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SOME EXTENSIONS OF THE BROUWER-PETRYSHYN
FIXED POINT THEOREM

Man Kam Kwong*

ABSTRACT: Petryshyn’s extension of Brouwer’s fixed point theorem states that a
continuous mapping T : B � Rn, of the n-dimensional closed unit ball to Rn has a fixed
point if every point on the sphere S satisfies the Leray-Schauder condition, namely that
Tx � �x for some � > 1. The infinite dimensional version, extending Schauder’s theorem
for compact mappings in a Banach space, is also true. In this paper, we show that Petryshyn’s
theorem remains true under more general boundary conditions similar to that of
Leray-Schauder’s. Our second result extends the above theorem to any bounded closed
subset that contains the origin in its interior. This result covers, in particular, domains that
are not simply connected. Our third result, valid only for finite dimensional spaces,
complements Petryshyn’s Theorem: If the Brouwer degree at the origin of the restriction
of T : B � Rn on the sphere is non-zero, then T has a fixed point if for all x � S, Tx � �x for
some 0 < � < 1.

1. INTRODUCTION

The celebrated Brouwer fixed point Theorem (1911) asserts that every continuous
mapping of the n-dimensional closed unit ball into itself, T : B � B, must have a
fixed point.

See Stuckless [9] for a recent survey of different proofs and applications of this
important result.

Rothe (1939) observed that it suffices to require that the image of the unit sphere
S (instead of the entire ball) is inside B. More precisely, if T : B � Rn is continuous
and T(S) � B, then T has a fixed point.

If some or all of T(S) lies outside B, then in general there may not be a fixed
point. It is interesting to ask whether, in this situation, additional conditions can be
imposed on T(S) to guarantee a fixed point. This problem has been studied by various
authors, including Krasnoselskii, Petryshyn, and Amman (see Istratescu [4]). To
date the best result is due to Petryshyn (1971) [8]:
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If every point x � S satisfies the Leray-Schauder condition

Tx � �x, for some � > 1, (1.1)

then T has a fixed point.

For applications to differential equations (see for example Amann [1], Cronin
[2], and Guo and Lakshmikantham [3]), infinite dimensional versions of Brouwer’s
theorem and their extensions are needed. For this reason, Petryshyn’s theorem is
usually formulated for extensions of Brouwer’s theorem to infinite dimensional
spaces. In such cases the requirement of continuity on T alone is not sufficient. For
instance, in the classical Schauder (1930) extension, T is required to be a continuous
compact mapping (also called completely continuous) in a Banach space, namely, T
maps bounded sets into pre-compact sets. Other concepts generalizing compact
mappings include condensing map (see, for example, Jiménez-Melado and Morales
[5]), k-set-contractions (Petryshyn [8]), and P-compactness (Petryshyn [7]).

To add some glamor to our terminology, let us call a point x � Rn T-LS-radiant (with
respect to the origin O) if it violates Leray-Schauder’s condition (1.1), namely, if

Tx = �x, for some � > 1. (1.2)

Geometrically, this means that T moves the point x to a point Tx along the path
of a light ray radiating out from the origin O. We call a point T-LS-retracting (with
respect to O) if it satisfies the dual condition

Tx = �x, for some 0 < � < 1. (1.3)

Petryshyn’s theorem can thus be recast as: If all points on S are non-T-LS-radiant,
then T has a fixed point.

Note that we can define T-LS-radiance with respect to a point � other than the
origin:

Tx – � = �(x – �), for some � > 1. (1.4)

Petryshyn’s theorem remains true when the condition of non-T-LS-radiance with
respect to the original is replaced by non-T-LS-radiance with respect to any point in
the interior of the ball B. In Section 2, we will give examples of more general types
of T-radiance. All results in this paper remain true when T-radiance is interpreted in
the general sense.

Known proofs of Petryshyn’s theorem usually involve degree theory and start
from first principle. In Section 2 we show how Petryshyn’s theorem follows easily
from Brouwer’s theorem.
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Several examples are given in Section 2, and we discuss a connection between
Petryshyn’s theorem and the contractive form of the well known Krasnoselskii fixed
point theorem for cone mappings in a Banach space (Krasnoselskii [6]).

In Section 3, we show that in the classical cases, Petryshyn’s result is still true if
the domain of T is any bounded closed set containing the origin in its interior. This,
in particular, covers domains that have bubbles in it.

