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ABSTRACT: Sensitivity analysis for strongly monotone quasivariational inclusions based
on H-monotonicity is discussed. H-monotonicity generalizes the well-known notion of
maximal monotonicity, which is widely explored.
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1. INTRODUCTION AND PRELIMINARIES

Just recently, the author [7] investigated, without using any of the differentiability
assumptions on solution variables with respect to perturbation parameters by Tobin
[6] and Kyparisis [4], sensitivity analysis for qusivariational inclusions involving
strongly monotone mappings applying the resolvent operator technique. Variational
inequality methods have been applied widely to problems arising from several fields
of research, especially from model equilibria problems in economics, optimization
and control theory, operations research, transportation network modeling, and
mathematical programming while a considerable amount of effort to developing
general methods for the sensitivity analysis for variational inequalities is made.

We intend in this paper to present the sensitivity analysis for H-monotone
quasivariational inclusions based on the generalized resolvent operator technique.
The notion of H -monotone mappings [2] generalizes the well-known class of maximal
monotone mappings. The obtained results generalize the results on the sensitivity
analysis for strongly monotone quasivariational inclusions [1, 7, 8] and others. For
more details, we recommend [1 - 14].

2. H-MONOTONICITY

Fang and Huang [2] introduced the notion of H-monotonicity in the context of solving
a system of variational inclusion problems based on the resolvent operator technique.
The notion of the H - monotonicity generalizes the well-known concept of the maximal
monotonicity.
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Definition 1. [2] Let H : X � X be a nonlinear mapping on a Hilbert space X and
let M : X � 2X be a multivalued mapping on X. The map M is said to be H - monotone
if:

(i) M is monotone.

(ii) (H + �M)(X) = X for � > 0.

Proposition 1. [2] Let H : X � X be an r-strongly monotone singlevalued mapping
and let M : X � 2X be an H-monotone mapping. Then M is maximal monotone. The
next property is helpful in shaping up the generalized resolvent operator, which is
crucial to the main results on sensitivity analysis on hand.

Proposition 2. [2] Let H : X � X be an r-strongly monotone mapping and let
M : X � 2X be an H-monotone mapping. Then the operator (H + �M)–1 is single-
valued.

This leads to the generalized definition of the resolvent operator:

Definition 2. [2] Let H : X � X be an (r)-strongly monotone mapping and let
M : X � 2X be an H - monotone mapping. Then the generalized resolvent operator

M
HJ X X, :� �  is defined by

M
HJ u H M u1

, ( ) ( ) ( ).�
� � ��

This reduces to resolvent operator MJ�  (when H = I) defined by

MJ u I M u1( ) ( ) ( ),�
� � � �

where I is the identity mapping.

3. MONOTONICITY/STRONG MONOTONICITY

In this section, we upgrade the notions of the monotonicity as well as strong
monotonicity in the context of sensitivity analysis for nonlinear variational inclusion
problems.

Definition 3. Let A : X � X and T : X × X × L � X be any two mappings. The
map T is called:

(i) Monotone in the first argument if

�T(x, u,��) – T(y, u, �), x – y��� 0 �(x, y, u, �) � X × X × X × L.

(ii) (r)-strongly monotone in the first argument if there exists a positive constant
r such that
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�T(x, u,��) – T(y, u, �), x–y��� (r) ||x–y||2 �(x, y, u, �) � X × X × X × L.

(iii) (s)-Lipschitz continuous in the first argument if there exists a positive constant
m such that

||T(x, u,��) – T(y, u, �)|| ��(m) ||x–y|| �(x, y, u, �) � X × X × X × AL

Definition 4. The map T : X × X × L � X is said to be:

(i) Monotone with respect to A in the first argument if

�T(x, u, �) – T(y, u, �), A(x) – A(y)��� 0 �(x, y, u, �) � X × X × X × L.

(ii) (r)-strongly monotone with respect to A in the first argument if there exists
a positive constant r such that

�T(x, u, �) – T(y, u, �), A(x) – A(y)� (r) ||x – y||2

�(x, y, u, �) � X × X × X × L.

