(t, x) ���} = proj

T ×��{(t, x, u) � Gr�j : u ���}.

Because �j(t, x) is compact, from Hu-Papageorgiou [13], p.41 we have that

proj
T × �{(t, x, u) � Grj : u ���} � B(T) × B(�),

��g
1
 is jointly measurable.

We introduce the functional pW b1,
1 0: (0, )� ��  defined by

bp
px x j t x t dt

p1 0

1
( ) || || ( , ( )) .� � � ��

We know that �
1
 is locally Lipschitz (see Clarke [2], p.85 or Denkowski-

Papageorgiou [10], p.617). Also let pC x W b x t1,
0{ (0, ) : ( ) 0� � �  for all �t T�  (recall

that pW b C T1,
0 (0, ) ( )).�  Evidently C is a nonempty, closed and convex cone in the

Sobolev space pW b1,
0 (0, ).  Let pW b1,

2 0 0( (0, ))� ��  be defined by

C
if x C

x i x
if x C2

0
( ) ( )

��
� � � �

�� ��

(the indicator function of the set C).

Finally we set

�����������

Evidently � pW b1,
0 0( (0, )).��� �In the sequel 

1 1
1.

p q
� �
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Proposition 3.2. If hypotheses H(j) hold, then �, satisfies the generalized
nonsmooth PS-condition.

Proof. We consider a sequence p
n nx W b1,

1 0{ } (0, )� �  such that

|�(x
n
)| � M

1
 for some M

1
 > 0 and all n � 1

and n n n n nx y x y x y x0
1 2 2( ; ) ( ) ( ) || ||� � �� �� � �� �

for all py W b1,
0 (0, ),�  with �

n 
� 0.

Evidently {x
n
}

n ��1� C. Recalling that 0
1 ( ; )nx� �  is the support function of the

weakly compact set ��
1
(x

n
), for every py W b1,

0 (0, ),�  we can find n nx x*
1, ( )���

(depending in general on y), such that

n n n nx y x x y x0 *
1 ( ; ) , .� � � �

Hereafter by � ·,·�  we denote the duality brackets for the pair
1, 1, 1, *
0 0( (0, ), (0, ) (0, ) ).p q pW b W b W b� �  Consider the nonlinear operator

p qA W b W b1, 1,
0: (0, ) (0, )��  defined by

b pA x y x t x t y t dt2

0
( ), | ( ) | ( ) ( )�� � � ��  for all px y W b1,

0, (0, ).�

It is easy to see that A is monotone, demicontinuous, thus maximal monotone
(see Denkowski-Papageorgiou [11], p.37). Moreover, we have

n n nx A x u* ( )� �  with  
n

q
n j xu S n(., (.)) , 1�� �

(see Clarke [2], p.83 or Denkowski-Papageorgiou [10], p.617).

We claim that the sequence p
n nx W b1,

1 0{ } (0, )� �  is bounded. Suppose that the

claim is not true. Then by passing to a subsequence if necessary, we may assume

that ||x
n
|| � �. Set 

n
n

n

x
v n

x
, 1.

|| ||
� �  Evidently ||v

n
|| = 1,�n ��� and so by passing to a

further subsequence if necessary, we may assume that
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w

nv v�  in pW b1,
0 (0, )  and v

n
 � v in C

0
 (T)

(recall that pW b1,
0 (0, )  is embedded compactly in 0 ( )).C T

By virtue of hypotheses H(j)(iii) and (iv), given � > 0, we can find ��� L�(T)
+
,

such that for almost all t � T, all x ��0 and all u ���j(t, x), we have

u ��(�
1
 + �)xp–1 + ��(t). (3.1)

Let | · |
1 
denote the Lebesgue measure on �. By hypothesis H(j)(ii) for all t � T\D,

|D|
1
 = 0 the function j(t, ·) is locally Lipschitz. So we can find E(t) � � with |E(t)|