In Section 4, we confine ourselves to finite dimensional spaces and consider the
situation “dual” to Rothe’s condition. What happens if T(S) lies entirely outside B
and Leray-Schauder’s condition is not satisfied? In general, T does not have a fixed
point. For instance, when T translates the unit ball B by a distance greater than 1. It
turns out that we can salvage the fixed point property of T if we add an additional
assumption that the Brouwer degree at the origin of T(S) is non-zero. We will show
that this simple result also has a Petryshyn-type extension that can be used to handle
cases in which part of T(S) is inside B. More precisely, the above assumption on the
degree at the origin plus the assumption that all points on S are non-T-retracting
imply that T has a fixed point.

2. NON-RADIANT MAPPINGS

Let X denote our underlying space of points. It can be the finite dimensional Rn or a
general Banach space.

Let T : X � X be a continuous nonlinear mapping that belongs to any class of
mappings that has the Brouwer fixed point property, in the sense that if T maps a
ball B

a
 = {�x��� a} into itself, then it has a fixed point. We require the class to be

topologically invariant. We leave out the exact requirements on the class of such
mappings. It should be clear from the proof how that can be formulated in each
specific case.

In the classical case (Brouwer’s theorem) of finite dimensional spaces, T is only
required to be continuous. In the classical case of infinite dimensional spaces
(Schauder’s theorem), T is required to be completely continuous.

Brouwer’s fixed point theorem is a topological property of the domain of the
mapping T. Let G be a subset of X that is topologically equivalent to the unit ball B.
Then T : G � G also has a fixed point. In particular, we can apply Brouwer’s theorem
to a simplex, a cube, or more generally to a bounded convex set. In the rest of this
Section, we assume that G is a bounded closed convex set, possibly containing the
origin in its interior.
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Theorem 1: (Petryshyn) Let X, G, and T : G � X be as described above. If all
points in �G are non-T-LS-radiant (with respect to an interior point of G), then T has
a fixed point in G.

Proof: Let us first establish the result when G contains the origin in its interior
and the center of radiance is chosen to be the origin. Since T(G) is bounded, we
can choose the number a large enough so that G � T(G) � B

a
. We extend T to be

defined on B
a
:

� �
� �
� �

if

if \ .a

T x x G
T x

T x x B G

� ��� �
���

(2.1)

Here x  is the point where the line segment joining x and the origin intersects
�G. In the classical Brouwer and Schauder cases the extended mapping obviously
preserves the Brouwer fixed point property. In the general case, this assertion should
be included as one of the hypotheses of the theorem.

We conclude that the extended mapping T has a fixed point � � �* *T x x . This

point cannot be outside G, for otherwise * *x x� � , for some � > 1 and

� � � �* * * *,T x T x x x� � � � (2.2)

contradicting (1.1). Therefore x* � G and is a fixed point of the original mapping T.

The above arguments rely on the simple observation that we can continuously
collapse the set B

a
\G, radially towards the origin, onto the boundary �G of G. But

this is not the only way. We can, for example, collapse the set radially towards any
point in the interior of G and the same proof works for the general case.

Let us return to the classical Petryshyn extension for Brouwer and Schauder’s
theorems. It is easy to construct examples of mappings such that some points on S
are T-LS-radiant with respect to the origin but none are T-LS-radiant with respect to
a point different from the origin, and vice versa. The use of a general center of
radiation is thus warranted.

We reiterate the fact that a crucial argument in the proof of Theorem 1 is the
ability to collapse B

a
\G continuously onto �G. There are other ways of collapsing

besides radially towards a given point. For instance, we can contain G � T(G) inside
a large enough cube and collapse it in directions parallel to the axes. Let us use the
two-dimensional case to illustrate how this can be done. Take G to be the square
with the vertices A(–1, 1), B(1, 1), C(1, –1), and D(–1, –1). Any point E = (a, b)
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outside the square can be collapsed to a point on the boundary of the square according
to the following rules (which are visualized geometrically in Fig. 1):

A point above the edge AB is moved vertically downwards until it hits AB. A
point to the right of BC is moved horizontally leftwards until it hits the line and so
on. All points in one of the four corner regions are mapped to the respective corner.

More precisely,

If �a� ��1, and �b� > 1, the point is mapped to (a, sign(b)).

