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1. INTRODUCTION

This paper concerns the oscillation of solutions to the following second order dynamic
equation

(r(t)�x�(t)��–1x�(t))� + p(t)�x�–1(t – �)�x(t – �) = 0, t � [t
0
, �), (1.1)

where ����� > 1 are positive integers; � is a positive constant such that the delay
function �(t) = t – � < t, �(t) : � � �; r, p are positive, real-valued rd-continuous
functions defined on the time scales interval [t

0
, �) and

�

�

� � ��
0

1

1
.

( )
t

t

r t
(1.2)

Recall that a solution of (1.1) is a nontrivial real-valued function x(t) such that

� � � �1 ,rd xx t C t� � , and r(t)�x�(t)��–1x�(t) � �1 ,rd xC t� �  for t
x
 � t

0
 and satisfying Eq. (1.1)

for t � t
x
.

We restrict our attention to solutions x(t) of Eq. (1.1) which exist on some half-line
[t

x
, �) and nontrivial for all large t, that is, satisfy sup{�x(t)�, t � t

1
} > 0 for any t

1
 � t

x
.

It is tacitly assumed that such solutions exist.

As is customary, the solution x(t) � C1
rd

[t
x
, �) of Eq. (1.1) is said to be eventually

positive (negative) if there exists a sufficiently large positive number t� such that the
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inequality x(t) > 0 (x(t) < 0) holds for t � t�. A solution x(t) of Eq. (1.1) is said to be
oscillatory if it is neither eventually positive nor eventually negative, otherwise it is
nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions are oscillatory.

In 1988, Hilger [1] introduced the theory of time scales in order to unify
continuous and discrete analysis. Bohner and Peterson [2] summarizes and organizes
much of time scales calculus. From then on, there has been much research activity
concerning the oscillation and nonoscillation of solutions of different dynamic
equations on time scales, we refer the reader to the papers [3-7].

When � = �, �(t) = t, Eq. (1.1) reduces to second order half-linear dynamic
equation

(r(t)(x�(t))�)� + p(t)x�(t) = 0, t � [t
0
, �), (1.3)

which has been discussed in the literature [7].

We note if � = �, then �(t) = t, �(t) = 0, f �(t) = f �(t) and (1.1) becomes the second
order differential equation

(r(t)�x�(t)��–1x�(t))� + p(t)�x�–1(�(t)) �x(�(t))� = 0, t � [t
0
, �). (1.4)

In 1997, Agarwal et al. [6] showed the oscillatory behavior of the retarded
differential equation (1.4).

If � = �, then �(t) = t + 1, �(t) = 1,

y�(t) = �y(t) = y(t + 1) – y(t),

and (1.1) becomes the second order difference equation

�(r(t)(�(�x(t)�))�–1�(x(t))) + p(t)�x(t)�–1x(t).

2. SOME PRELIMINARIES

Since we are interested in oscillatory behavior, we suppose that the time scale under
consideration is not bounded above, i.e., it is a time scale interval of the form [t

0
; �).

We define the forward and backward jump operators �, � : � � � by

�(t) = inf{s � ��s > t}, �(t) = sup{s � ��s < t}. (2.1)

In this definition we put inf � = sup � (i.e., �(t) = t if � has a maximum t) and sup
� = inf ��(i.e., �(t) = t if � has a minimum t), where � denotes the empty set. If �(t)
> t, we say that t is right-scattered, while if �(t) < t we say that t is left-scattered.
Points that are right-scattered and left-scattered at the same time are called isolated.
Also, if t < sup � and �(t) = t, then t is called right-dense, and if t > inf � and �(t) =
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t, then t is called left-dense. Points that are right-dense and left-dence at the same
time are called dence. Finally, the graininess function �(t) : � � [0, �) is defined by

�(t) := �(t) – t.

