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A COMMON FIXED POINT THEOREM FOR WEAKLY
COMPATIBLE MAPPINGS ON NORMED VECTOR

SPACES AND ITS APPLICATIONS
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ABSTRACT: In this paper, a common fixed point theorem for two pairs of weakly
compatible mappings on a normed vector space is proved. We have relaxed the condition
of compatibility in main theorem of Pathak and Fisher [10], by weak compatibility and
removed the requirement of gauge function (�). Two applications are given. First is related
to dynamic programming and another is related to product space. By an example we have
shown that weak compatibility of a pair of mappings opens the possibility of having fixed
point(s), which other types of compatibility (except pointwise R-weakly commuting [6])
do not have.

Keywords and Phrases: Compatible mappings, compatible mappings of type (A), (B)
and (P), coincidence point, normed vector space, weakly compatible mappings, biased
mappings, weakly biased mappings.

2000 AMS Mathematics Subject Classification: 54H25, 47H10.

1. INTRODUCTION

Let A and S be two self mappings of a metric space (X, d). The pair (A, S) is said to
be compatible [3] if d(ASx

n
, SAx

n
) � 0 as n ���, whenever there exist a sequence

{x
n
} in X such that Ax

n
 � t and Sx

n
 � t as n ���, for some t � X.

It may be remarked that compatible maps were introduced as a generalization of
commuting mappings and weakly commuting mappings [13].

In 1993, Jungck, Murthy and Cho [4] defined a dierent type of compatibility
called compatible mappings of type (A). Pair (A, S) of self mappings of a metric
space (X, d) is said to be compatible of type (A) if d(ASx

n
, SSx

n
) � 0 and d(SAx

n
,

AAx
n
) � 0 as n ���, whenever there exist a sequence {x

n
} in X such that Ax

n
 � t

and Sx
n
 � t as n ���, for some t � X. By Examples 2.1 and 2.2 in [4], it follows that

the notion of compatibility and compatibility of type (A) are independent.

In 1995, Pathak and Khan [8] introduced the notion of compatible mappings of
type (B), as a generalization of compatible mappings of type (A). The pair (A, S) is
said to be compatible of type (B) if
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� � � � � �1
lim , lim , lim , ,

2n n n n n n nd SAx AAx d SAx St d St SSx� �� �� �

� � � � � �1
lim , lim , lim , ,

2n n n n n n nd ASx SSx d ASx At d At AAx� �� �� �

whenever there exist a sequence {x
n
} in X such that Ax

n
 � t and Sx

n
 � t as n ���,

for some t � X.
From the above definition it is clear that compatibility of type (A) implies

compatibility of type (B). But by Example 2.4 of Pathak and Khan [8], we observe
that the converse need not be true.

In 1995, Pathak et al. [9] introduced the notion of compatible mappings of type
(P). The pair (A, S) is said to be compatible of type (P) if d(AAx

n
, SSx

n
) � 0 as n �

�, whenever there exists a sequence {x
n
} in X such that Ax

n
 � t and Sx

n
 � t as n �

�, for some t � X.
In 1996, the notion of weak compatibility was introduced by Jungck [5]. The

pair (A, S) is said to be weakly compatible if they commute at their coincidence
point. An equivalent notion called pointwise R-weakly commuting was given by
Pant [6]. Pair (A, S) is said to be pointwise R-weakly commuting at x � X if there
exist some positive real number R such that d(ASx, SAx) ��Rd(Ax, Sx). Both notions
([5] and [6]) imply each other (see [12], p. 34).

2. DISCUSSION

The following lemma shows that weak compatibility is more general than
compatibility or other types of compatibility (except pointwise R-weakly commuting)
as defined above.

Lemma 2.1: ([3] , resp. [4], [8], [9]). Let A and S be compatible (resp. compatible
of type (A), type (B), type (P)) pair of self mappings of a metric space (X, d) if Ap =
Sp for some p � X, then ASp = SAp.

The following example shows that weak compatibility (pointwise R-weakly
commuting) need not imply compatibility or other types of compatibility defined
above.