If �a� > 1, and �b� � 1, the point is mapped to (sign(a), b).

If �a� > 1, and �b� > 1, the point is mapped to (sign(a), sign(b)).

In fact, the inner region (i.e. the square ABCD in the above Fig. 1) need not be a
square. Fig. 2 illustrates how points exterior to a circle can be collapsed onto the
boundary of the circle in the above “square” manner. Note that different choices of
the positions of the “corner” points A, B, C, and D correspond to different ways of
collapsing onto the circle.

The square-collapsing algorithm can be described in a slightly different way.
Let � > 1 be any given real number. We define the mapping P� : R

2 � R2 as follows.
Let E = (a, b) � R2. If �a� ���b�, then we define

� �
� �

� �� �
, if

, sign if .

a b a b
P E

a b a a b
�

� � � ��� �
� � � ���

(2.3)

Fig. 1: Collapsing Exterior Points onto a Square
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If �a� < �b�, then

� �
� �

� �� �
, if

sign , if .

a b b a
P E

a b b b a
�

� � � ��� �
� � � ���

(2.4)

A point y can be squarely-collapsed to another point x if there exists a � > 1 such
that P�(y) = x.

It is obvious how the above example can be generalized to the n-dimensional
case involving the corresponding n-dimensional cube.

Let G be a closed convex neighborhood of the origin O and T : G � Rn be a
continuous mapping. A point on the boundary of G is said to be T-cube-radiant if
T(x) can be collapsed back to x by the above rules. In other words, there exists a � > 1,
such that P�(T(x)) = x.

It is easy to see how the proof used to establish Theorem 1 can be adapted to
prove.

Theorem 2: If all points in �G are non-T-cube-radiant (can be replaced by any
general sense of non-T-radiance as described below), then T has a fixed point in G.

Note that the classical radial-collapsing notion in Leray-Schauder’s condition

corresponds to a mapping � �P y y� � � , which is similar to the cube-collapsing P�

defined above.

Fig. 2: Collapsing Exterior Points “Squarely” onto a Circle
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In fact, one can study more general collapsing algorithms that can be used to
establish Petryshyn-type theorems. Each algorithm corresponds to a family of
projection-like mappings similar to P� above and the corresponding concept of
T-radiant and T-retracting can be defined. When we say that all points in a set are
non-T-radiant, we mean that they are non-T-radiant with respect to the same collapsing
algorithm. But if we have two non-overlapping sets, then we allow points in one set
to be non-T-radiant in one sense while points in the other set are allowed to be
non-T-radiant in possibly a different sense.

We repeat our earlier remark that in the statement of all the theorems in this
paper, the condition of being T-radiant can be interpreted in the sense of any of these
more general conditions.

To illustrate the wide variety of general collapsing algorithms, we can construct

the hybrid projection mapping 2 2ˆ :P R R� � , in which we define P̂�, when restricted

to the half-plane {(a, b) : a � 0}, to be the radial-collapsing projection, and when
restricted to the half-plane, {(a, b) : a < 0} to be the square-collapsing projection.
However, we shall not pursue such generalizations any further.

To conclude this section we look at a few examples.

Example 1: Fig. 3 is an example of a mapping that has a T-LS-radiant point N
on the boundary of G, but no T-cube-radiant point. More specifically: M is the
mid-point of the edge AB; O is the center of the square; N� lies on the extension of
the line ON; P is vertically under N�; T maps the line segment MN onto NN�, NP
onto N�P�, and then the rest of the boundary PBCDAN onto the curve P�B�C�D�A�N�

Fig. 3: An LS-Radiant Mapping which is Non-Cube-Radiant
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which lies inside the square. Certainly, this example looks somewhat contrived, but
it serves to show that T-LS-radiance does not necessarily imply T-cube-radiance.
Similar examples can be easily constructed to show that implication in the other
direction is also not true. In other words, the two notions of radiance are independent
of each other.

Example 2: Fig. 4 is the visualization of a particular application of Petryshyn’s
Theorem. The mapping T maps the upper edge AB of a square to some curve that
lies below AB. Similarly, the image of the edge CD lies above CD; the image of AD
lies to the right of AD; and the image of BC lies to the left of BC. Note that there is
no requirement that the image of these edges must lie completely inside the square.
It follows from either Theorem 1 or Theorem 2 that T has a fixed point.

