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ABSTRACT: In this paper, the second order m-point boundary value problem
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is studied, where � � 0, � � 0, q is allowed to be singular at t = 0 and t = 1, f is allowed to
change sign. By constructing available operator and using the Leggett-Williams fixed
point theorem, the existence of at least three nontrivial positive solutions is established.
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1. INTRODUCTION

This paper deals with the following second order m-point boundary value problem
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where m � 3, � � 0, � � 0, k
i
 > 0 (i = 1, 2, . . ., m – 2), 0 < �

1
 < �

2
 < . . . < �

m–2
 < 1, q

��C((0, 1), [0,+�)) is allowed to be singular at t = 0 and t = 1, f � C([0, 1] × [0,+�),
(–�, +�)) is allowed to change sign.

The multi-point boundary value problems for ordinary differential equations arise
in a variety of areas of applied mathematics and physics. The study of multi-point
boundary value problems for linear second order ordinary differential equations was
initiated by Il’in and Moiseev[8]. Since then, attention has been focused on the study
of nonlinear multi-point boundary value problems as can be seen from for example,
[1, 5, 6, 7, 10, 12, 13, 14] and their references. Recently, by using the Krasnosel’skii
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fixed point theorem, M
a
[11] showed the existence of at least one positive solution

for the three point boundary value problem
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where a � C([0, 1], [0, +�)) and f ��C([0, +�), [0, +�)) is either superlinear or
sublinear. In [15], the second order m-point boundary value problem
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was considered under some conditions concerning the first eigenvalue of the relevant
linear operator, where h � C((0, 1), [0,+�)) is allowed to be singular at t = 0, t = 1
and f � C([0,+�), [0,+�)). By using the fixed point index theory , the existence of
positive solutions was obtained. In [4], by constructing two cones, the author obtained
two positive solutions for a three point boundary value problem with sign-changing
nonlinearities

x t f t x t

x x x x
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�
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where � > 0 and f � C([0, 1] × [0,+�), (–�,+�)) dose not have any singularity.

In this paper, we study BVP (1.1) for the cases where m � 3, � � 0, � � 0, but �
+ � > 0, q is allowed to be singular at t = 0 and t = 1, and f is allowed to change sign.
The existence of at least three nontrivial positive solutions is obtained by using the
Leggett-Williams fixed point theorem.

2. SOME DEFINITIONS AND LEMMAS

Suppose P is a cone in a Banach space E. The map � is a nonnegative continuous
concave functional on P provided � : P � [0,+�) is continuous and � (tu + (1 – t)v) �
t� (u) + (1– t)��(v) for all u, v � P and 0 � t � 1. Let constants a, b and r > 0 be given and
let � be a nonnegative continuous concave functional on P. Define P

r
 and P

a
(b) by

P
r
 = {u � P : ||u|| < r}, P

a
(b) = {u � P : a � � (u), ||u|| � b�.

Lemma 2.1. (Leggett-Williams Fixed Point Theorem) Let A : c cP P�  be a

completely continuous operator and � be a nonnegative continuous concave functional
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on P such that � (u) � ||u|| for all cu P� . If there exist real numbers a, b and d with

0 < a < b < d � c such that

(C
1
) {u � P

b
(d) : � (u) > b} � �, and � (Au) > b for u � P

b
(d);

(C
2
) ||Au|| < a for ||u|| � a;

(C
3
) � (Au) > b for u � P

b
(c) with ||Au|| > d;

then A has at least three fixed point u
1
, u

2
 and u

3
 such that

||u
1
|| < a, b < � (u

2
), and ||u

3
|| > a with � (u

3
) < b.

The following conditions will be assumed throughout this paper:
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1
) f : [0, 1] × [0,+�) � (–�,+�) is continuous and f (t, 0) � 0(��   0),

(H
2
) q : (0, 1) � [0,+�), q(t) ��   0 on any subinterval of (0, 1) and q t dt

1

0
( ) ,� ���

(H
3
) � � 0, � � 0, � = � + � > 0 and 
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i i
i

k
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Lemma 2.2. Suppose (H
2
) and (H

3
) hold. Then the problem
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Proof. It is easy to see that � and � are two linearly independent solutions of the
equation u� = 0, so the solution of the equation u�(t) + q(t) = 0 can be expressed by

u t G t s s ds B t B t
1

1 20
( ) ( , )( ) ( ) ( )� � � �� � , (2.4)

where B
1 
and B

2
 are constants. The fact that when B

1
 satisfies (2.3) and B

2
 = 0, u(t)

defined by (2.4) is a solution of (2.1) is easy to check.