Example 2.2: Let X = � with the usual metric d. Define A, S : � � � by Ax =
[x], the integral part of x, � x � �, and

� ��
�� � ��
� ��

1, 0

0, 0 1

1, 1.

x

Sx x

x
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Then at x = 1 we have AS1 = A1 = 1 = S1 = SA1. Thus the pair (A, S) is weakly
compatible. However, this pair of mappings is neither compatible nor compatible of

type (A), (B) or (P). For, if we define a sequence � � 1
1nx

n
� �� �� �
� �

 then we have

Ax
n
 = 0 = Sx

n
, as n � 1, so that t = 0 = At and St = –1. Further, ASx

n
 = 0, SAx

n
 = –1,

SSx
n
 = –1, AAx

n
 = 0, d(ASx

n
, SAx

n
) = 1, d(SSx

n
, AAx

n
) = 1, d(ASx

n
, SSx

n
) = 1 = d(SAx

n
,

AAx
n
) � 0 and

� � � � � �,
1

, 1 , 0,
2n n n nStd SAx AAx d SAx d St SSx� �� � � �� �

� � � � � �,
1

, 1 , 0,
2n n n nStd ASx SSx d ASx d At AAx� �� � � �� �

as n ���. Hence we conclude that weak compatibility need not imply other types of
compatibility (except pointwise R-weakly commuting). However by observation
x = 1 is a common fixed point of the pair (A, S). Therefore weak compatibility of
pair of mappings opens the possibility of having fixed point(s), which other types of
compatibility need not have. Thus weak compatibility is a screen (net) for a pair of
mappings having fixed point.

The interested reader may find another example of mappings which are weakly
compatible (pointwise R-weakly commuting) but not compatible of type (A)[11],
type (B)[12] or type (P)[12] is given in Pant [7].

In the light of above discussion we intend to remove the condition of compatibility
of pairs (A, S) and (B, T) and put weak compatibility in the main theorem of Pathak
and Fisher [10] ( Theorem A as stated below). We also remove the gauge function
(�) without taking extra condition in the main theorem of Pathak and Fisher [10]. In
fact, they proved the following theorem.

Theorem A [10]: Let (A, S) and (B, T) be two pairs of compatible mappings of
a normed vector space X into itself. Let C be a closed, convex subset of X such that

(1 – k)A(C) + kS(C) � A(C),

(1 – k�)B(C) + k�T(C) � B(C),

where 0 < k, k� < 1 and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p p

a Ax By a Sx Ax Ty By
Sx Ty

Sx By Ty Ax

� �� � � � �� �� � �� �� �� �
� �
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for all x, y � C for which max{��Sx – By��, ��Ty – Ax��} � 0, where 0 < a < 1, p > 0 and
��is a function which is upper semi-continuous from the right of �+ into itself such
that �(t) < t for each t > 0. If for some x

0
 � C, the sequence {x

n
} in X defined

inductively for n = 0, 1, 2... by

Ax
2n+1

= (1 – k)Ax
2n

 + kSx
2n

,

Bx
2n+2

= (1 – k�)Bx
2n+1

 + k�Tx
2n+1

,

converges to a point z � C, and if A and B are continuous at z, then A, B, S and T have
a unique common fixed point Tz in C. Further, if A and B are continuous at Tz, then
S and T are continuous at Tz.

3. MAIN RESULTS

Before presenting our main result we prove the following Lemma.

Lemma 3.1: Let A, B, S, T : X � X be four mappings of a normed vector space
X and let C be a nonempty closed, convex subset of X satisfying:

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a Ax By a Sx Ax Ty By
Sx Ty

Sx By Ty Ax

� �� � � � �� �� � � �� �� �
� �

for all x, y � C for which max{��Sx – By��, ��Ty – Ax��} � 0 where 0 < a < 1 and p > 0.
If w is a common fixed point of A, B, S and T then it is unique. Moreover, if A(B) is
continuous at w then S(T) is continuous at w.

