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1. INTRODUCTION

First order ordinary differential equations (ODE) with periodic boundary value
conditions are considered in many works. See Bernfeld and Lakshmikantham [1],
Ladde et. al. [16], Omari and Zanolin [19] and the references therein. The study of
periodic boundary value problems of nonlinear first order differential equations with
discontinuous nonlinearity has been exploited in the works of Heikkilä and
Lakshmikantham [15]. But the study of periodic boundary value problems of ordinary
differential equations in Banach algebras involving Caratheodory as well as
discontinuous nonlinearity has not been made so far in the literature. The study of
initial value problems of nonlinear differential equations in Banach algebras is initiated
in the works of Dhage [2], Dhage and O’Regan [10] and discussed the existence
theory for first order differential equations. The study of such equations has been
further exploited in the works of Dhage [3, 4, 5, 7] and Dhage et. al. [11] for various
aspects of the solutions. In this paper, we deal with the periodic boundary value
problems of nonlinear first order differential equations in Banach algebras and discuss
the existence as well as existence results for extremal solutions under mixed Lipschitz,
Caratheodory and monotonic conditions. The main tools used in the study are the
hybrid fixed point theorems of Dhage [3, 4, 6, 7]. We claim that the nonlinear
differential equation as well as the existence results of this paper are new to the
literature on the theory of nonlinear ordinary differential equations.

Let � denote the real line. Given a closed and bounded interval J = [0, T] in �,
consider the periodic boundary value problems (in short PBVP) of first order ordinary
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differential equations
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where f : I × � � � – {0} and g : I × � � �.

By a solution of PBVP (1.1) we mean a function x � AC(J,�) that satisfies

(i) the function 
x t

t
f t x t

( )
( , ( ))

� �
� � �
� �

  is absolutely continuous on J, and

(ii) x satisfies the equations in (1.1),

where AC(J,�) is the space of continuous functions whose first derivative exists and
is absolutely continuous real-valued functions on J.

Our method of study is to convert the PBVP (1.1) into an equivalent integral
equation and apply the fixed point theorems of Dhage [3, 4, 6, 7] under suitable
conditions on the nonlinearities f and g involved it. In the following section 2, we
give some preliminaries needed in the sequel.

2. AUXILIARY RESULTS

Let X be a Banach algebra with norm || · ||. A mapping A : X � X is called D-
Lipschitz if there exists a continuous nondecreasing function � : �+ � �+ satisfying

||Ax – Ay|| � ��(||x – y||) (2.1)

for all x, y � X with � (0) = 0. In the special case when  ��(r) = � r (� > 0), A is called
a Lipschitz with a Lipschitz constant �. In particular, if � < 1, A is called a contraction
with a contraction constant �. Further, if � (r) < r for all r > 0, then A is called a
nonlinear D-contraction on X. Sometimes we call the function � a D-function for
convenience.

An operator T : X � X is called compact if T(S)  is a compact subset of X for

any S � X. Similarly T : X � X is called totally bounded if T maps a bounded subset
of X into the relatively compact subset of X. Finally T : X � X is called completely
continuous operator if it is continuous and totally bounded operator on X. It is clear
that every compact operator is totally bounded, but the converse may not be true.
The nonlinear alternative of Schaefer type recently proved by Dhage [7] is embodied
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in the following theorem. Also see Dhage and Ntouyas [8], Dhage et. al. [9] and the
references therein.

Theorem 2.1. (Dhage[7]). Let B
r
(0) and r (0)�  be respectively open and closed

balls in a Banach algebra X centered at origin 0 and of radius r. Let rA B X, : (0) ��

be two operators satisfying

(a) A is Lipschitz with a Lipschitz constant �,

(b) B is compact and continuous, and

(c) ��M < 1 , where || ( (0)) ||: sup{|| ||: ( (0)}.r rM B Bx x� � �� �

Then either

(i) the equation �[Ax Bx] = x has a solution for ��= 1, or

(ii) there exists an u � X such that ||u|| = r satisfying �[A
u
B

x
] = u for some 0 < �

< 1.

A non-empty closed set K in a Banach algebra X is called a cone if (i) K +K � K,
(ii) �K � K for � �, ���  0 and (iii) {–K}� K = 0, where 0 is the zero element of X.
A cone K is called to be positive if (iv) K o K � K, where “o” is a multiplication
composition in X. We introduce an order relation ��in X as follows. Let x, y � X.
Then x ��y if and only if y – x � K. A cone K is called to be normal if the norm || · ||
is semi-monotone increasing on K, that is, there is a constant N > 0 such that || x || �
N || y || for all x, y � K with x ��y. It is known that if the cone K is normal in X, then
every order-bounded set in X is norm-bounded. The details of cones and their
properties appear in Guo and Lakshmikantham [14].