Example 3: We mention Example 2 because it has the following interesting
corollary. Let us topologically deform the square into the annular area with the same
labels as shown in Fig. 5.

We now have a wedge-shaped region, which is called a cone in the higher-
dimensional case. Instead of assuming that T is defined only for the area ABCD, we
require that T be defined for all points in the (infinite) cone region, and we require
that T maps the cone into itself. Under this more stringent assumption, it is obviously
true that the line AB is mapped “below” itself (but the image is not allowed to get
below CD) and the line CD is mapped above itself. The condition that the image of
BC lies to the left of BC, now becomes �Tx� < �x� for all x on the arc BC. Likewise,
�Tx� > �x� for all x on the arc AD. Then T has a fixed point.

This is a special case of the well known contractive form of Krasnoselskii’s
fixed point theorem for cone mappings. In other words, we have demonstrated that

Fig. 4: An Application of Petryshyn’s Theorem
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the contractive form of Krasnoselskii’s theorem follows from Petryshyn’s theorem.
The above example can be easily extended to higher dimensions (and even infinite
dimensions). Furthermore, the norm-style boundary condition in the above example
can be relaxed to a Leray-Schauder-type condition, namely that all points on the arc
BC are non-T-radiant and all points on the arc AD are non-T-retracting.

3 DOMAINS WITH BUBBLES

It is well known that Brouwer’s theorem is no longer true if G, the domain of T, is
not simply-connected.

In this section and the next one, the term “domain” is loosely used to described
a closed set that can be used as the domain of the mapping T, rather than the customary
meaning of an open connected set.

Example 4: To take an example, let K be the unit circle in R2 minus the interior
of the circle H with center at (0, 1/2) and radius 1/4. Then there are obvious examples
of continuous mappings T : K � K that have no fixed point.

However, if we add an additional condition that T(�H) � B
1/5

, where B
1/5

 denotes
the ball with radius 1/5, then we can still conclude that T has a fixed point. The
easiest way to prove this is to observe that T can be extended to be defined on the
whole of the unit ball in the following way: suppose x � H is of distance � < 1/4

from the center of H and let x H��  be the point that the line extending from the

center of H towards x meets the boundary of H, then we define � � � �4 5T x T x� � .

It is easy to see that the extended mapping T is continuous and maps the unit ball

Fig. 5. Example of a Cone Mapping Having a Fixed Point
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into itself. Therefore T has a fixed point. But since H does not intersect T(H) � B
1/5

,
this fixed point must be in K, and so the original mapping T has a fixed point in K.

The fact that the continuous mapping T on K can be extended to a continuous
mapping defined on the whole unit ball is a special case of the well known Dugundji
extension theorem.

The above simple example motivates the next result, which states that Petryshyn’s
theorem holds for domains formed by removing an interior open subset from a closed
convex set. The Dugundji extension theorem could have been used to slightly simplify
the proof, but we choose not to rely on this theorem.

Theorem 3: Let H be the closure of an open set Ho contained in the interior of a
closed convex set G, and H ���G = Ø. Assume also that the origin 0 � H. Let K =
G\Ho be the set obtained by removing Ho from G and T : K � X is a compact
mapping, such that all points on �G are non-T-radiant (in one sense), and all points
on �H are non-T-radiant (in possibly a dierent sense). Then T has a fixed point in K.

Proof: The boundary �K is the union of �G and �H, the boundaries of G and H,
respectively.

Using the device in the proof of Theorem 1, we can reduce the situation in which
T maps some parts of K (in particular, some parts of �G) outside G to the case that T
maps K strictly inside G. In this way, we have taken care of condition (1.1) for those
points on �G, and we can concentrate on dealing with the boundary of H. We first
consider the case that all points on �H are non-T-LS-radiant.

For any s � 0, we define

J
s
 = {y � K : d(y, H) = s}, (3.1)

where d(y, H) denotes the well known distance function from the point y to the
closed set H. Let � > 0 be a chosen small number, and define

0

.s
s

H J
� �

��
�
� (3.2)

Geometrically, H
�
 is a thin shell of points exterior to Ho.