On the other hand, we will show that when u(t) defined by (2.4) is a solution of
(2.1), B

1 
satisfies (2.3) and B

2
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we have B
2
� = 0, thus B

2
 = 0. Since u(1) = B

1
�, we have
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The proof of Lemma 2.2 is completed.

Lemma 2.3. Suppose (H
2
) and (H

3
) hold. Then the unique solution u(t) of (2.1)

satisfies

t
u t t and u t u
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Proof. From (H

2
), (H

3
), we obtain 0 � G(t, s) � G(s, s) for t � [0, 1] and B

1
 � 0.

So by Lemma 2.2, we know u(t) � 0, for t � [0, 1], and
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Therefore, for all t � [�, 1 – �], we have
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The proof of Lemma 2.3 is completed.

Let 
t

u u t
0 1

|| || max | ( ) |
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�  for all u � C[0, 1], P = {u � C[0, 1] : u(t) � 0, t � [0, 1]}.

Then P is a cone on C[0, 1]. For u � P, we define 
1
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� �  Then � is a

nonnegative continuous concave functional on P and � (u) � ||u||. Define
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(Tu)(t) = max{(Au)(t), 0}, u ��P, t ���������

For u � C[0, 1], define � : C[0, 1] � P by (�u)(t) = max {u(t), 0}. From the
definition, we have T = ��� A.

Lemma 2.4. If A : P � C[0, 1] is a completely continuous operator, then T : P
� P is a completely continuous operator.

Proof. The complete continuity of A implies that A is continuous and maps each
bounded subset in P to a relatively compact set. Denote  �y by y y C, [0, 1].�  Given
a function h � P, for each � > 0 there is � > 0 such that

||Ah – Ag|| < �, for g � P, ||g – h|| < �.
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Since

|(�Ah)(t) – (�Ag)(t)| = |max {(Ah)(t),0} – max{(Ag)(t),0}|

��|(Ah)(t) – (Ag)(t)| < �,

we have

||(�A)(h) – (�A)(g)|| < �, for g � P, ||g – h|| < �,

and then ��� A is continuous.

For an arbitrarily given bounded set D � P and � > 0, there are y
i
, i = 1, . . ., m

such that
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where B(y
i
, �) = {u � P : ||u – y

i
|| < �}. Then, for each y t A D( ) ( ) ,� � �  there is y �

AD such that y t y t( ) max{ ( ),0}.�  We choose one y
i
 � {y

1
, . . ., y

m
} such that ||y – y

i
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i i
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0 1 0 1
max | ( ) ( ) | max | ( ) ( ) |
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implies iy B y( , ).� �  Then (� � A) D has a finite �–net, and therefor, (� � A) D is

relatively compact. So T is a completely continuous operator.

Lemma 2.5. Suppose (H
1
), (H

2
) and (H

3
) hold. Then T: P � P is a completely

continuous operator.

Proof. First of all, we show that A : P � C[0, 1] is a completely continuous
operator. Let D � P denote a bounded set. Then there exists M

1
 > 0 such that ||u|| �

M
1
 for all u � D. Since f is continuous, there exists M

2
 > 0 such that |f (t, u)| � M

2
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1
]. By (H

2
), for u � D, we have
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Thus AD = {Au : u � D} � C[0, 1] is a bounded set. For u � D,
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we obtain Au t dt1
00 | ( ) ( ) | .� � � ���  It is easy to show that AD is equicontinuous,

that is, A is compact. Let u
n
, u � P and u

n
 � u(n � +�). Then
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From (H
1
), (H

2
) (H

3
), it is easy to get

n n
t

Au Au Au t Au t n
0 1

|| || max | ( )( ) ( )( ) | 0, ,
� �

� � � � ��

therefore, A is continuous. By using the Ascoli-Arzela Theorem, we obtain A : P �
C[0, 1] is a completely continuous operator. Finally, from Lemma 2.4, we have T =
� � A : P � P is a completely continuous operator.

3. MAIN RESULT

Let

m
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t i

G t s q s ds k G s q s ds
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0 00 1 1

= max ( , ) ( ) ( , ) ( )
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� �� �
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00 1 1

( )
= max ( , ) ( ) ( , ) ( ) .

���

�� � �� �

�
� � �

� �� �
�

Then 0 < � < �.