Lemma 2.1 (Dhage [4]). Let K be a positive cone in a real Banach algebra X
and let u

1
, u

2
, v

1
, v

2
 � K be such that u

1
 ��v

1
 and u

2
 � v

2
. Then u

1
u

2
 ��v

1
v

2
.

For any a, b � X, a � b, the order interval [a, b] is a set in X given by

[a, b] = {x � X : a � x � b}.

Definition 2.1: A mapping T : [a, b] � X is said to be nondecreasing or
monotone increasing if x � y implies Tx � Ty for all x, y ��[a, b].

We use the following fixed point theorems of Dhage [3, 4, 6] for proving the
existence of extremal solutions for the BVP (1.1) under certain monotonicity
conditions.
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Theorem 2.2: (Dhage [3]). Let K be a cone in a Banach algebra X and let a, b �
X. Suppose that A,B : [a, b] � K are two operators such that

(a) A is Lipschitz with a Lipschitz constant �,

(b) B is completely continuous,

(c) Ax Bx � [a, b] for each x � [a, b], and

(d) A and B are nondecreasing.

Further if the cone K is positive and normal, then the operator equation Ax Bx =
x has a least and a greatest positive solution in [a, b], whenever �M < 1, where
M = ||B([a, b])|| := sup{||Bx|| : x � [a, b]}.

Theorem 2.3: (Dhage [6]). Let K be a cone in a Banach algebra X and let a, b �
X. Suppose that A,B : [a, b] � K are two operators such that

(a) A is completely continuous,

(b) B is totally bounded,

(c) Ax By � [a, b] for each x � [a, b], and

(d) A and B are nondecreasing.

Further if the cone K is positive and normal, then the operator equation Ax Bx =
x has a least and a greatest positive solution in [a, b].

Theorem 2.4. (Dhage [6]). Let K be a cone in a Banach algebra X and let a, b �
X. Suppose that A,B : [a, b] � K are two operators such that

(a) A is Lipschitz with a Lipschitz constant �,

(b) B is totally bounded,

(c) Ax By � [a, b] for each x � [a, b], and

(d) A and B are nondecreasing.

Further if the cone K is positive and normal, then the operator equation Ax Bx =
x has least and a greatest positive solution in [a, b], whenever �M < 1, where M =
||B([a, b])|| := sup{||Bx|| : x �[a, b]}.

Remark 2.1: Note that hypothesis (c) of Theorems 2.2, 2.3, and 2.4 holds if the
operators A and B are positive, monotone increasing and there exist elements a and
b in X such that a ��Aa Ba and Ab Bb ��b.

In the following sections we prove the main existence results of this paper.



Periodic Boundary value Problems of First order Ordinary... 107

3. EXISTENCE THEORY

Let B(J,��) denote the space of bounded real-valued functions on J. Let C(J,��),
denote the space of all continuous real-valued functions on J. Define a norm || · || and
a multiplication “ · ” in C(J,��) by

t J
x x t|| || sup | ( ) |

�
�  and (x, y)(t) = x(t) y(t) for t � J.

Clearly C(J,�) becomes a Banach algebra with respect to above norm and
multiplication. By L1(J,�) we denote the set of Lebesgue integrable functions on J

and the norm L1|| . ||  in L1(J,�) is defined by

T

L
x x t ds1

0
|| || | ( ) | .� �

The following useful lemma is obvious and the details may be found in Nieto
[18].

Lemma 3.1. For any k � L1(J,�+) and � � L1(J,�), x is a solution to the
differential equation

x k t x t t a e t J

x x T

( ) ( ) ( ) . .

(0) ( ),

� � � � � �
�

� �
 (3.1)

if and only if it is a solution of the integral equation

T

kx t G t s s ds
0

( ) ( , ) ( )� �� (3.2)

where

K s K t

K T

k K s K t K T

K T

e
s t T

eG t s
e

t s T
e

( ) ( )

( )

( ) ( ) ( )

( )

, 0 ,
1( , )

, 0 ,
1

�

�

� �

�

�
� � ��� �� �

� � � �� ��

(3.3)

where 
t

K t k s ds
0

( ) ( ) .� �
Notice that the Green’s function G

k
 is nonnegative on J × J and the number

M
k
 := max { |G

k
(t, s)| : t, s � [0, T] }
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exists for all L1(J,�+). Note also that K(t) > 0 for all t > 0.