1
 =

0 such that j(t, ·) is differentiable at every x � �\E(t). Then for all t � T\D and all x �
0, we have

x

rj t x j t j t x j t r dr
0

( , ) ( , 0) ( , ) ( , ) .�� � � �
Recall that rj t r j t r( , ) ( , )� ��  for all t � T\D and all r � �\E(t). So using  (3.1), we

have

x x pj t x t dr r dr1
10 0

( , ) ( ) ( ) �
�� � � � � �� �

pt x x
p 1
1

( ) ( )�� � � � � �

for almost all t � T and all x � 0. Because {x
n
}

n � 1
� C, we can write that for almost

all t � T and all n � 1, we have

pn
n np p

n n

j t x t t
v t v t

px x
1

1

( , ( )) ( )
( ) ( ) ,

|| || || ||
�

�
� � � �

� �

b b pn
n n pp p

n n

j t x t t
dt v t v

px x
1

10 0

( , ( )) ( )
( ) || || ,

|| || || ||
�

�
� � � �

� � �� �

b pn
pp

n n

j t x t
dt v

px
1

0

( , ( ))
lim sup || ||

|| ||��

� � �
� ��

Because � > 0 was arbitrary, we let � � 0 to obtain
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b pn
pp

n n

j t x t
dt v

px
1

0

( , ( ))
lim sup || ||

|| ||��

�
�� (3.2)

From the choice of  the sequence { x
n
}

n � 1
 ��C, we have

n
p p

n n

x M

x x
1| ( ) |

,
|| || || ||

�
�

bp n
n p p p

n n

j t x tM
v dt

p x x
1

0

( , ( ))1
|| || .

|| || || ||
� � � � � (3.3)

Passing to the limit as n � �, exploiting the weak lower semicontinuity of the
norm functional in a Banach space and using (3.2), we obtain

1|| || || || ,p p
p pv v� � �

� v = u
1 
or v = 0  (recall that v � C).

If v = 0, then we have that nv 0� �  in Lp(T) (see (3.3)) and so v
n
 � 0 in pW b1,

0 (0, )

a contradiction to the fact that ||v
n
|| = 1 for all n � 1. So v = u

1
. Recall that u

1
(t) > 0 for

all t � (0, b). From the choice of {x
n
}

n � 1
� C and using as a test function y = 0 � C,

we have

b

n n n n n nA x x u x dt x
0

( ), || ||,� � ��
bp

n p n n n nx u x dt x
0

|| || || ||.�� � � �� (3.4)

Also from the inequality |�(x
n
)| ��M

1
 for all n � 1, we have

bp
n p nx pj t x t dt pM10

|| || ( , ( )) .�� � �� (3.5)

Adding (3.4) and (3.5), we obtain

� �b

n n n n npj x t u x dt pM x n10
(, ( )) || ||, 1,� � � � ��

b n
n n n

n n

pj t x t pM
u v dt n

x x
1

0

( , ( ))
, 1.

|| || || ||

� �
� � � � � �� �

� �
� (3.6)
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We introduce the functions

( , ( ))
( ) 0

( )( ) , 1 ( ).

0 ( ) 0

n
n

nn n

n

j t x t
if x t

x th t n recall x C

if x t

� ��� � ��
� ��

Then we have

1
0

( , ( ))
|| || || ||

b n
n n n

n n

pj t x tpM
u v dt

x x

� �
� � � �� �

� �
�

{ 0}

( , ( ))
|| ||n

n
n nx

n

pj t x t
u x dt

x�

� �
� �� �

� �
�  (since j(t, 0) = 0 a.e. on T)

10 0
( , ( )) ( )

b b

n n n nph v dt g t x t v t dt� �� �
b

n nG t x t v t dt10
( , ( )) ( ) .� � (3.7)

By virtue of hypothesis H(j)(v), given � > 0, we can find M
2
 = M

2
(�) > 0 such that

for almost all t � T and all x ��M
2
, we have

G
1
(t, x) � G

+
(t) - �. (3.8)

On the other hand from the mean value theorem for locally Lipschitz functions
(see Clarke [2], p.41 or Denkowski-Papageorgiou [10], p.607), for almost all t � T
and all x � (0,M

2
), we have

j(t, x) = ûx with û � �j(t, �(t)x), �(t) � (0, 1),

pj t x
g t x ux g t x

x 1 1
( , )

( , ) ( , )� � � ��

M MM t t
2 22 ( ) ( )�� � ��

� MG t x M t
21 2( , ) ( 1) ( ).� � � � (3.9)

From (3.8) and (3.9), we see that for almost all t � T and all x  ��0, we have

G
1
(t, x) ���(t) with ��� L1(T)

+
. (3.10)
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Note that u
1
(t) > 0 for all t � (0, b), implies that x

n
(t) � +� for all t � (0, b). So

using Fatou’s lemma ((3.10) permits its use), we obtain

b

n n
n

G t x t v t dt10
lim inf ( , ( )) ( )

�� �

b

n n
n

G t x t v t dt10
lim inf ( , ( )) ( )

��
� �

b b
G t v t dt G t u t dt10 0

( ) ( ) ( ) ( ) .� �� �� �  (3.11)

So if we pass to the limit as n � � in (3.7) and use (3.11), we have

b
G t u t dt10

( ) ( ) 0,� ��
a contradiction to hypothesis H(j)(v).