Proof: Suppose {y
n
} is an arbitrary sequence in C with the limit w where w is a

common fixed point of A, B, S and T. Let the sequence {Sy
n
} � u, for some u � Sw

= w as n ���. Then using above inequality, by putting x = y
n
 and y = w, we have

��Sy
n
 – w��p = ��Sy

n
 – Tw��p

� � � �
� �

2 2 2
1 max ,

max ,

p p p

n n n

p p

n n

a Ay Bw a Sy Ay Tw Bw

Sy Bw Tw Ay

� � � � �
�

� �

Letting n ���, this yields

lim
n
��Sy

n
 – w��p = ��u – w��p ��(1 – a)��u – w��p,

a contradiction. This shows that S is continuous at w and w is unique.
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Similarly, the continuity of B at w implies the continuity of T at w. Hence if A(B)
is continuous at w then S(T) is continuous at w. This completes the proof.

We now state and prove our main result.

Theorem 3.2: Let (A, S) and (B, T) be two pairs of weakly compatible mappings
of a normed vector space X into itself. Let C be a closed, convex subset of X such
that

(1 – k)A(C) + kS(C) � A(C), (1)

(1 – k�)B(C) + k�T(C) � B(C), (2)

where 0 < k, k� < 1 and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a Ax By a Sx Ax Ty By
Sx Ty

Sx By Ty Ax

� � � � �
� �

� � (3)

for all x, y � C for which max{��Sx – By��, ��Ty – Ax��} � 0, where 0 < a < 1 and p > 0.
If for some x

0
 � C, the sequence {x

n
} in X defined inductively for n = 0, 1, 2... by

Ax
2n+1

 = (1 – k)Ax
2n

 + kSx
2n

, (4)

Bx
2n+2

 = (1 – k�)Bx
2n+1

 + k�Tx
2n+1

, (5)

converges to a point z � C, and if A and B are continuous at z, then A, B, S and T have
a unique common fixed point Tz in C. Further, if A(B) is continuous at Tz then S(T)
is continuous at Tz.

Proof: First we prove that z is a coincidence point of A, B, S and T. From (4) and
continuity of A at z, we have

lim
n
Ax

n
 = lim

n
Sx

2n
 = Az.

Similarly, from (5) and continuity of B at z we have

lim
n
Bx

n
 = lim

n
Tx

2n+1
 = Bz.

Now suppose that Az � Bz, so that for large enough n, Sx
2n

 � Bx
2n+1

. Then using
(3) we have

��Sy
2n

 – Tx
2n+1

��p

� � � �
� �

2 2 2

2 2 1 2 2 2 1 2 1

2 2 1 2 1 2

1 max ,
.

max ,

p p p

n n n n n n

p p

n n n n

a Ax By a Sx Ax Tx Bx

Sx Bx Tx Ax

� � �

� �

� � � � �
�

� �
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Letting n tend to infinity it follows that

��Az – Bz��p ��a��Az – Bz��p.

Thus Az = Bz. Now by putting x = x
2n

 and y = z in (3) and letting n ��� we obtain
Tz = Az. Similarly, we can obtain Tz = Bz. Thus z is a coincidence point of A, B, S
and T, i.e.

Az = Bz = Sz = Tz (6)

On the other hand, it follows from weak compatibility of the pairs (A, S) and (B,
T) and the above equation that Tz is another coincidence point of A, B, S and T.
Hence we have

S2z = S(Tz) = SAz = ASz = A(Tz), (7)

T2z = TSz = TBz = BTz. (8)

We claim that S2z = Tz. If not, then from (3) we have

� � � �
� �

22 22

2

2

1 max ,

max ,

pp p

p

p p

a ASz Bz a S z ASz Tz Bz
S x Tz

S z Bz Tz ASz

� � � � �
� �

� �

or, by (6) and (7) we have

��S2z – Tz��p ��a��S2z – Tz��p,

a contradiction, since 0 < a < 1. Thus S2z = Tz. Similarly T2z = Sz. Therefore Tz is a
common fixed point of A, B, S and T. Uniqueness of the common fixed point and
continuity of S(T) at Tz = w follows from Lemma 3.1. This completes the proof.

The following example shows the validity of Theorem 3.2.