We need the following definition in the sequel.

Definition 3.1: A mapping � : J × � � � is said to be Carathéodory if

(i) t �� (t, x) is measurable for each x � �, and

(ii) x �� (t, x) is continuous almost everywhere for t � J.

Again a Carath�odory function � (t, x) is called L1-Carath�odory if

(iii) for each real number r > 0 there exists a function h
r
 � L1(J,�) such that

|�(t, x)| ��h
r
(t),   a.e. t � J

for all x � � with |x| � r.

Finally a Carath�odory function �(t, x) is called XL1 -Carath�odory  if

(iv) there exists a function h � L1(J,R) such that

|�(t, x)| � h(t),  a.e. t � J

for all x � �.

For convenience, the function h is referred to as a bound function of ��.

We will use the following hypotheses in the sequel.

(A
0
) The function t � f (t, x) is periodic of period T for all x � �.

(A
1
) The function (0, )

x
x

f x
�  is injective in �.

(A
2
) The function f : J × � � � is continuous.

(A
3
) The function f : J × � � � is continuous and there exists a function

B J( , )�� �  such that

|f (t, x)  – f (t, y)| ���(t) |x – y| a.e. t � J

for all x, y � �.

(A4) The function g is Carathéodory.

Note that hypotheses (A
0
) through (A

4
) are much common in the literature on the

theory of nonlinear differential equations. Actually the function f : J × � � �  defined
by f (t, x) = � + �|x| for some �,�� � � satisfies the hypotheses (A

0
)-(A

3
).

Now consider the PBVP
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k
x t x t

k t g t x t a e t J
f t x t f t x t

x x T

( ) ( )
( ) ( , ( )) . .

( , ( )) ( , ( ))

(0) ( )

� �� � � � �� � �� � � � �� � � �
�� �

(3.4)

where k � L1(J,�+) and the function g
k
 : J × � � � is defined by

k
x

g t x g t x k t
f t x

( , ) ( , ) ( ) .
( , )

� �
� � � �

� �
 (3.5)

Remark 3.1. Note that the PBVP (1.1) is equivalent to the PBVP (3.4) and a
solution of the PBVP (1.1) is the solution for the PBVP (3.4) on J and vice versa.

Remark 3.2. Assume that hypotheses (A
2
) and (A

4
) hold. Then the function g

k

defined by (3.5) is Carath�odory on J × �.

Lemma 3.2. Assume that hypothesis (A
1
) – (A

1
) holds. Then for any k � L1(J,�+),

x is a solution to the differential equation (3.4) if and only if it is a solution of the
integral equation

� �T

k kx t f t x t G t s g t x s ds
0

( ) [ ( , ( ))] ( , ) ( , ( )) ,� � (3.6)

where the Green’s function G
k
(t, s) is defined by (3.3).

Proof. Let 
x t

y t
f t x t

( )
( ) .

( , ( ))
�  Since f (t, x) is periodic in t of period T for all x � �,

we have

(0) ( )
(0) ( ).

(0, (0)) ( , ( ))
x x T

y y T
f x f T x T

� � �

Now an application of Lemma 3.1 yields that the solution to differential equation
(3.4) is the solution to integral equation (3.6). Conversely, suppose that x is any
solution to the integral equation (3.6), then

(0) ( ) ( )
(0) ( ) .

(0, (0)) ( , ( )) (0, ( ))
x x T x T

y y T
f x f T x T f x T

� � � �

Since the function (0, )
x

x
f x

�  is injective, one has x(0) = x(T) and so, x is a solution

to PBVP (1.1). The proof of the lemma is complete.
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We make use of the following hypothesis in the sequel.

(A
5
) There exists a continuous and nondecreasing function � : [0,�) � (0,�)

and a function  � L1(J,�) such that �(t) > 0, a.e. t � J satisfying

|g
k
(t, x)| ���(t) � (|x|), a. e. t � J,

for all x � �.