The assumption 0 � H implies that 0 is an interior point of K. We can, therefore,
find a ball B

2� of radius 2� > 0, such that B
2��� K and B

2��� H = Ø. This implies that

B��� H� = Ø, (3.3)

which in turn implies that
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�x� ���, for all x � H�. (3.4)

Next, because T(H�) is bounded, we can find a positive number � < 1 small
enough so that �T(H�) � B�. Hence,

��T(x)�����, for all x � H�. (3.5)

Combining (3.4) and (3.5), we see that

� �
x

T x
� � , for all x � H�. (3.6)

Let us now pick an � � (0, �), and modify the given mapping T as follows. For
x outside of H

�
, we preserve the image,

T
�
(x) = T(x), for all x � (K\H

�
). (3.7)

For x � J
s
, 0 � s �, we define

� � � �
.

sT x
T x �� �

(3.8)

From this definition, we see that when x is at J
�
, the outer boundary of H

�
, s = �.

and so T
�
(x) = T(x), and when x � �H, s = 0 and so T

�
(x) = 0. For points in the interior

of H
�
, T
�
(x) is an appropriate retracting of T(x) towards the origin 0.

Geometrically, we can think of H
�
 being decomposed into “concentric” layers J

s

(each layer contains points of the same s). The given mapping T on H
�
 is modified in

such a way that T
�
 keep the outermost layer intact, pulls the image of the innermost

layer into the origin and pulls the image of the intervening layers towards the origin
with a scaling factor that lies between 0 and 1.

If we want to prove the theorem for non-cube-radiant mappings, we simply replace
the radial shrinking of T(J

s
) by an appropriate cube-collapsing of T(J

s
) using the

family of functions P� defined in Section 2.

Obviously we can now extend T
�
 to be defined on the whole of the unit ball by

letting

T
�
(x) = 0, x � H. (3.9)

Continuity of T
�
 follows from that of T. By Brouwer’s theorem, To has a fixed

point, say y. If y � H
�
, then it is a fixed point of T and the theorem is proved. So we

assume that y � H
�
. By definition, T

�
(y) is a diminished scaling of T(y). Thus

y = T
�
(y) = �T(y) for some ���[0, 1). (3.10)
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Since y � H
�
 � H�, (3.6) implies that �����.

Taking � = 1/�, we have

T(y) = �y for some ��� (1, 1/�). (3.11)

We now take a sequence of numbers �
n
 � 0, and for each n, we find using the

above procedure a point y
n
 such that

T(y
n
) = �

n
y

n
, �

n
 � (1, 1/�). (3.12)

Since both [1, 1/�] and the image of K under T are compact, we may assume
without loss of generality (by passing to a subsequence if necessary) that both
sequences �

n
 ���� and �

n
y

n
 converge. It then follows that y

n
 � y����K, converges,

and by the continuity of T, we also have

T(y�) = ��y�, ���� [1, 1/�]. (3.13)

If �� = 1, then y� is a fixed point of T, otherwise the above equation contradicts
Leray-Schauder’s condition. The proof of the theorem is therefore complete.

In the proof above, the compactness of the image of K under T is required to
guarantee the convergence of a subsequence of {y

n
}.

We allow the possibility of different types of non-radiance being used for the
non-overlapping boundaries �G and �H. See Example 6 below. In general, if the
boundary of �K can be decomposed into several non-overlapping closed sets, then a
different type of non-radiance may be assumed on each set.

Example 5: Let K be the same set as in Example 4. Suppose that T : K � R2

maps the unit circle S (the outer boundary of K) into the unit ball B, and rotates the
circle H about the origin 0 (not about the center of H) by an angle less than 360°.
Then T has a fixed point.

Example 6: Let K be the set defined by removing the circle H in Example 4
from the square ABCD in Example 1. Let T be given such that T maps the boundary
of the square ABCD as in Example 1, and T moves the boundary of the circle
H vertically upwards by a small distance, say 0.1. Then no points on the boundary of
ABCD is T-square-radiant (but the point N is T-LS-radiant), and no points on the
boundary of H is T-LS-radiant (but some points on the upper half of the circle are
T-square-radiant). The hypotheses of Theorem 3 are satisfied and so T has a fixed
point.