4. MAIN RESULTS ON SENSITIVITY ANALYSIS

Let X denote a real Hilbert space with the norm || . || and inner product < .,. > . Let
N: X × X × L � X be a nonlinear mapping and M : X × X × L � 2X be an H -monotone
mapping with respect to first variable, where L is a nonempty open subset of X.
Furthermore, let q : X � X be a nonlinear mapping such that q(X)���D(M) � �. Then
the problem of finding an element u � X for a given element f � X such that

f � N(q(u), q(u),��) + M(q(u), q(u), �), (1)

where � � L is the perturbation parameter, is called a class of generalized strongly
monotone mixed quasivariational inclusion (abbreviated SMMQVI) problems.

For q = I in (1), we arrive at: find an element u � X for a given element f � X such
that

f � N(u, u, �) +M(u, u, �), (2)

where ��� L is the perturbation parameter. Next, another special case of the SMMQV
I (1) problem is: for given element f � X determine an element u � X such that

f � S(u, �) + T(u, �) +M(u, u, �), (3)

where N(u, v, �) = S(u,��) + T(v, �) for all u, v � X, for S, T : X × L � X any two
nonlinear mappings, and q is the identity mapping. If S = 0 in (3), then (3) is equivalent
to: find an element u � X such that

f � T(u, �) +M(u, u, �). (4)
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The solvability of the SMMQV I problem (1) depends on the equivalence between
(1) and the problem of finding the fixed point of the associated generalized resolvent
operator.

Note that if M is H-monotone, then the corresponding generalized resolvent

operator M
HJ ,�  in first argument is defined by

M y
HJ u H M y u u X(., , ) 1

, ( ) ( (., )) ( ) ,� �
� � �� � � (5)

where ��> 0 and H is an (r) - strongly monotone mapping, which reduces to resolvent
operator (for H = I) as

M yJ u I M y u u X(., ) 1( ) ( (., )) ( ) ,�
� � � � � � (6)

The following lemma upgrades a similar result from [2] :

Lemma 1. Let X be a real Hilbert space, let H : X � X be (r) - strongly monotone,
and let M : X × X × L � 2X be H- monotone in the first variable. Then the generalized
resolvent operator associated with M(., y, �) for a fixed y � X and defined by

M y
HJ u H M y u(., ) 1

, ( ) ( (., )) ( )�
� � ��

u X,� �  is r
1� �
� �
� �

 – Lipschitz continuous, that is,

M y M y
H HJ u J v u v u v X

r
(., , ) (., , )

, ,
1

|| ( ) ( ) || || || , .� �
� �� � � � �

Proof. It follows from the definition of the generalized resolvent operator that

M y
HJ u H M y u u v X(., , ) 1

, ( ) ( (., , )) ( ) , ,� �
� � �� � � �

M y
HJ v H M y v u v X(., , ) 1

, ( ) ( (., , )) ( ) , .� �
� � �� � � �

As a result, we have

M y M y
H Hu H J u M J u(., , ) (., , )

, ,
1

( ( ( )) ( ( )),� �
� �� �

�

M y M y
H Hv H J v M J v(., , ) (., , )

, ,
1

( ( ( )) ( ( )).� �
� �� �

�

Since M is monotone, it implies that
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M y

Hu H J u(., , )
,

1
( ( ( ))�

�� �
�

M y
Hv H J v(., , )

,( ( ( ))�
�� �

M y M y
H HJ u J v(., , ) (., , )

, ,, ( ( ) ( )� �
� �� �

M y M y
H Hu v H J u H J v(., , ) (., , )

, ,
1

( ( ( ) ( ( ))� �
� �� � � �

�

M y M y
H HJ u J v(., , ) (., , )

, ,, ( ( ) ( ) 0.� �
� �� � �

Therefore,

    M y M y
H Hu v J u J v(., , ) (., , )