Theorem 3.1. Assume that the hypotheses (A
0
) – (A

1
), (A

3
) – (A

5
) hold. Suppose

that there exists a real number r > 0 such that

k L

k L

FM r
r

LM r

1

1

|| || ( )

1 || || ( )

�
�

� �

�

� (3.7)

where k t TL
LM r F f t1 [0, ]|| || ( ) 1, sup | ( ,0)�� � �� | and L = max

t ��J �(t). Then the

PBVP (1.1) has a solution on J.

Proof. Let X = C(J,�). Define an open ball �
r
(0) centered at origin 0 of radius r,

where the real number r satisfies the inequality (3.7). Define two mappings A and B

on r (0)�   by

Ax(t) = f (t, x(t)), t � J, (3.8)
and

T

k kBx t G t s g s x s ds t J
0

( ) ( , ) ( , ( )) ,� �� . (3.9)

Obviously A and B define the operators A,B : r X(0) .��  Then the integral

equation (3.6) is equivalent to the operator equation

x(t) = Ax(t)Bx(t), t � J. (3.10)

We shall show that the operators A and B satisfy all the hypotheses of Theorem 2.1.

We first show that A is a Lipschitz on X. Let x, y � X. Then by (A
3
),

|Ax(t) – Ay(t)| ��|f (t, x(t)) – f (t, y(t))|

���(t) |x(t) – y(t)|

��L ||x – y||

for all t � J. Taking the supremum over t we obtain

||Ax – Ay|| ��L||x – y||
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for all x, y � X. So A is a Lipschitz on X with Lipschitz constant L. Next we show that
B is completely continuous on X. Using the standard arguments as in Granas et. al.

[13], it is shown that B is a continuous operator on X. We shall show that rB( (0))�

is a uniformly bounded and equicontinuous set in X. Let rx B( (0))� �  be arbitrary.

Since g is Carathéodory, we have

T

k kBx t G t s g s x s ds
0

| ( ) | ( , ) ( , ( )) |� �
T

kM s x s ds
0

[ ( ) (| ( ) |)]� �� �

T

kM s x s ds
0

( ) (| ( ) |)� �� �

k L
M r1|| || ( ).� � �

Taking the supremum over t, we obtain ||Bx|| � M for all rx B (0)� , where

k L
M M r1|| || ( )� � � . This shows that rB( (0))�  is a uniformly bounded set in X.

Next we show that rB( (0))�  is an equicontinuous set. To finish it is enough to show

that y� = (Bx)� is bounded on [0, T]. Now for any t � [0, T], one has

        
0

| ( ) | | ( , ) ( , ( )) |
T

k ky t G t s g s x s ds
t
�

� �
��

T

k kk s G t s g s x s ds
0

| ( ( )) ( , ) ( , ( )) |� ��

k L
K M r1|| || ( )� � �

c,�

where K = max
t�J

 k(t). Hence for any t, ��� [0, T] one has

|Bx(t) – Bx(�)| ��c |t – �| � 0 as t � �.

This shows that rB( (0))�  is a equi-continuous set X. Now rB( (0))�  is a

uniformly bounded and equi-continuous set in X, so it is compact by Arzelá-Ascoli

theorem. As a result B is a compact and continuous operator on rB( (0)).�  Thus all
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the conditions of Theorem 2.1 are satisfied and a direct application of it yields that
either the conclusion (i) or the conclusion (ii) holds. We show that the conclusion
(ii) is not possible. Let u � X be a solution to PBVP (1.1) such that ||u|| = r. Then we
have, for any � � (0, 1),

� �T

k ku t f t x t G t s g s x s ds
0

( ) [ ( , ( ))] ( , ) ( , ( ))� � �
for t � J. Therefore,

0
| ( ) | | ( , ( )) | ( , ) ( , ( ))

T

k ku t f t u t G t s g s x s ds
� �� � � �
� ��

� �f t x t f t f t| ( , ( )) ( ,0) | | ( ,0) |� � � �

� �T

k kG t s g s x s ds
0

( , ) | ( , ( )) |� �

� �T

k kt u t F M g s x s ds
0

[ ( ) | ( ) | ] | ( , ( )) |� � ��

� �T

kLM u t s u s ds
0

| ( ) | ( ) (| ( ) |� �� �

� �0
( ) (| ( ) |)

T

kFM s u s ds� �� �

k kL L
LM u u t FM u1 1|| || (|| ||) | ( ) || || (|| ||).� � � �� � (3.11)

Taking the supremum in the above inequality (3.11) yields

k L

k L

FM u
u

LM u

1

1

|| || (|| ||)
|| || .