This proves that the sequence {x
n
}

n �1
 ��C is bounded. Hence by passing to a

subsequence if necessary, we may assume that

w

nx x�  in pW b1,
0 (0, )  and nx x�  in C T0 ( ).

Recall that from the sequence {x
n
}

n �1
 ��C, we have

b

n n n n n nA x x x u x x dt x x
0

( ), ( ) || || .� � � � � ��

Remark that 
b

n nu x x
0

( ) 0� ��  as n ����(see hypothesis H(j)(iii)). So we have

n n
n

A x x xlim sup ( ), 0.
��

� �

But A being maximal monotone, it is generalized pseudomonotone and so we
have

�A(x
n
), x

n
� ��A(x), x�,

��||x�
n
||

p
��||x�||

p 
.

Since 
w

nx x� � �  in Lp(T) and the latter is uniformly convex, from the Kadec-



44 Michael E. Filippakis

Klee property we have �x�
n
��x� in Lp(T). This means that nx x�  in pW b1,

0 (0, ) and

so we conclude that � satisfies the generalized nonsmooth PS-condition.

Proposition 3.3. If hypotheses H(j) hold, then ��(tu
1
) � –� as t � +�.

Proof. Because of hypothesis H(j)(v), given � > 0, we can find M
2
 = M

2
(�) > 0

such that for all t � T \ N, with |N|
1
 = 0 and all x ��M

1
, we have

K t G t G t x1( ) ( ) ( , ),�
� �� � � �

p p p

K t K tG t x d

dx px x x
1

1

( ) ( )( , ) 1
.

1

� �
� �

�

� �
� � � �� �� ��� �

(3.12)

Recalling the definition of G
1
(t, x) (see hypothesis H(j)(v)), we see that for all

t � T\N, |N|
1
 = 0, all x � M

1
 and all u � �j(t, x), we have

p p p

G t x pj t x g t x

x x x
1 1

1

( , ) ( , ) ( , )
�� �

p p

pj t x u

x x1

( , )
.�� � (3.13)

Note that for all t � T\N, the function p

pj t x
x

x

( , )
�  is locally Lipschitz on

[M
2
, +�). So we have (see Clarke [2], p.48 or Denkowski-Migorski-Papageorgiou

[10], p.612)

        
p p

p p

j t x j t x x pj t x x

x x

1

2

( , ) ( , ) ( , )
( )

�� �
� �

p p

j t x pj t x

x x 1

( , ) ( , )
,�

�
� �

p p p p

j t x g t x pj t x G t x
u u

x x x x
1 1

1

( , ) ( , ) ( , ) ( , )
max[ : ( )] �� �� � � � �� �

(3.14)

(see (3.13)).



Positive Solutions for Boundary Value Problems withe Scalar-p-Laplacian 45

Fix t � T\N, |N|
1
 = 0. The function p

j t x
x

x

( , )
�  is differentiable at all x �

[M
2
,+ �)\E(t), |E(t)|

1
 = 0. We set

2
0

( , )
( ) [ , ) \ ( )

( , )
0 ( )

p

d j t x
if x M E t

u t x dx x
if x E t

� � ���� �
� ��

�
.

We know that p

j t x
u t x

x

( , )
( , ) ( )���

 for all x � [M
2
,+�)\E(t). Therefore

p

K td
u t x

dx p x 1

( )1
( , )

1

�
�
�

� �
� � �� ��� �

�
(see (3.12) and (3.14)).  (3.15)

Let y, z � [M
2
,+�) with y < z. Integrating (3.15) over [y, z], we obtain

1 1

( )( , ) ( , ) 1 1
1p p p p

K tj t z j t y

pz y z y

�
�

� �

� �
� � �� �� � �

 for all t � T\N, |N|
1
 = 0.  (3.16)

By virtue of hypotheses H(j)(iii), (iv), given � > 0, we can find �� � L
�(T)

+
 such

that for almost all t � T, all z ��0 and all u � �j(t, x), we have

(�
1
 – �)zp–1– ��(t) ��u ��(�

1
 + �)zp–1 + ��(t).