, ,|| || || ( ) ( ) ||� �
� �� �

M y M y
H Hu v J u J v(., , ) (., , )

, ,, ( ) ( )� �
� �� � � � �

M y M y
H HH J u H J v(., , ) (., , )

, ,( ( )) ( ( ))� �
� �� � �

M y M y
H HJ u J v(., , ) (., , )

, ,, ( ) ( )� �
� �� �

M y M y
A Ar J u J v(., , ) (., , ) 2

, ,|| ( ) ( ) || .� �
� �� �

Lemma 2. Let X be a real Hilbert space, let H : X � X be (r) - strongly monotone,
and let M : X × X × L � 2X be H- monotone in the first variable. Let q : X � X be any
mapping such that q(X) � D(M) � �� Then the following statements are mutually
equivalent:

(i) An element u � X is a solution to (1).

(ii) The map G : X � X defined by

       q(x) = G(q(x),� )

M q x
HJ H q x N q x q x f(., ( ), )

,: ( ( ( )) ( ( ), ( ), ) )�
�� �� � � �

has a fixed point q(u) � X, where M q u
HJ H M q u(., ( ), ) 1

, ( (., ( ), ))� �
� � �� �   and

� > 0.



60 Ram U. Verma

Proof. The proof follows from the definition of the generalized resolvent operator.

Theorem 1. Let X be a real Hilbert space, let H : X � X be (r) - strongly monotone
and (s)-Lipschitz continuous, and let M : X × X × L � 2X be H - monotone in the first
variable. Let N : X × X × L � X be (�)-strongly monotone (with respect to H) and
(�)-Lipschitz continuous in the first variable, and let N be (µ) - Lipschitz continuous
in the second variable. Furthermore, let q : X � X be such that q(X) � D(M) ���. If,
in addition,

M q u M q v
H HJ w J w q u q v q u q v X X L(., ( ), ) (., ( ), )

, ,|| ( ) ( ) || || ( ) ( ) || ( ( ), ( ), ) ,� �
� �� � � � � � � � �

(7)

then

G q u G q v q u q v u v X X L|| ( ( ), ) ( ( ), ) || || ( ) ( ) || ( , , ) ,� � � � � � � � � � � (8)

where

s
r

2 2 21
[ ] 1,� � ��� �� � ��� �� �

r
2 2

(1 ) )� � �� �
��

� ��

r s r2 2 2 2 2 2

2 2

( (1 ) ) ( )( (1 ) )� � �� � � � �� � ��
�

� ��

r r s r2 2 2 2 2(1 ) ( )[ (1 ) ],� � �� � � � �� � ��

��> µ, s < (1 – �)r, �µ < r(1 –��),�� < 1.

Consequently, for each � � L, the mapping G(u,��) in light of (7) has a unique
fixed point z(�), and hence, z(�) is a unique solution to (1). Thus, we have

G(z(�), �) = z(�).

When H = I and q = I in Theorem1, we arrive at:

Corollary 1. Let X be a real Hilbert space, and let M : X × X × L � 2X be
maximal monotone in the first variable. Let N : X × X × L � X be (�)-strongly
monotone and (�)-Lipschitz continuous in the first variable, and let N be (µ) - Lipschitz
continuous in the second variable. If
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M u M vJ w J w u v u v X X L(., , ) (., , )|| ( ) ( ) || || || ( , , ) ,� �
� �� � � � � � � � �

then

G u G v u v u v X X L|| ( ( , ) ( , ) || || || ( , , ) ,� � � � � � � � � � � (9)

where

2 21 2 1,� � � ���� � ��� ���

2 2

(1 )� � � � �
��

� ��

2 2 2

2 2

( (1 ) ) ( )(2 )
.