A function f : � � � is said to be rd-continuous if it is continuous at each
right-dense point and if there exist a finite left limit in all left-dense points. The
derivative (dealta) f � of f is defined by

� � � �� � � �
� �

.
f t f t

f t
t t

�
� �

�
� � (2.2)

if f is continuous at t and t is right-scattered. If t is not right-scattered then the derivative
is defined by

� � � � � �
lim ,
s t

f t f s
f t

t s
�

�

�
�

�
(2.3)

provided this limit exists. The derivative and the forward jump operator are related
by the useful formula

f � = f + �f �, where f � = f � � (2.4)

We will also make use of the following product and quotient rules for the
derivative of the product fg and the quotient f�g (where gg� � 0) of two differentiable
functions f and g

(fg)� = f �g + f �g� and .
f f g fg

g gg

� � �

�

� � �
�� �

� �
(2.5)

For a, b � � and a differentiable function f, the Cauchy integral of f � is defined
by

� � � � � �
b

a
f s s f b f a� � � �� (2.6)

The integration by parts formula reads

� � � � � � � � � � � �
b bb

aa a
f s g s s f s g s f s g s s� � �� �� � � �� �� � (2.7)

and infinite integrals are defined as

� � � �lim .
t

a at
f s s f s s

� �

��
� � �� � (2.8)
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3 MAIN RESULTS

In this section, we give some oscillation criteria for (1.1). We suppose that the time
scale under consideration is a time scale interval of the form [t

0
, �). Also, we will

use the following formula

(x�(t – �))� > x�–1(t – �)x�(t – �).

which can been obtained by using the definition of derivatives on time scales.

Lemma 3.1 [7]: If A and B are positive constants, then

A� + (� – 1)B� – �B�–1 � 0, � > 1. (3.1)

Theorem 3.1: Suppose that (1.2) holds. Furthermore, assume that there exists a
positive �-differentiable function �(t) such that

� � � �
� �

� �� �
� �

1

1limsup ,
1

t

at

r s
s p s s

s

����

�� �
��

� ���� �� � � � �
� ��� �
� �

� (3.2)

Then every solution of Eq. (1.1) is oscillatory on [t
0
, �).

Proof: Suppose that x(t) is a nonoscillatory solution of Eq.(1.1). Without loss of
generality, let x(t – �) be an eventually positive solution(x(t – �) is an eventually
negative solution can be similarly proved). In view of (1.1), we have

(r(t)�x�(t)��–1x�(t))� = –p(t)�x�–1(t – �)��x(t – �) < 0, (3.3)

for all t � t
0
, and so {r(t)�x�(t)��–1x�(t)} is an eventually decreasing function. We first

show that {r(t)�x�(t)��–1x�(t)} is eventually nonnegative. Since r(t) is a positive function,
it implies x�(t) is eventually nonnegative. Indeed, since p(t) is a positive function,
the decreasing function {r(t)�x�(t)��–1x�(t)} is either eventually positive or eventually
negative. Suppose there exists an integer t

1
 � t

0
 such that

r(t
1
)�x�(t

1
)��–1x�(t

1
) = c < 0,

then from (3.3) we have r(t)�x�(t)��–1x�(t) < r(t
1
)�x�(t

1
)��–1x�(t

1
) = c < 0 for t � t

1
, hence

� � � �

1
1 1

x t c
r t

�
� �

� �
� � �� �

� �

Using (2.6) and (1.2), we have
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� � � � � �1

1
1

1

1t

t
x t x t c s

r s

�
�

� �
� � � � ��� �� �

� �
�  as t ��� (3.4)

which contradicts the fact that x(t) > 0 for all t � t
0
. Hence {r(t)�x�(t)��–1x�(t)} is

eventually nonnegative. Therefore, we see that there is some t
0
 such that

x(t) > 0, x�(t) � 0, (r(t)�x�(t)��–1x�(t))� < 0, t � t
0
. (3.5)

Defining the function w(t) by

� �
� � � � � � � �

� � � �

1

01
, .