Example 3.3: Let X = � with the Euclidean norm ����� and C = [0, 1] be a closed,
convex subset of X. Define the mappings A, B, S and T of X into itself by

Ax = � �1
3 , ,

4
x x X� � �

Sx = 1 , ,
2
x

x X
� �� � �� �� �

 where [x] denotes the integral part of x,

Bx = � �1
1 , ,

2
x x X� � �
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Tx = 1, x � [–1, 2] and Tx = 0, otherwise.

Then, for some fixed 0 < k, k� < 1, we have

(i) For some fixed 0 < k, k� < 1,

� � � � � � � �3 1
(1 ) ( ) ( ) 1 ,1 1 3 ,1 ,

4 4
k A C kS C k k k A C� � � �� � � � � � � �� � � �� � � �

� � � � � � � �1 1
(1 ) ( ) ( ) 1 ,1 1 1 ,1 .

2 2
k B C k T C k k k B C� � � �� � � � �� � � � � � � �� � � �� � � �

(ii) The point x = 1 is a weak compatible point in C. The point x = –3(�C) is a
coincidence point of the pair (A, S) where they do not commute.

(iii) Since 
1

1
2

Sx By y� � �  and 
1

1
4

Ty Ax x� � � , for all x, y � C, so that

max{��Sx – By��, ��Ty – Ax��} � 0, for all x, y � C (except at x = y = 1, where
��Sx – Ty��p = 0). We also have from condition (3) that for all x, y � C, where
��Sx – Ty��p = 0. Hence condition (3) satisfies.

(iv) Now for an arbitrary x
0
 � C, we will show that the sequence {x

n
}, converges

to the point z = 1 in C.

Since Ax
1
 = (1 – k)Ax

0
 + kSx

0
 = 0

1
(1 )(3 )

4
k x k� � � . � �0

1
1 3 ,1

4
x C

� �� � �� �� �
. we

have � � � �� �1 1 0

1 1
3 1 3

4 4
Ax x k x k� � � � � � . This gives x

1
 = (1 – k)x

0
 + k.1 � [x

0
, 1]

= I
0
 (say).

Similarly for this value of x
1
 we have

� � � �� � � �2 1 1 1 1

1 1
1 1 1 .1 1 ,1 ,

2 2
Bx k Bx k Tx k x k x� �� � � �� � � � � � � � �� �� �

therefore � � � �� �2 2 1

1 1
1 1 1

2 2
Bx x k x k� �� � � � � � . This gives x

2
 = (1 – k�)x

1
 + k�.1 �

[x
1
, 1] = I

1
.

Similarly, for this value of x
2
 we calculate
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x
3

= (1 – k)x
2
 + k.1 � [x

2
, 1] = I

2

x
4

= (1 – k�)x
3
 + k�.1 � [x

3
, 1] = I

3

Proceeding in this manner we have, for all n = 0, 1, 2...

x
2n+1

= (1 – k)x
2n

 + k.1 � [x
2n

, 1] = I
2n

. (9)

x
2n+2

= (1 – k�)x
2n+1

 + k�.1 � [x
2n+1

, 1] = I
2n+1

. (10)

That is,

x
2n+1

 – x
2n

 = k(1 – x
2n

), (11)

x
2n+2

 – x
2n+1

 = k�(1 – x
2n+1

), (12)

where x
0
 ��x

1
 � x

2
 ��... � 1.

Let us denote the length of the bounded interval I
2n+2

 by �I
2n+2

�, then from (10) we
have,

�I
2n+2

� = ��1 – x
2n+2

�� = (1 – k�) ��1 – x
2n+1

�� �����1 – x
2n+1

�� = �I
2n+1

�,

where = max{1 – k, 1 – k�} < 1. Similarly for the length of the interval I
2n+1

, we have
from (9),

�I
2n+1

� = ��1 – x
2n+1

�� = (1 – k) ��1 – x
2n
��������1 – x

2n
�� = �I

2n
�.

Hence we obtain a sequence of numbers � �
1

n

n n
I

��

�
 such that

�I
2n+2

������I
2n+1

�����2�I
2I
��� ... ���2n+2�I

0
�

where 0 < ��< 1. It follows that �I
n
��� 0 as n ���.