1 || || (|| ||)

�
�

� �

�

�

Substituting ||u|| = r in above inequality yields

k L

k L

FM r
r

LM r

1

1

|| || ( )

1 || || ( )

�
�

� �

�

�

This is a contradiction to (3.7). Hence the conclusion (ii) of Corollary 2.1 does
not hold. Therefore the operator equation Ax Bx = x and consequently the PBVP
(1.1) has a solution on J. This completes the proof.
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Remark 3.3. We note that in theorem 3.1, we only require the hypothesis (A
1
) to

hold in [–r, r].

4. EXISTENCE OF EXTREMAL SOLUTIONS

We equip the space C(J,�) with the order relation � with the help of the cone defined
by

K = {x � C(J,�) : x(t) �, �t � J}. (4.1)

It is well known that the cone K is positive and normal in C(J,�). We need the
following definitions in the sequel.

Definition 4.1. A function a � AC1(J,�) is called a lower solution of the PBVP
(1.1) on J if

d a t
g t a t a e t J

dt f t a t

a a T

( )
( , ( )) . .

( , ( ))

(0) ( ).

�� �
� � �� � �� �

�� �

Again a function b � AC1(J,�) is called an upper solution of the PBVP (1.1) on J if

d b t
g t b t a e t J

dt f t b t

b b T

( )
( , ( )) . .

( , ( ))

(0) ( ).

�� �
� � �� � �� �

�� �

Definition 4.2. A solution x
M
 of the PBVP (1.1) is said to be maximal if for any

other solution x to PBVP (1.1) one has x(t) � x
M
(t), for all t � J. Again a solution x

m

of the PBVP (1.1) is said to be minimal if x
m
(t) � x(t), for all t � J, where x is any

solution of the PBVP (1.1) on J.

Remark 4.1. The upper and lower solutions of the PBVP (1.1) are respectively
the upper and lower solutions of the PBVP (3.4) and vice-versa. Similarly the maximal
and minimal solutions of the PBVP (1.1) are respectively the upper and lower
solutions of the PBVP (3.4) and vice-versa.

4.1. Carathéodory case. We consider the following set of assumptions:

(B
0
) f : J × � � �+ – {0} , g : J × � � �+.

(B
1
) The function (0, )

x
x

f x
�  is increasing in the interval min ( ), max ( )

t J t J
a t b t

� �

� �
� �� �
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(B
2
) The functions f (t, x) and g(t, x) are nondecreasing in x and y almost

everywhere for t � J.

(B
3
) The PBVP (1.1) has a lower solution a and an upper solution b on J with a
� b.

(B
4
) The function h : J � � defined by

h(t) = |g
k
(t, b(t))|,

is Lebesgue integrable.

We remark that hypothesis (B
4
) holds in particular if f is continuous and g is L1-

Carath�odory on J × �.

Remark 4.2. Assume that (B
0
)-(B

4
) hold. Then the function t ��g

k
(t, x(t)) is

Lebesgue integrable on J and

|g
k
(t, x(t))| � h(t),   a.e. t � J,

for all x � [a, b].

Theorem 4.1. Suppose that the assumptions (A
1
), (A

3
) through (A

4
) and (B

0
)

through (B
4
) hold. Further if L

LT h 1|| || 1,�   where h is given in Remark 4.1 and L =

max
t�J

 �(t), then PBVP (1.1) has a minimal and a maximal positive solution on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (3.6) on J. Let X =
C(J,�). Define two operators A and B on X by (3.8) and (3.9) respectively. Then
integral equation (3.6) is transformed into an operator equation Ax(t)Bx(t) = x(t) in a
Banach algebra X. Notice that (B

1
) implies A,B : [a, b] � K. Since the cone K in X is

normal, [a, b] is a norm bounded set in X. Now it is shown, as in the proof of
Theorem 3.1, that A is a Lipschitz with a Lipschitz constant L and B is completely
continuous operator on [a, b]. Again the hypothesis (B

2
) implies that A and B are

nondecreasing on [a, b]. To see this, let x, y � [a, b] be such that x ��y. Then by (B
2
),

Ax(t) = f (t, x(t)) ��f (t, y(t)) = Ay(t)

for all t � J. Similarly, we have

  
T

k kBx t G t s g s x s ds
0

( ) ( , ) ( , ( ))� �
T

k kG t s g s s ds
0

( , ) ( , )� �
By t( )�
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for all t � J. So A and B are nondecreasing operators on [a, b]. Again Lemma 4.1 and
hypothesis (B