t r t x t x t
w t t t

x t x t

��� �

��

�
� �

� � � �

Then w(t) > 0, and using (2.5) we obtain

w�(t) =
� �

� � � �� � � �� � � �
� �

�
� �� �� �

� �

� �� �
� � �� �� � � �� �

t t
r x r x

x t x t

=
� �

� � � �� � � �� � � � � � � � � �� �
� � � �� �

��� � �� �� �� �
� � �

� �� � � � � � �� � ��
� �� � � � � � �
� �

x t t t x tt
r x r x

x t x t x t

= � � � � � � � � � �� �
� �

t w x tt
t p t w

x t

�� ��
�

� � �

� � ��
�� � �

� � � �
(3.6)

In view of (2.2), we get

(x�(t – �))� =
� �� � � �
� � � �

x t x t

t t

� �� � � � � �

� � � � � �

�
� �

� � � � � �� � � �� �
1x t

x t x t
t t

��� � �
� � � � � �

� � � � � �

= �x�–1(t – �)x�(t – �)

> x�–1(t – �)x�(t – �). (3.7)
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It follows from (3.6) and (3.7), we obtain

� � � � � � � � � � � �� �
� �

.
t w x tt

w t t p t w
t

� ��
� �

� �

� � ��
� �� � �

� � � � (3.8)

Since

� � � �� �
� �

� � � �� �
� �

� � � �� �
� �

,
r t x t r t x t r t x t

x t x t x t

�� � �� � �

� � �

� �
� � � �
� �� � � � � �
� �

we have

� �� � � �� �� �
� �� �

� � � �� �
� �

� � � �� �
� �

� � �� � �� � �

� ��

� � � � � �� �� � � � � �� �� � � � � �� � � �� � �� � � � � �� �

1 1 1

r t x t r t x t r t x t

x t x tx t

i.e.

� �� � � �� �� �
� �� �

� � � �� �
� �

� � � �
� �

1 1
1

.
r t x t r t x t r t x t

x t x tx t

� �� �� � ��

��

� � � �� �� � � �� �� � � �� � � �� � �� � � �� �
(3.9)

Substituting (3.9) in (3.8), we find that

w�(t) � � � � � � � � �� � � �� �� �
� �� �

� �

� �

1

1

r t x tt t w
t p t w

x t
r t

� ��� �
�

� �
� �

� �� �� �� ��� � � � �� � � �� � �� �

= � � � � � � � �

� � � �
� �1 ,

t t
t p t w w

r t

�
�� �

�
�� �

� �
�� � �

�
�

(3.10)

where 
1� �

� �
�

. Set
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� �
� � � �

� � � �
� � � �

1
1 1 1

1 1
,

t t t
A w B

r t r t

� ��
� ��

�
� ��� �� � ��

� �
� � � �� �� � �� �� �� � � �� �� � ��� �� �� � � �� �� �

Using inequality (3.1), we have

� � � �
� � � �

� � � � � � � �
� � � �

1
1

1
1

1 1
1

t t t t
w w

r t r t

�
�

��� ��� ���� � ��
� �� �� �� � ��

� �� �� � � �� �� � � � � � �� � � �� �� �� � � �

� �
� �� �

� �

1

1
1

r t

t

����

�� �

��
�

�� �
(3.11)

Thus, we obtain

� � � � � �
� �

� �� �
� �

1

1
1

r t
w t t p t

t

����
�

�� �

� ���� �� � � �
� ��� �
� �

(3.12)

Integrating (3.12) from t
0
 to t, we get

� � � � � � � � � �
� �

� �� �
� �0

1

0 0 1
1

t

t

r s
w t w t w t s p s s

s

����

�� �

� ���� �� � � � � � � �
� ��� �
� �

� (3.13)

which yields

� � � �
� �

� �� �
� � � �

0

1

01
1

t

t

r s
s p s s w t

s

����

�� �

� ���� �� � � �
� ��� �
� �

�

for all large t. This is contrary to (3.2). The proof is complete.