Example 7: The hypothesis that 0 � H is essential for Theorem 3 to hold, as
shown by the simple counter-example of rotating an annulus by a small angle.
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The following example indicates an alternative way to handle domains with a
bubble. Let K � Rn be the annular region between two given spheres S

a
 and S

b
, a < b,

and T : K � K be a mapping of K into itself, such that T(S
a
) can be homotopically

shrunk to a point, while remaining always inside K. Then T has a fixed point. This is
because the homotopy used to shrink T(S

a
) to a point can be used to extend T to be

defined on the entire B
b
 and the extended mapping must have a fixed point, which

can be easily shown to be a fixed point of the original T.

In the two-dimensional case, if the winding number of T(S
a
) with respect to the

origin is 0, then T(S
a
) can be homotopically shrunk to a point and we can conclude

that T has a fixed point.

The same proof of Theorem 3 can be extended to treat the case when K is any
bounded closed set. We omit the details.

Theorem 4: Let K be a closed bounded set with 0 being an interior point, and
T : K � X is a compact mapping, such that all points on �K are non-T-radiant. Then
T has a fixed point in K.

We, however, believe that most interesting applications of the theorem will
involve K of the form as stated in Theorem 3.

4. NON-RETRACTING MAPPINGS

The result in this section only applies to finite dimensional spaces, because for infinite
dimensional spaces the required assumption on the Brouwer degree of T conflicts
with the usual requirement that T be completely continuous.

We assume that the concept of the degree of a mapping is known. See the
references Cronin [2], Guo and Lakshmikantham [3], or Istratescu [4] for an
exposition of the theory. Let n = deg(T, G, O) denote the usual degree of the mapping
T on the closed convex set G at the origin O. It is well known that this number only
depends on the action of T on �G. In the two-dimensional case, if O is not in T(�G),
the degree has the interpretation of the winding number. As we trace the point x one
complete round along the perimeter of G, the image T(x) winds around the origin
exactly n times.

The following homotopy property of the degree gives a simple proof of our next
result. Let T be homotopic to T

1
, i.e. there is a continuous mapping h : G × [0, 1] � Rn

such that h(x, 0) = T((x), h(x, 1) = T
1
(x), and h(x, s) � O for all x ���G and s � [0, 1].

Then deg(T, G, 0) = deg(T
1
, G, 0).
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Theorem 5: Let T : G � Rn be a continuous mapping such that deg(T, G, O) � 0.
If all points on �G are non-T-retracting, then T has a fixed point.

Proof: We define the homotopy

h(x, s) = T(x) – sx, x � G, s � [0, 1]. (4.1)

Then

h(x, 0) = T(x) (4.2)

and

h(x, 1) = T(x) – x. (4.3)

For all points x ���G, and s � [0, 1), h(x, s) � O. For s = 1, there may be an x such
that h(x, 1) = T(x) – x = 0. But if so, we have a fixed point and we are done.

Hence, we may assume that h(x, 1) � 0 for all x ���G. Then by the homotopy
property, deg(T(x) – x, G, O) = deg(T, G, O) � 0. This implies that T(x) – x = 0 has a
solution and we also get a fixed point.

Example 8: Every point on the two-dimensional unit circle S has the
complex-number representation ei�. Let T : B � R2 be a continuous function such
that each x = ei��� S, is mapped to T(x) = r(�)ei�, where r(�) is an arbitrary continuous
positive function r : [0, 2�] � (0, �), such that r(�) > 1. Then the winding number of
T(S) at the origin is 1. Note that the hypotheses of Theorem 1 are not satisfied because
every point on the circle is T-LS-radiant, but Theorem 5 implies that there exists a
fixed point.

For this example, the existence of a fixed point can still be deduced using Theorem
1. Let us perturb the mapping T by rotating the image T(B) by a small angle �. Then
every point on S now becomes non-T-LS-radiant, and so the perturbed mapping T�
has a fixed point x�. Now take a sequence �n

 � 0, and consider the corresponding
sequence of fixed points x�n

. By passing to a sub-sequence if necessary, x�n
 will then

converge to a fixed point of T.

Example 9: We modify the previous example by assuming that each x = ei��� S,
is mapped to T(x) = r(�)e2i�, where r(�) is an arbitrary continuous positive function
r : [0, 2�] � (0, �), such that r(0) = r(2�) > 1. Then the winding number of T(S) at
the origin is 2. The hypotheses of Theorem 5 are thus satisfied and T has a fixed
point. Note that the hypotheses of Theorem 1 are not satisfied, because (1, 0) is
T-LS-radiant. Furthermore, the trick used in the previous example cannot be used to
perturb T to satisfy the hypotheses of Theorem 1.