Thus a sequence of nested closed intervals of diminishing diameters � �
1

n

n n
I

��

�
 is

obtained such that I
0
 ��I

1
 ��I

2
 ��..., so by Cantor’s intersection theorem 

1

n

nn
I

��

�
� ��

and 
1

1
n

nn
I

��

�
��  for all n � �. Hence by the Bolzano Weierstrass theorem, z = 1 is a

cluster point of infinite closed bounded subset C of �. The uniqueness of cluster
point follows from (11) and (12). Hence {x

n
} converges to z = 1.

(v) A is continuous in [0, 1], where S is also continuous. Further S is discontinuous
at x = �2, �4 ... where A is continuous, but these points are not in C. Similarly,
B is continuous in [0, 1], where T is also continuous. Further, x = –1 and x =
2 are two points of discontinuity of T, where B is continuous but these points
are not in C.
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Hence Tz = 1 is the unique common fixed point of A, B, S and T and A(B)
and S(T) are continuous at Tz = 1. This validates Theorem 3.2.

In case when S = T and A = B, we have the following corollary.

Corollary 3.4: Let (A, S) be a pair of weakly compatible mappings of a normed
vector space X. Let C be a closed convex subset of X such that

(1 – k)A(C) + kS(C) � A(C), (13)

where 0 < k < 1, and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a Ax Ay a Sx Ax Sy Ay
Sx Ty

Sx Ay Sy Ax

� � � � �
� �

� � (14)

for all x, y � C for which max{��Sx – Ay��, ��Sy – Ax��} � 0, where 0 < a < 1 and p > 0.
If for some x

0
 � C, the sequence {x

n
} in X defined inductively for n = 0, 1, 2 ... by

Ax
n+1

 = (1 – k)Ax
n
 + kSx

n
, (15)

converges to a point z � C, and if A is continuous at z, then A and S have a unique
common fixed point Sz in C. Further, if A is continuous at Sz then S is continuous
at Sz.

In case when A = B = I
X
, the identity mapping on X, we have the following

corollary.

Corollary 3.5: Let S and T be two self mappings of a normed vector space X.
Let C be a closed convex subset of X such that

(1 – k)C + kS(C) � C, (16)

(1 – k�)C + k�T(C) � C, (17)

where 0 < k, k� < 1, and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a x y a Sx x Ty y
Sx Ty

Sx y Ty Ax

� � � � �
� �

� � (18)

for all x, y � C for which max{��Sx – y��, ��Ty – x��} � 0, where 0 < a < 1 and p > 0. If
for some x

0
 � C, the sequence {x

n
} in X defined inductively for n = 0, 1, 2... by

x
2n+1

= (1 – k)x
2n

 + kSx
2n

, (19)
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x
2n+2

= (1 – k�)x
2n+1

 + k�Tx
2n+1

, (20)

converges to a point z � C, then S and T have a unique common fixed point Tz in C.
Further, S and T are continuous at Tz.

In case when A = B = I
X
 and S = T, we have the following corollary.

Corollary 3.6: Let T be a self mapping of a normed vector space X. Let C be a
closed convex subset of X such that

(1 – k)C + kT(C) ��C, (21)

where 0 < k < 1 and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a x y a Tx x Ty y
Tx Ty

Tx y Ty x

� � � � �
� �

� � (22)

for all x, y � C for which max{��Tx – y��, ��Ty – x��} � 0, where 0 < a < 1 and p > 0. If
for some x

0
 � C, the sequence {x

n
} in X defined inductively for n = 0, 1, 2... by

x
n+1

 = (1 – k)x
n
 + kTx

n
, (23)

converges to a point z � C, then T have a unique common fixed point Tz in C.
Further, T is continuous at Tz.

In case when A = B, we have the following corollary.