Since zj t z( , )�  exists for all z � �\C(t), |C(t)|
1
 = 0 and zj t z j t z( , ) ( , ),� �� then for

almost all t � T and all z � �
+
 \C(t), we have

p p
zz t j t z z t1 1

1 1( ) ( ) ( , ) ( ) ( ).� �
� �� � � �� � � � � � � ��

Integrating this inequality over [0, x], x > 0, we obtain

p px t x j t x x t x
p 1 1
1

( ) ( ) ( , ) ( ) ( )� �� � � �� � � � � � ��

(recall that j (t, 0) = 0 a.e. on T).

Therefore we have

px

j t x

px
1

( , ) 1
lim
��

� �  for almost all t ��T�
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Set 
pj t x j t x x

p
1

1( , ) ( , ) | | .
�

� �  Then we have

px

j t x

x
1( , )

lim 0
��

�  uniformly for almost all t � T. (3.17)

Returning to (3.16), we see that we can rewrite it as

p p p p

K tj t z j t y

pz y z y
1 1

1 1

( )( , ) ( , ) 1 1
.

1

�
�

� �

� �
� � �� �� � �

(3.18)

Passing to the limit as z � +� in (3.18) and using (3.17), we obtain

p p

K tj t y
py y

1
1

( )( , ) 1
,

1

�
�

��
�

p

K tj t y
py

1 ( )( , )
,

1

�
�� �
�

y

K tj t y

y p
1 ( )( , )

lim inf
1

�
�

���
� �

�
 for almost all t � T. (3.19)

Now suppose that the claim of the Proposition was not true. Then we can find a
sequence �

n
 � � and M

3
 > 0 such that

�(�
n
u

1
)�� –M

3
 for all n � 1

p p bp pn n
p p nu u j t u t dt M

p p1 1 1 1 20
|| ' || || || ( , ( ))

� �
� � � � � ��

b n

n n

j t u t M
u t dt

t u t
1 1 2

10
1

( , ( ))
( )

( ) ( )
�

� � � �
� ��

(recall u
1
(t) > 0 for all t � (0, b)).

Passing to the limit as n � �, using (3.13) and recalling that � > 0 was arbitrary,
we infer that

b
G t u t dt10

( ) ( ) 0� ��
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a contradiction to the hypothesis H(j)(v). This proves that u1
|� �  is anticoercive.

Our goal is to show that the Mountain Pass geometry is satisfied. To do this we
need the following Lemma

Lemma 3.4. There exists �
0
 > 0 such that for all px W b1,

0 (0, )� , we have

bp p p
p px t x t dt x00

|| || ( ) | ( ) | || || .� � � � � ��
Proof. Let ��: pW b1,

0 (0, )�  be defined

bp p p
px)= x t x t dt x W b1,

00
( || || ( ) | ( ) | , (0, ).� � � ���

By virtue of the variational characterization of �
1
 > 0 and hypothesis H(j)(vi), we

have that � ��0. Suppose that the claim of the Lemma is not true. Then exploiting the

p-homogeneity of � we can find p
n nx W b1,

1 0{ } (0, )� �  with n px|| || 1� �  such that  �

x
n
 � 0 as n � �. by virtue of the Poincaré inequality and by passing to a subsequence

if necessary, we may assume that

w

nx x�  in pW b1,
0 (0, ),  and nx x�  in C T0 ( ).

Because of the weak lower semicontinuity of the norm functional in a Banach
space, we have

bp p p
n p px t x t dt x10

|| || ( ) ( ) | || || ,� � � ���

p p
p px x1|| || || ||� � ��

x u1� � �  or x = 0. (3.20)

We can not have x = 0, since then n px|| || 0��  as n � �, a contradiction to

the fact that n px|| || 1��  for all n � 1. Therefore x u1.� �  Because u
1
(t) > 0 for  all

t � (0, b), from (3.20) it follows that

p p
p px x1|| || || ||� ��

a contradiction to the variational characterization of �
1
 > 0.
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Using this lemma, we can prove the next Proposition, which assures us that the
Mountain Pass geometry is in place.