� � �� � � � �� �� �
�

� ��

Therefore, for each � � L, the mapping G(u, �) in light of (7) has a unique fixed
point z(�), and hence, z(�) is a unique solution to (2). Thus, we have

G(z(l), ) = z(l).
Proof of Theorem1. For any element (u, v, �) � X × X × L, we have

G(q(u), �) = M q u
HJ H q u N q u q u f(., ( ), )

, ( ( ( )) ( ( ), ( ), ) ),�
� �� � ��

G(q(v), �) = M q v
HJ H q v N q v q v f(., ( ), )

, ( ( ( )) ( ( ), ( ), ) ).�
� �� � ��

It follows that

||G(q, �) – G(q, �)|| = M q u
HJ H q u N q u q u f(., ( ), )

, ( ( ( )) ( ( ), ( ), ) )�
� � � � � �

(., ( ), )
, ( ( ( )) ( ( ), ( ), ) ) ||M q v
HJ H q v N q v q v f�

�� �� � ��

M q u
AJ H q u N q u q u f(., ( ), )

,|| ( ( ( )) ( ( ), ( ), ) )�
�� �� � ��

M q u
HAJ H q v N q v q v f(., ( ), )

, ( ( ( )) ( ( ), ( ), ) ) ||�
�� �� � ��

M q u
HJ H q v N q v q v f(., ( ), )

,|| ( ( ( )) ( ( ), ( ), ) )�
�� �� � ��

M q v
HJ H q v N q v q v f(., ( ), )

, ( ( ( )) ( ( ), ( ), ) ) ||�
�� �� � ��
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H q u H q v
r
1

|| ( ( )) ( ( ))� �

N q u q u N q v q v( ( ( ), ( ), ) ( ( ), ( ), )) ||� � � � �

q u q v|| ( ) ( ) ||� � �

� H q u H q v
r
1

|| ( ( )) ( ( ))� �

N q u q u N q v q u( ( ( ), ( ), ) ( ( ), ( ), )) ||� � � � �

�N q v q u N q v q v|| ( ( ( ), ( ), ) ( ( ), ( ), )) ||� � � � �

q u q v|| ( ) ( ) || .� � �

The (r) – strong monotonicity and (�) – Lipschitz continuity of N in the first
argument imply that

||H(q(u)) – H(q(v)) – �(N(q(u), q(u), �) - N(q(v), q(u), �))||2

= ||H(q(u)) – H(q(v))||2 – 2 ��N(q(u), q(u),��)

– N(q(v), q(u), �),H(q(u)) – H(q(v))�

+ �2||N(q(u), q(u), �) – N(q(v), q(u), �)||2

� (s2 – 2�� + �2�2)||q(u) - q(v)||2.

On the other hand, the (µ)–Lipschitz continuity of N in the second argument
results

||(N(q(v), q(u), �)) – N(q(v), q(v), �))|| ��µ||q(u) – q(v)||.

In light of above arguments, we infer

||G(q(u), �) – G(q(v), �)|| � �||q(u) – q(v)||, (10)

where

s
r

2 21
[ [ 2 ] .�� � � �� �� � ��� ��

Since � < 1, it concludes the proof.

Theorem 2. Let X be a real Hilbert space, let H : X � X be (r) - strongly monotone
and (s)-Lipschitz continuous, and let M : X × X × L � 2X be H - monotone in the first
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variable. Let N : X × X × L � X be (�)-strongly monotone (with respect to H) and
(�)-Lipschitz continuous in the first variable, and let N be (µ) - Lipschitz continuous
in the second variable. Furthermore, let q : X � X be such that q(X) � D(M) ���. If

M q u M q v
H HJ w J w q u q v u v X X L(., ( ), ) (., ( ), )

, ,|| ( ) ( ) || || ( ) ( ) || ( , , ) ,� �
� �� � � � � � � � �

then
||G(q(u), �) – G(q(v), �)|| ��||q(u) – q(v)|| �(u, v, �) � X × X × L, (11)

where

s
r

2 2 21
[ 2 ] 1,� � � ���� � ��� � � �

r r
2 2

(1 )� � �� �
��

� ��

r s r2 2 2 2 2 2

2 2

( (1 ) ) ( )( (1 ) )
,

� � �� � � � �� � � �
�

� ��

r r s r2 2 2 2 2(1 ) ( )[ (1 ) ],� � �� � � � �� � ��

��> µ, s < (1 – �)r, �µ < r(1 - �),�� < 1.