Corollary 3.7: Let A, S and T be three self mappings of a normed vector space X
and let C be a closed convex subset of X such that

(1 – k)A(C) + kS(C) � A(C), (24)

(1 – k�)A(C) + k�T(C) ��A(C), (25)

where 0 < k, k� < 1, and suppose that

� � � �
� �

2 2 2
1 max ,

max ,

p p p

p

p p

a Ax Ay a Sx Ax Ty Ay
Sx Ty

Sx y Ty Ax

� � � � �
� �

� � (26)

for all x, y � C for which max{��Sx – Ay��, ��Ty – Ax��} � 0, where 0 < a < 1 and p > 0.
If for some x

0
 � C, the sequence {x

n
} in X defined inductively for n = 0, 1, 2... by

Ax
2n+1

= (1 – k)Ax
2n

 + kSx
2n

, (27)
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Ax
2n+2

= (1 – k�)Ax
2n+1

 + k�Tx
2n+1

, (28)

converges to a point z � C, and if A is continuous at z and A, S and T commutes
mutually at the coincidence point z, then A, S and T have a unique common fixed
point Tz in C. Further, if A is continuous at Tz then S and T are continuous at Tz.

Remark 3.8: The conclusion of Theorem 3.2 remains valid if we take pairs
(A, S) and (B, T) to be pointwise R-weakly commuting instead of weakly compatible.

Remark 3.9: The condition of weak compatibility of the pair of mappings
(A, S) in Corollary 3.3 is necessary as shown in the following example.

Example 3.10: Let X = [0, 1) with the Euclidean norm ����� and C = [0, 1]. Define
A, S : X � X by

Ax = 
� �

� �
1 , 0,1

2 , 1, , and

x x

x x

� � ��
�

� ���

Sx = 1, �x � X.

Here we observe that ��Sx – Sy��p = 0, for all x, y � C, where p > 0 and 0 < a < 1.
Also max{��Sx – Ay��p, ��Sy – Ax��p} = max{��y��p, ��x��p} � 0. For some 0 < k < 1 we have
(1 – k)A(C) + kS(C) = [1, 2 – k] ��[1, 2] = A(C). Further, we see that the pair (A, S)
is not weakly compatible as they do not commute at their coincidence point x = 0.
On the other hand A and S have no common fixed point in C. Thus the condition of
weak compatibility of the pair mappings (A, S) is necessary. Similar conclusion
arises for the pair (B, T).

4. APPLICATIONS

We now apply our main result in Section 3 to some problems in dynamic
programming and product spaces.

(I) An Application to Dynamic Programming

We will use our main theorem to study the solution of functional equations arising
in dynamic programming. A dynamic programming problem is a decision-making
problem in n variables in which the problem being subdivided into n sub-problems
(stages), each being a decision-making problem in one variable only. The decision
is the “goodness” of a selected alternatives depend on satisfying optimal policy of
the problem. The state of the system at any stage is regarded as the information that
links the stages together, such that the optimal decisions for the remaining stages
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can be made. The state allows us to consider each stage separately and guarantees
that the solution is feasible for all the stages.

Throughout this section we assume that X and Y are Banach spaces, S � X is a
state space, D ��Y a decision space and � = (–�, +�). We denote by B(S) the set of
all bounded real-valued functions defined on S.

The basic form of the functional equations of dynamic programming as suggested
by Bellman and Lee [1] is

f(x) = Opt
y
H(x, y, f(T(x, y))), (29)

where x is a state vector, y is a decision vector, T represents the transformation of the
process, f(x) represents the optimal return function and “Opt” denotes ‘max’ or ‘min’
of the problem.

In this section, we shall study the existence and uniqueness of a common solution
of the following functional equations:

f(x) = sup
y�D

H
1
(x, y, f(T(x, y))), x � S (30)

g(x) = sup
y�D

H
2
(x, y, g(T(x, y))), x � S (31)

p(x) = sup
y�D

F
1
(x, y, p(T(x, y))), x � S (32)

q(x) = sup
y�D

F
2
(x, y, q(T(x, y))), x � S (33)

where T : S × D � S and H
i
, F

i
 : S × D × � � �, i = 1, 2 which in turn respectively

given by equations (39) and (40) in the following theorem.

Theorem 4.1: Suppose that the following conditions are satisfied:

(i) H
i
 and F

i
 are bounded, i = 1, 2.