Proposition 3.5. If hypotheses H(j) hold and r > p, then we can find 1 2, 0� � �

such that p rx x x2 1( ) || || || ||� � � ��  for all px W b1,
0 (0, ).�

Proof. By virtue of hypotheses H(j)(iii) and (vi), given � > 0, we can find

L T( )�
� �� ��  such that for almost all t � T and all x ��0, we have

p rj t x t x t x
p

1
( , ) ( ( ) ) ( ) .�� � � � � �� (3.21)

So for all px W b1,
0 (0, )�  we have

bp
px j t x t dt x

p 20

1
|| || ( , ( )) ( )� � � ����

10

1 1
|| || ( ) | ( ) | || || || ||

bp p p r
p px t x t dt x x

p p p

�
� � � � ����

(see (3.21) and recall that �
2
 = i

C
)

p p r
p px x x

p0 1
1

|| || || || || ||
�

� � � ��
�

� �  (see Lemma 3.4).

Choose � > 0 such that � < �
0
�

1
p. Then by virtue of the Poincar´e inequality, we

have

px x x2 1( ) || || || ||
�

� � � ��

for some �
2
 > 0 and all px W b1,

0 (0, ).�

Now we are ready to prove an existence theorem for positive solutions of problem
(1.1).

Theorem 3.6. If hypotheses H(j) hold, then problem (1.1) has a nontrivial solution

x C T1
0 ( )�  such that x(t) � 0 for all t � T.

Proof. Because of Proposition 3.5 we see that � > 0 small, we have
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inf [�(x) : || x || =  �� =  �
3
 > 0.

On the other hand Proposition 3.3 implies that we can find  � > 0 large enough
such that  �( �u

1
)  �  �(0) = 0. These facts together with Proposition 3.2, permit the

use of the generalized nonsmooth Mountain Pass Theorem, which gives us an x  � C
such that

��(x)  �  �
3
 > 0 =  �(0) (hence x  � 0)

and x h x h x0
1 2 2( ; ) ( ) ( ) 0� � � � �� �  for all ph W b1,

0 (0, ).�

Set h x h0
1 1( ) ( ; )� ��  and h x h h2 2 2( ) ( ) ( ).� � � ���  Note that pW b1,

1 0: (0, ) ���

is continuous, sublinear, while pW b1,
2 0 0( (0, )).���  Moreover, remark that

�
c
�

1
(0) = ��

1
(x) and �

c
�

2
(0) = �

c
�

2
(x)

Then we have

h h1 20 ( ) + ( )� � �  for all ph W b1,
0 (0, ),�

c 1 20 ( )(0)� �� �� �  (recall that 1 2(0) (0) 0).� �� �

But from Convex Analysis (see Denkowski-Migorski-Papageorgiou [10], p.549),
we have

�
c
(�

1
 +��

2
)(0) = �

c
 �

1
(0) + �

c
 �

2
(0) = ��

1
(x) + ��

2
(x),

��0 ����
1
(x) + N

C
(x) (since �

c
�

2
(x) = N

C
(x)),

��x* + v*�= 0�for some x* � ��(x), v* � N
C
(x).

We know that x* = A(x) – u, with u � Lq(T), u(t) � �j(t, x(t)) a.e. on T and
�v*, y – x� ��0 for all y � C. So we have

�x*, y – x��� 0 for all y � C. (3.22)

Let 1,
0 (0, )pW b��  and � > 0. Use as a test function

y = (x + ��)+ = (x + ��) + (x + ��)– � C.

Using this in (3.22), we obtain

��x*,����� ���x*, (x +����–�

b
A x x u x dt

0
( ), ( ) ( ) .� �� � � �� � � ��� (3.23)
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Set T t T x t{ : ( )( ) 0}.�
� � � � �� �  Then we have

–
b pA x x x x x dt2

0
( ),( ) | | [( ) ]� � �� �� � � � � � �� ��

p

T
x x x dt2| | ( )�

�

�� � � � �� ��

(since 
-

-

x t if t T
x t

if t T

( ) ( )
[( ) ] ( ) ,

0

�
�

�

�� � �� � ��� �� � � �
���

p

T
x x dt1| | .�

�

�� � � ���� (3.24)