3
) together imply that

� �T

k ka t f t a t G t s g s a s ds
0

( ) [ ( , ( ))] ( , ) ( , ( )))� �

� �T

k kf t x t G t s g s x s ds
0

[ ( , ( ))] ( , ) ( , ( ))� �

� �T

k kf t b t G t s g s b s ds
0

[ ( , ( ))] ( , ) ( , ( )))� �

b t( ),�

for all t � J and x � [a, b]. As a result a(t) ��Ax(t) Bx(t) ��b(t), for all t � J and x �
[a, b]. Hence Ax Bx � [a, b] for all x � [a, b]. Again,

       M = ||B([a, b])||

= sup{||Bx|| : x � [a, b]}

T

k k
t J

G t s g s x s ds x a b
0

sup sup ( , ) | ( , ( )) | | [ , ]
�

� �� �� �
� ��

0
( )

T

kM h s ds� �

k L
M h 1|| || .�

Since k L
M LM h 1|| || 1,� � �  we apply Theorem 2.2 to the operator equation Ax

Bx = x to yield that the PBVP (1.1) has a minimal and a maximal positive solution
on J. This completes the proof.

4.2. Discontinuous case. We need the following definition in the sequel.

Definition 4.3. A mapping� : J × � � � is said to be Chandrabhan if

(i) t ��� (t, x) is measurable for each x � �, and

(ii) x ��� (t, x) is nondecreasing almost everywhere for t � J.

Again a Chandrabhan function �(t, x) is called L1-Chandrabhan if

(iii) for each real number r > 0 there exists a function h
r
 � L1(J,�) such that



116 B.C. Dhage, J. Henderson & S.K. Ntouyas

|�(t, x)| ��h
r
(t), a.e. t � J

for all x � � with |x| ��r.

Finally a Chandrabhan function �(t, x) is called XL1 -Chandrabhan if

(iv) there exists a function h � L1(J,�) such that

|�(t, x)| ��h(t), a.e. t � I

for all x � �.

For convenience, the function h is referred to as a bound function of ��

We consider the following hypotheses in the sequel.

(C
1
) The function f (t, x) is nondecreasing in x almost everywhere for t � J.

(C
2
) The function g

k
 defined by (3.5) is Chandrabhan.

Theorem 4.2: Suppose that the assumptions (A
1
)-(A

2
), (B

0
)-(B

3
) and (C

1
)-(C

2
)

hold. Then PBVP (1.1) has a minimal and a maximal positive solution on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (3.6) on J. Let
X = C(J,�). Define two operators A and B on X by (3.8) and (3.9) respectively. Then
integral equation (3.6) is transformed into an operator equation Ax(t) Bx(t) = x(t) in
a Banach algebra X. Notice that (B

0
) implies A,B : [a, b] � K. Since the cone K in X

is normal, [a, b] is a norm bounded set in X.

Step I : First we show that A is completely continuous on [a, b]. Now the cone K
in X is normal, so the order interval [a, b] is norm-bounded in X. Hence there exists
a constant r > 0 such that ||x|| ��r for all x � [a, b]. As f is continuous on compact J
×[– r, r], it attains its maximum, say M. Therefore for any subset S of [a, b] we have

||A(S)||p = sup{||Ax|| : x � S}

 
t J

f t x t x Ssup sup | ( , ( )) |:
�

� �� �� �
� �

sup sup | ( , ) |: [ , ]
t J

f t x x r r
�

� �� � �� �
� �

M.�
This shows that A(S) is a uniformly bounded subset of X.

Next we note that, the function f (t, x) is uniformly continuous on [0, T] × [–r, r].
Therefore for any t, ��� [0, T] we have
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|f (t, x) – f (�, x)| � 0 as t � �

for all x � [–r, r]. Similarly for any x, y � [–r, r]

|f (t, x) – f (t, y)| � 0 as x � y

for all t � [0, T]. Hence any t, ��� [0, T] and for any x � S one has

|Ax(t) – Ax(�)| = |f (t, x(t)) – f (�, x(�))|

��������|f (t, x(t)) – f (�, x(t))| + | f (�, x(t)) – f (�, x(�))|

������ 0 as t � �.

This shows that A(S) is an equi-continuous set in X. Now an application of Arzelá-
Ascoli theorem yields that A is a completely continuous operator on [a, b].