(ii) For any positive real number p such that 0 < p ��1,

�H
1
(x, y, h(t)) – H

2
(x, y, k(t))�p ��M–1(a�T

1
h(t) – T

2
k(t)�2p

+ (1 – a)max{�A
1
h(t) – T

1
h(t)�2p, �A

2
k(t) – T

2
k(t)�2p}) (34)

where

M = max{sup
y�D
�A

1
h(t) – T

2
k(t)�p, sup

y�D
�A

2
k(t) – T

1
h(t)�p} � 0, (35)

for all (x, y) � S × D, where t � S, h(t), k(t) � B(S), 0 < a < 1, A
i
 and T

i
 : S × D × �

� �, i = 1, 2.

(iii) For a given sequence {k
n
} ��B(S) and k � S with

lim
n��sup

x�S
�k

n
(x) – k(x)� = 0 � lim

n��sup
x�S
�T

i
k

n
(x) – T

i
k(x)� = 0, (36)
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(iv) For any h � B(S) there exist k
1
, k

2
 � B(S) such that for all x � S,

(1 – �
i
)T

i
h(x) + �

i
A

i
h(x) = T

i
k

i
(x) (37)

where 0 < �i < 1, i = 1, 2.

(v) For any h � B(S) with A
i
h = T

i
h, i = 1, 2 we have

T
i
A

i
h = A

i
T

i
h. (38)

Then the system of functional equations

A
i
h(x) = sup

y�D
H

i
(x, y, h(T(x, y))), x � S (39)

T
i
h(x) = sup

y�D
F

i
(x, y, k(T(x, y))), x � S (40)

has a unique solution in B(I)

Proof: Let us define a norm ����� in B(S) for any h, k � B(S) by

��h – k�� = sup{�h(x) – k(x)� : x � S} (41)

then (B(S), �����) is a normed linear space.

From condition (iii) T
i
 is continuous, by (iv) equations (1) and (2) follows and

by (v) weak compatibility of T
i
 and A

i
, (i = 1, 2) satisfies. Hence A

i 
and T

i
 are self

mappings of B(S) with the norm �����.

Let h
1
, h

2
 be any two points of B(S), let x � S and ��be any positive number, there

exist y
1
 and y

2
 in D such that

A
i
h

i
(x) < H

i
(x, y

i
, h

i
(x

i
)) + �, (i = 1, 2). (42)

where x
i
 = T(x, y

i
).

Also we have

A
1
h

1
(x) ��H

1
(x, y

2
, h

1
(x

2
)) (43)

A
2
h

2
(x) ��H

2
(x, y

1
, h

2
(x

1
)) (44)

From (42) for i = 1, (44) and (34) we have

A
1
h

1
(x) – A

2
h

2
(x) < H

1
(x, y

1
, h

1
(x

1
)) – H

2
(x, y

1
, h

2
(x

1
)) + �

= � �� � � �� �� �
1

1 1 1 1 2 1 2 1, , , ,
p p

H x y h x H x y h x� �� � �� �� �

� � �� � � �� �� �
1

1 1 1 1 2 1 2 1, , , ,
p ppH x y h x H x y h x� �� ��� �� �
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� � � � �� 21
1 1 2 2 11

p
M a T h x T h x� �

� � � � � � � � � �� � �
1

2 2

1 1 1 1 1 1 2 2 1 2 2 11 max ,
p p ppa A h x T h x A h x T h x� � � � � �

� �� 21
1 1 2 2

p
M a T h T h� �

� � � � �
1

2 2

1 1 1 1 2 2 2 21 max ,
p p ppa A h T h A h T h� � � � �� (45)

Similarly from (42) for i = 2, (43) and (34) we have

A
1
h

1
(x) – A

2
h

2
(x) � �H

1
(x, y

2
, h

1
(x

2
)) – H

2
(x, y

2
, h

2
(x

2
))� – �

� �� 21
1 1 2 2

p
M a T h T h�� �

� � � � � �
1

2 2

1 1 1 1 2 2 2 21 max ,
p p ppa A h T h A h T h� � � � �� (46)

Hence from (45) and (46) we have

�A
1
h

1
(x) – A

2
h

2
(x)� � {M–1(a��T

1
h

1
 – T

2
 h

2
��2p

� � � � �
1

2 2

1 1 1 1 2 2 2 21 max ,
p p ppa A h T h A h T h� � � � �� (47)