Because of hypothesis H(j)(iv), we can find M
4
 > 0 such that for almost all t � T

and all x � M
4
, we have �j(t, x) � �

+
. Then

b

T
u x dt u x dt

0
( ) ( )�

�

�� �� � � � ��� �

T x M T x M
u x dt u x dt

4 4{ } { }
( ) ( )� �

� �� � � �
� � � �� � � ��� � (3.25)

Note that T x M
u x dt

4{ }
( ) 0.�

� � �
� � � �� �� (3.26)

Also since by hypothesis we have �j(t, 0)�� �
+
 a.e. on T, we see that u(t) ��0 a.e.

on T x{ 0}.�
� � � Moreover, since by hypothesis we have x(t) � 0 for all t � T (recall

that x � C), we have that �(t) < 0 for all t T �
�� . Hence

T x T x
u x dt u dt

{ 0} { 0}
( ) 0� �

� �� � � �
� � �� � �� � �� � . (3.27)

Then we can write that

T x M
u x dt

4{ }
( )�

� � �
� � �� ��

4{ 0} {0 }
( ) ( )

T x T x M
u x dt u x dt� �

� �� � � � �
� � �� � � � ��� �

T x M
u x dt

4{0 }
( )�

� � � �
� � � ���  (see (3.27))
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T x M
x dt

4
4 {0 }

( )�
� � � �

� � � ���  (for some �
4
 > 0

(see hypothesis H(j)(iii)),

T x M
dt

4
4 {0 }�

� � � �
� � ��  (because x(t) � 0 for all t � T).

(3.28)

Using (3.26) and (3.28) in (3.25), we obtain

b

T x M
u x dt dt

4
40 {0 }

( ) .�
�

�
� � �

� �� � �� �� � (3.29)

Returning to (3.23) and using (3.24) and (3.29), we obtain

4

* 2
4 {0 }

, | | .p

T T x M
x x x dt + dt� �

� �

�
� � �

� �� � � ��� � �� ��

Remark that T x 1| {0 } | 0�
� � � �  as � � 0. So in the limit as � � 0, we obtain

�x*,���� 0 for all pW b1,
0 (0, ),��

��x* = 0,
��A(x) = u.

From this equality it follows, via Green’s identity, that

     – (|x�(t)|p–2x�(t))� = u(t) a.e. on T, x(0) = x(b) = 0,

��|x�(·)|p–2x�(·) � W1,q(0, b),

��|x�(·)|p–2x�(·) � C(T),

��x�� C(T).

Therefore x � C1(T), x ���, x(t) � 0 for all t � T and is a solution of problem (1.1).

If we strengthen our hypotheses,we can produce a strictly positive solution of
(1.1).

Namely our hypotheses on j(t, x) are the following:

H(j)�: j : T × � � � is a function such that j(t, 0) = 0 a.e. on T, �j(t, 0) ���
+ 
a.e.

hypotheses H(j)(i) � (vi) hold and

(vii)for almost all t � T, all x ��0 and all u � �j(t, x), we have pu x 1
5

�� ��

with 5 0� � .



52 Michael E. Filippakis

Theorem 3.7. If hypotheses H(j) hold, then problem (1.1) has a solution

x C T1
0 ( )�  such that x(t) > 0 for all t � (0, b).

Proof. Let x C T1
0 ( )�  be the nontrivial positive solution obtained in Theorem

3.6. We have

– (|x�(t)|p–2x�(t))� = u(t) �����
5
x(t)p–1 a.e. on T (see hypothesis H(j)�(vii)) �(|x�(t)|p–

2x�(t))� ���
5
x(t)p–1 a.e. on T.

Invoking Theorem 5 of Vazquez [15], we obtain x(t) > 0 for all t � (0, b).

Remark 3.8. A nonsmooth locally Lipschitz function satisfying hypotheses H(j)
is the following (for simplicity we drop the t-dependence)

x

r

p

e if x

j x x if x with r p

x x x if x

1 1

1

1 0

( ) [0, 1] .

ln 1

�� � �
��� � � ��
�� � ���

The function j
2
(x) that follows satisfies hypotheses H(j)�.

x

p

p r

xe if x

j x c x if x

x x c if x

2

1

0

( ) sin [0,1] .

sin1 0

� �
��� ��
�� � � ���

with r < p, cp < �
1
.
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