Theorem 3.1. Suppose (H
1
), (H

2
) and (H

3
) hold. In addition, there exist real

numbers a, b, c such that 0 < a < b � min{�, ��/�}c and f satisfies the following
conditions:

(H
4
) f (t, u) � c /�  for all (t, u) � [0, 1] × [0, c],

(H
5
) f (t, u) < a /� for all (t, u) � [0, 1] × [0, a],

(H
6
) f (t, u) > b /�� for all (t, u) � [�, 1 – �] × [b, b /��],

(H
7
) f (t, u) � 0 for all (t,u) � [0, 1] × [b, c].

Then the m-point boundary value problem (1.1) has at least three nontrivial positive
solutions u

1
, u

2
, u

3
, such that

t t
u a b u and u a with u b1 2 3 3

1 1
0 || || , min || || min .

�� � �� �� � ��
� � � � �

Proof. At first, we show that c cT P P: �  is a completely continuous operator. If

cu P ,�  then ||u|| � c. From (H
4
), we obtain

   
0 1

|| || max | max{( )( ), 0} |
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Tu Au t
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m
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Thus � �: c cT P P� . From Lemma 2.5, we have c cT P P: �  is a completely

continuous operator.

Next, we show that T has a fixed point u
1
, and u

1
 is a solution of (1.1). For ||u|| �

a, from (H
5
), we obtain
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Combining with (C

2
) in Lemma 2.1 and (H

1
), (H

2
), we conclude that T has a

fixed point u
1
, 0 < ||u

1
|| < a. Next, we show that u

1
 is a solution of (1.1), that is, u

1
 is

a fixed point of A. Suppose this is not true, then there is t
0
 � (0, 1) such that u

1
(t

0
) �

(Au
1
) (t

0
). It must be (Au

1
) (t

0
) < 0 = u

1
(t

0
). Let (t

1
, t

2
) be the maximal interval such

that t
0
 � (t

1
, t

2
), (Au

1
)(t) < 0 for all t � (t

1
, t

2
). It is easy to see that [t

1
, t

2
] � [0, 1] by

(H
1
). If t

2
 < 1, then u

1
(t) � 0 for all t � [t

1
, t

2
], and (Au

1
)(t) < 0, for all t � (t

1
, t

2
), and

(Au
1
) (t

2
) � 0. Thus (Au

1
)�(t

2
) � 0. (H

1
) and (H

2
) imply (Au

1
)�(t) = –q(t) f (t, 0) � 0 for

t � (t
1
, t

2
). So, (Au

1
)�(t) � 0, for t � [t

1
, t

2
]. We obtain t

1
 = 0. On the other hand, �(Au

1
)

(0) – �(Au
1
)�(0) = 0. If � = 0, then

(Au
1
)�(0) � (Au

1
)�(t

0
) > 0 = (Au

1
)�(0),

which is a contradiction. If � = 0, then (Au
1
)(0) � (Au

1
)(t

0
) < 0 = (Au

1
)(0), which is a

contradiction. If ������0, then

Au Au1 1( ) (0) ( )(0) 0,
�

� �
�

�

which is a contradiction. If t
1
 > 0, then u

1
(t) � 0 for all t � [t

1
, t

2
], and (Au

1
)(t) < 0,

for all t � (t
1
, t

2
) and (Au

1
) (t

1
) = 0. Thus (Au

1
)�(t

1
) � 0. (H

1
) and (H

2
) imply (Au

1
)�(t)
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= –q(t) f (t, 0) � 0 for t � (t
1
, t

2
). We obtain t

2
 = 1. On the other hand,

m
i ii

Au k Au
2

1
( )(1) ( )( ) 0,

�

�
� � ��  so there is i, 1 � i � m – 2, such that (Au

1
)(�

i
) < 0.