If the mappings � � N(q(u), q(v), �) and M q u
AJ w(., ( ), )

, ( )�
�� �  both are continuous

(or Lipschitz continuous) from L to X, then the solution z(�) of (1) is continuous (or
Lipschitz continuous) from L to X.

Proof. From the hypotheses of the theorem, for any �,���� L, we have

||z(�) – z(�)||

= ||G(z(�), �) – G(z(��), ��)||

� ||G(z(�), �) – G(z(��), ��)|| + ||G(z(��), �) – G(z(��), ��)||

� ||z(�) – z(��)|| + ||G(z(��), �) – G(z(��), ��)||.

It follows that

||G(z(��), �) – G(z(��), ��)||

M z
HJ H z N z z

*(., ( ), ) * * *
,|| ( ( ( )) ( ( ), ( ), ))� �
�� � �� � � �
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M z
HJ H z N z z

* *(., ( ), ) * * * *
, ( ( ( )) ( ( ), ( ), )) ||� �
�� � �� � � �

M z
HJ H z N z z

*(., ( ), ) * * *
,|| ( ( ( )) ( ( ), ( ), ))� �
�� � �� � � �

M z
HJ H z N z z

*(., ( ), ) * * * *
,|| ( ( ( )) ( ( ), ( ), )) ||� �
�� � �� � � �

M z
HJ H z N z z

*(., ( ), ) * * * *
, ( ( ( )) ( ( ), ( ), ))� �
�� � �� � � �

M z
HJ H z N z z

* *(., ( ), ) * * * *
, ( ( ( )) ( ( ), ( ), )) ||� �
�� � �� � � �

N z z N z z
r

* * * * *|| ( ( ), ( ), ( ( ), ( ), ) ||
�

� � � � � � � � �

M z
HJ z N z z

*(., ( ), ) * * * *
, ( ( ) ( ( ), ( ), ))� �
�� � �� � � �

M z
HJ z N z z

* *(., ( ), ) * * * *
, ( ( ) ( ( ), ( ), )) ||� �
�� � �� � � �

Hence, we have

||z(�) - z(��)||

N z z N z z
r

* * * * *|| ( ( ), ( ), ) ( ( ), ( ), |
(1 )
�

� � � � � � � �
��

M z
AJ z N z z

*(., ( ), ) * * * *
,

1
|| ( ( ) ( ( ), ( ), ))

1
� �

�� � �� � � �
� �

M z
AJ z N z z

* *(., ( ), ) * * * *
, ( ( ) ( ( ), ( ), )) ||� �
�� � �� � � �

This concludes the proof.

For H = I, q = I in Theorem2, we have:

Corollary 2. Let X be a real Hilbert space, and let M : X × X × L � 2X be
maximal monotone in the first variable. Let N : X × X × L � X be (�)-strongly
monotone and (�)-Lipschitz continuous in the first variable, and let N be (µ) - Lipschitz
continuous in the second variable. If



Sensitivity Analysis for Quasivariational Inclusion Problems... 65

M u M v
A AJ w J w u v u v X X L(., , ) (., , )

, ,|| ( ) ( ) || || || ( , , ) ,� �
� �� � � � � � � � �

then

||G(u, �) – G(v, �)|| ���||u – v|| �(u, v, �) � X × X × L, (12)

where

21 2 1,�� � � ���� � ��� ���

2 2

(1 )� � � � �
��

� ��

2 2 2 2

2 2

( (1 ) ) ( )(1 (1 ) )� � � � � � � �� � ��
�

� ��

��> �������< 1 – �, ��< 1.

If the mappings � � N(u, v, �) and M u
AJ w(., , )

, ( )�
�� �  both are continuous (or

Lipschitz continuous) from L to X, then the solution z(�) of (1) is continuous (or
Lipschitz continuous) from L to X.
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