Some Extensions of the Brouwer-Petryshyn Fixed Point Theorem 53

Another example is to require that ei� be mapped to T(x) = r(�)e–i�. Then the
winding number of T(S) is –1 and by Theorem 5 T has a fixed point.

These examples shows that Theorem 5 complements Theorem 1. Indeed, it can
be seen easily, at least in the two-dimensional case T : B � R2, that if T satisfies the
hypotheses of Theorem 5, it cannot satisfy the hypotheses of Theorem 1. In other
words, Theorem 5 truly complements Theorem 1.

Example 10: The following example is “dual” to the example in Fig. 4. We
assume that T is a mapping on the square ABCD, with the property that it maps the
edge AB to a curve above AB, the edge BC to a curve to the right of BC, the edge CD
to a curve below CD, and the edge DA to a curve to the left of DA. Then T has a fixed
point.

Example 11: In the same manner with which we derived Krasnoselskii’s
contractive cone fixed point result from Example 4, we can deduce the following
“dual” result. Let G be the annular region of a cone C in Rn (this result holds only for
finite dimensional spaces) between two spheres S

a
 and S

b
, a < b. Let �G

1
 denote the

boundary of G that lies on the boundary of the cone. If T : C � Rn is a continuous
mapping such that T(�G

1
) is outside the cone C, T(C � S

a
) ��B

a
\0, T(C � S

b
) is

outside the ball B
b
, and the Brouwer degree of T at an interior point of G is non-zero,

then T has a fixed point.

Finally, we can adopt the technique used to prove Theorem 3 to extend Theorem 5
to domains with bubbles inside them. Let K be a domain as described in Theorem 5,
namely, a closed convex set G with an interior bubble H�, and the origin as an
interior point. Let T : K � Rn be a continuous mapping.

By Dugundji’s theorem we can always extend T to be defined on G, so we can
talk about deg(T, G, O). As mentioned before this number depends only on the
action of T on �G and in the two-dimensional situation, it can be interpreted as the
winding number of T, when restricted to �G, about the origin O.

Theorem 6: Let K be given as in Theorem 3 and T : K � Rn be a continuous
mapping such that deg(T, G, O) � 0. If all points on �G are non-T-retracting, and all
points on �H are non-T-radiant, then T has a fixed point.

Again, the requirement that 0 is in the interior of K is important. Therefore, if
we need to apply Theorem 3 or Theorem 6 to an annulus A = {a < �x� < b}, we have
to take a point � such that a < ��� < b and use, for instance, T-LS-radiance with
respect to �.



54 Man Kam Kwong

REFERENCES

[1] Amann, H., “Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach
Spaces”, SIAM Review, 18 (1976), 620-709.

[2] Cronin, Jane, Fixed Points and Topological Degree in Nonlinear Analysis Mathematical
Surveys, Number 11, Amer. Math. Soc., Providence (1964).

[3] Guo, D., & Lakshmikantham, V., Nonlinear Problems in Abstract Cones, Academic Press,
San Diego (1988).

[4] Istratescu, V.I. Fixed Point Theory, Reidel Publishing Company, Boston (1981).

[5] Jiménez-Melado, A., and Morales, C.H., “Fixed Point Theorems Under the Interior Condition”,
Proceedings Amer. Math. Soc., 134 (2005), 501-507.

[6] Krasnoselskii, M.A., “Fixed Points of Cone-compressing or Cone-extending Operators”, Soviet
Math. Dokl., 1 (1960), 1285-1288.

[7] Petryshyn, W.V., “On a Fixed Point Theorem for Nonlinear P-compact Operators in Banach
Spaces”, Bulletin Amer. Math. Soc., 72 (1966), 329-334.

[8] Petryshyn, W.V., “Structure of the Fixed Points Sets of k-set-contractions”, Arch. Ration.
Mech. Anal., 40 (1970/71), 312-328.

[9] Stuckless, Tara, “Brouwer’s Fixed Point Theorem: Methods of Proof and Generalizations”,
Thesis (2003), Simon Fraser University.

Man Kam Kwong
Institute of Mathematical Research
Department of Mathematics
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: mkwong@wideopenwest.com