Let j = min {i : (Au
1
)(�

i
) < 0, 1 � i � m – 2}, then (Au

1
)(�

i 
) < 0 for j � i � m – 2. So

�
i
 � (t

1
, 1) for j � i � m – 2. As (Au

1
)(t) is concave on [t

1
, 1], we obtain

i

i

Au Au
j i m

t t
1 1

1 1

( )( ) ( )(1)
, 2,

1
�

� � � �
� � �

thus,

i
i i

t
Au Au Au j i m

t
1

1 1 1
1

( )( ) ( )(1) ( )( )(1), 2.
1
� �

� � � � � � �
�

If j = 1, then

2 2

1 1 1
1 1

( )(1) ( )( ) ( )(1) .
m m

i i i i
i i

Au k Au Au k
� �

� �

� � � �� �

So 
m

i i
i

k
2

1

1,
�

�

� ��  furthermore,

m m

i i i i
i i

k k
2 2

1 1

( ) ( ),
� �

� �

� � �� � � �� � � � �� � �

which is a contradiction with (H
3
). If 2 � j � m – 2, then

jm m

i i i i i i
i i i j

Au k Au k Au k Au
12 2

1 1 1 1
1 1

( )(1) ( )( ) ( )( ) ( )( )
�� �

� � �

� � � � � �� � �

j m

i i i i
i i j

k Au Au k
1 2

1 1
1

( )( ) ( )(1)
� �

� �

� � � �� �

j m

i i i i
i i j

Au k Au k
1 2

1 1
1

( )(1) ( )(1)
� �

� �

� � � �� �

m

i i
i

Au k
2

1
1

( )(1)
�

�

� �� .
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So  
m

i i
i

k
2

1

1,
�

�

� ��  furthermore,

m m

i i i i
i i

k k
2 2

1 1

( ) ( ),
� �

� �

� � �� � � �� � � � �� � �

which is a contradiction with (H
3
). Therefor, u

1
 is a solution of (1.1).

We now verify that (C
1
) of Lemma 2.1 is satisfied. It is easy to see {u � P

b
(b /��):

� (u) > b} � �. If u � P
b
(b / �), then b � u(s) � b / � for s � [�, 1– �]. From (H

6
), we

obtain

  
t

Au Au t
1

( ) min max{( )( ),0}
�� � ��

� �

m

i
t i

G t s q s f s u s ds ki G s q s f s u s ds t
21 1

0 01 1

1
min ( , ) ( ) ( , ( )) ( , ) ( ) ( , ( )) ( )

�

�� � �� �

� �
� � �� ��� �

�� � �

21 1

01 1

1
min ( , ) ( ) ( , ( )) ( , ) ( ) ( , ( )) ( )

m

i
t i

G t s q s f s u s ds ki G s q s f s u s ds
���

��� � �� �

� � � �
� �� � �

t

b
G t s q s ds B

1

1
1

min ( , ) ( ) ( )
��

��� � ��

� �� � �� �� �� � �  = b.

Finally, we verify that (C
3
) of Lemma 2.1 is satisfied. Suppose u � P

b
(c) with

||Tu|| > b /��. From (H
7
) and Lemma 2.3, we obtain

t
Au Tu t Tu b

1
( ) min ( )( ) || || .

�� � ��
� � � � �

By Lemma 2.1, T  has at least three fixed point. So, the m-point boundary value
problem (1.1) has at least three positive solutions u

1
, u

2
 and u

3
 such that

t
u a b u1 2

1
0 || || , min

�� � ��
� � �  and ||u

3
|| > a  with  

t
u b3

1
min .

�� � ��
�

The proof of theorem 3.1 is completed.

4. AN EXAMPLE

Example 4.1. Consider the boundary value problem

( ) ( , ) 0, 0 1,

1
(0) (0) 0, (1) 0,

4

u q t f t u t

u u u u

� � � ��
�
� � �� � � �� �� � ��

�

� (4.1)
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where q t
t

1
( ) ,�

1.3 0.3 0.1 0 1, 0 1,

3 4 0.1 , 0 1, 1 2,
( , )

2 0.1 , 0 1, 2 6,

0.1 8, 0 1, 6.

u t t u

u t t u
f t u

t t u

u t t u

� � � � � � ��
� � � � � � ��� �

� � � � ��
�� � � � � ��

(4.2)

Conclusion. Problem (4.1) has at least three nontrivial positive solutions.

Proof. Let a b c
9

, 1, 2, 6.
25

� � � � �  From (4.1), we know m = 3, � = 1, � = 1, k
1
 =

1, 1
1

.
4

� �  Clearly, (H
1
), (H

2
) and (H

3
) hold. After some simple calculation, we have

1
3 8 9 200 37024 243 81 28125

2, , , , , , , , .
4 9 25 81 28125 100 200 18512

c a b
B� � � � � � � � � � � � �

�
�

� �
Combining  with (4.2), we obtain

f t u for t u
243

( , ) ( , ) [0, 1] [0,6],
100

� � �

f t u for t u
81

( , ) ( , ) [0, 1] [0,1],
200

� � �

f t u for t u
28125 9 16 50

( , ) ( , ) , 2, ,
18512 25 25 9

� � � �� � �� � � �� � � �
f (t, u) � 0 for (t, u) � [0, 1] × [2, 6].

Thus, by an application of Theorem 3.1, we get that problem (4.1) has at least three
nontrivial positive solutions u

1
, u

2
 and u

3
 such that

t
u u u1 2 3

[9 / 25,16 / 25]
0 || || 1,2 min ,|| || 1

�
� � � �  with t

u3
[9 / 25,16 / 25]

min 2.
�

�
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