From Theorem 3.1, we can obtain different conditions for oscillation of all
solutions of (1.1) by different choices of �(t). For instance, let �(t) = t, t � t

0
. By

Theorem 3.1, we have the following results.
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Corollary 3.1: Assume that

� �
� �

� �
1

limsup ,
1

t

at

r s
sp s s

s

�

�� �
��

� ��
� � � � � �

� �� �� �
� (3.14)

Then every solution of Eq. (1.1) is oscillatory on [t
0
, �).

Let �(t) = 1, t � t
0
. Now Theorem 3.1 yields the following well-known result

(Leighton-Wintner theorem).

Corollary 3.2: If

� � ,
a

p s s
�

� � �� (3.15)

Then every solution of Eq. (1.1) is oscillatory on [t
0
, �).

Remark 3.1: From Theorem 3.1, we can give sufficient conditions for oscillations
of (1.1) on different type of time scales, for example, we can deduce that

� �0

1
t

ds
r s

�

� � ��  and � � � �
� �

� �� �
� �0

1

1limsup
1

t

tt

r s
s p s ds

s

���

�� �
��

� ����
�� � � � �

�� �� �� �
�

are sufficient conditions for oscillation of second order differential equation

(r(t)�x�(t)��–1x�(t))� + p(t)�x�–1(t – �)�x(t – �) = 0, t � [t
0
, �),

� �
0

1

i n r i

�

�
�

� �
� �� �

� �� �
� and � � � �

� �
� � � �� �

� �0

1
1

1lim sup
1

n

n i n

r i i
i p i

i

��
��

�� �
�� �

� ����� �� � � �
�� �� �� �

�

are sufficient conditions for oscillation of the second order difference equation

�(r(n)(�x(n))�) + p(n)x�(n – �) = 0, n � [n
0
, �).

� �0

1

n
i

h

r i

�

�

�

� �
� �� �

� �� �
�  and � � � �

� �
� � � �� �

� �0

1
1

1
lim sup

1

n

n
h

n n
i

h

r i i
i p i

i

��
��

�� �
��

�

� �� ��� �� � � �
�� �� �� �

�

are sufficient conditions for oscillation of the general second order difference equation

�
h
(r(n)(�

h
x(n))�) + p(n)x�(n – �) = 0, n � [n

0
, �).
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Theorem 3.2: Assume that (1.2) holds. Furthermore, let �(t) be defined in
Theorem 3.1. If

� � � � � �
� �

� �� �
� �

1

1

1
limsup ,

1

t m

m at

r s
t s s p s s

t s

����

�� �
��

� ���� �� � � � � �
� ��� �
� �

� (3.16)

for an odd positive integer m. Then every solution of Eq. (1.1) is oscillatory on
[t

0
, �).

The proof is similar to that of the proof of Theorem 3.1 by using the inequality
(3.12) and hence is omitted.

Remark 3.2: Note that when �(t) = 1, we get

� � � �1
lim ,

t m

m at
t s p s s

t��
� � � ��

Then, (3.12) can be considered as the extension of Kamenev-type oscillation
criteria for second order differential equations.

Also, from Theorem 3.2, we have the similar oscillation criteria for the equations
as mentioned.

Example 3.1: Consider the following dynamic equation

(�x�(t)�3x�(t))� + t�x4(t – �)�x(t – 2) = 0, t � [1, �), (3.17)

where � = [1, �) is a time scale (where all the points are right scattered), and � = 2.
In (3.17), � = 4, ��= 5, r(t) = 1, p(t) = t. Then, by Corollary 3.1, we have

� �
� �

� � 4
2

1 5 41 1

4 1
limsup limsup .

51

t t

t t

r s
sp s s s s

s s

�

�� �
�� ��

� � � ��
� � � � � � � � �� �

��� � � �� �
� �

Therefore (3.17) is oscillatory.
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