Step II : Next we show that B is totally bounded operator on [a, b]. To finish, we
shall show that B(S) is uniformly bounded ad equi-continuous set in X for any subset
S of [a, b]. Since the cone K in X is normal, the order interval [a, b] is norm-bounded.
Let y � B(S) be arbitrary. Then,

T

k ky t G t s g s x s ds
0

( ) ( , ) ( , ( ))� �
for some x � S. By hypothesis (B

2
) one has

   
T

k ky t G t s g s x s ds
0

| ( ) | ( , ) | ( , ( )) |� �
T

kM h s ds
0

( )� �
k L

M h 1|| || .�

Taking the supremum over t,

k L
y M h 1|| || || || ,�

which shows that B(S) is a uniformly bounded set in X. Similarly let t, ��� J. To
finish it is enough to show that y� is bounded on [0, T]. Now for any t � [0, T],

0
| ( ) | ( ) | ( , ) | ( , ( )) |

T

k ky t y t G t s g s x s ds
t

�
�

��

  
T

k kk s G t s g s x s ds
0

( ( )) ( , ) | ( , ( )) |� ��
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  k L
K M h 1|| ||�

where K = max
t�J

 |k(t)|. Hence for any t, ��� [0, T] one has

|y(t) – y(�)| ��c |t – �| � 0 as t � �.

This shows that B(S) is a equi-continuous set of functions in [a, b]. for all
S � [a, b]. Now B(S) is a uniformly bounded and equi-continuous, so it is totally
bounded by Arzelà-Ascoli theorem. Thus all the conditions of Theorem 2.3 are
satisfied and hence an application of it yields that the PBVP (1.1) has a maximal and
a minimal positive solution on J.

Theorem 4.3: Suppose that the assumptions (A
3
), (A

2
), (B

0
)-(B

3
) and (C

1
)-(C

2
)

hold. Further if

1|| || 1,k L
LM h �

where h is given in Remark 4.1 and L = max
t�J 
�(t), then the PBVP (1.1) has a

minimal and a maximal positive solution on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (3.6) on J. Let X =
C(J,�). Define two operators A and B on X by (3.8) and (3.9) respectively. Then
integral equation (3.6) is transformed into an operator equation Ax(t) Bx(t) = x(t) in
a Banach algebra X. Notice that (B

0
) implies A,B : [a, b] � K. Since the cone K in X

is normal, [a, b] is a norm bounded set in X. Now it can be shown as in the proofs of
Theorem 3.1 and Theorem 2.4 that the operator A is a Lipschitz with a Lipschitz

constant � = L and B is totally bounded with k L
M B a b M h 1|| ([ , ]) || || || ,� �

respectively. Since k L
M L M h 1|| || 1� � � , the desired conclusion follows by an

application of Theorem 2.4.

5. AN EXAMPLE

Given the closed and bounded interval J = [0, 1] in �, consider the nonlinear PBVP

d x t x t x t
a e t J

dt f t x t x t

x x

( ) | ( ) | ( )
, . .

( , ( )) 16 1 | ( ) |

(0) (1),

�� �
� � � �� � � �� �

�� �
(5.1)

where the function f : J × � – {0} � � is defined by

f (t, x) = 1 + |x|.
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Obviously f : J × � � �+ – {0} is continuous and the function t � f (t, x) is periodic
of period T = 1 for all x � �. Define a function g : J × � � � by

x t x t
g t x

x t

| ( ) | ( )
( , ) .

16 1 | ( ) |
� �

�
Now consider the PBVP

x t x t x t
a e t J

f t x t x t

x x

( ) ( ) | ( ) |
. .

( , ( )) 1 | ( ) | 16

(0) (1).

� �� �
�� � �� � � �� �
�

� �
(5.2)

It is easy to verify that f is continuous and Lipschitz on J × � with a Lipschitz

function �(t) = 1 for all t � J. Here k(t) = 1, and so k
e

M
e

.
1

�
�

 Also, here we have

t J
F f tsup | ( , 0) | 1.

�
� �

Now the real number r = 4 satisfies condition (3.6) of Theorem 3.1 with t
1

( )
16

� �

for all t � J and � (r) = r for all r � �+. Besides this, the map

(0, ) 1 | |
x x

x
f x x

�
�

�

is strictly increasing in the order interval [–4, 4]. Therefore, an application of Theorem
3.1 yields that the PBVP (5.1) has a solution u on J with ||u|| ��4.
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