Since (47) is true for any x � S and is any positive number, by taking supremum
over all x � S, ��� 0 and then taking p power’s on both sides we have

��A
1
h

1
 – A

2
h

2
��p

� � � �
� �

2 2 2

2 1 2 2 1 1 2 2 2 2 2 2

2 1 2 2 2 2 1 1

1 max ,
.

max ,

p p p

p p

a T h T h a A h T h A h T h

A h T h A h T h

� � � � �
�

� � (48)

Therefore by Theorem 1, the mappings A
1
, A

2
, T

1
 and T

2
 have a unique common

fixed point h* � B(S), i.e. h*(x) is a unique solution of functional equations (39)-(40).
This completes the proof.
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(II) An Application to Product Space

Before giving an application in product space, we need to define the projection
mapping:

The mappings �
x
 : X × Y � X such that �

x
((x, y)) = x, �(x, y) � X × Y and �

y
 : X

× Y � Y such that �
y
((x, y)) = y, �(x, y) � X × Y are called projections of X × Y on X

and Y, respectively.

Now we establish the following result.

Theorem 4.2: Let C be a closed, convex subset of a normed vector space X. Let
A, S and T be three mappings of X × X into X such that

(1 – k)A(C × C) + kS(C × C) ��A(C × C), (49)

(1 – k�)A(C × C) + k�T(C × C) ��A(C × C), (50)

A��= A((x, y)) = x (51)

for all x, y � C, where 0 < k, k� < 1 and suppose that for ��= (x, y), = (u, v) the
condition:

��S� – T��p ��b��y – v��p +

 
� � � �
� �

2 2 2
1 max ,

.
max ,

p p p

p p

a A A a S A T A

S A T A

� � � � � �� � �� �

� � � �� � (52)

for all x, y, u, v � C, for which max{��S��– A���, ��T – A���} � 0, where 0 < a < 1,
p > 0 and 0 < b < 1 – a satisfies.

If for each fixed y � C and some x
0
(y) � C, the sequence {x

n
(y)} in C defined by:

x
2n+1

(y) = (1 – k)A(x
2n

(y), y) + kS(x
2n

(y), y) (53)

x
2n+2

(y) = (1 – k�)A(x
2n+1

(y), y) + k�T(x
2n+1

(y), y) (54)

converges to a point z � C, then there exists a unique point w � C such that

A(w, w) = w = S(w, w) = T(w, w). (55)

Proof: Put ��= (x, y) and ��= (u, y) then from (29) and (30) we have

��S(x, y) – T(u, y)��p

� � � � � �� �
� � � �� �

2 22
1 max , , ,

.
max , , ,

p pp

p p

a x u a S x y x T u y u

S x y u T u y x

� � � � �
�

� � (56)
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Therefore as in Corollary 4, for each y � C, there exists a unique z(y) � C such
that

S(z(y), y) = z(y) = T(z(y), y) = A(z(y), y) (57)

Now for any y, y� ��C we obtain from (29) and (30),

��S(z(y), y) – T(z(y�), y�)��p ��b��y – y���p +

� � � � � � � �� � � � � �� � � �� �
� �� � � � � �� � � �� �

2 22
1 max , , ,

.
max , , ,

p pp

p p

a z y z y a S z y y z y T z y y z y

S z y y z y T z y y z y

� � � �� � � � �
�

� � � �� �
(58)

Using (35), this yields

� � � �
1

.
1

pb
x y x y y y

a
� �� �� � �� �

�� �
(59)

From the Banach contraction principle, the mapping z : C � C has a unique
fixed point w � C, i.e. z(w) = w. Thus we have from (35)

w = z(w) = A(w, w) = S(w, w) = T(w, w).

Uniqueness of w � C satisfying above relation for A, S and T is easy to establish.
This completes the proof.

5. SOME REMARKS

Recently, Shahzad and Sahar [14] establihed some common fixed point theorems
for biased mappings. Ciri and Ume [2] obtained some common fixed points via
weakly biased Gregus� type mappings. We hope that the results of our paper can be
extended to obtain a common fixed point theorem for a quadruple of weakly biased
mappings.
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