BEST SIMULTANEOUS APPROXIMATION IN FUNCTION SPACES

Abu-Sirhan I. & Khalil R.

ABSTRACT: Let *X* be a Banach space and *G* be a closed subspace of *X*. We say *G* is 2-simultaneously proximinal in *X* if for any x_1, x_2 in *X*, there exists some $y \in G$ such that $||x_1 - y|| + ||x_2 - y|| = \inf\{||x_1 - z|| + ||x_2 - z|| : z \in G\} = d(\{x_1, x_2\}, G)$. In this paper, we give a formula for $d(\{x_1, x_2\}, G)$ in vector valued integrable functions. Results on simultaneous proximinality in such spaces will be presented.

Keywords: Simultaneous approximation, distance formula.

Subject Classification Numbers: Primary: 41A28, secondary: 41A65.

1. INTRODUCTION

Let X be a Banach space and G be a closed subspace of X. For $E \subset X$, we write

$$d_1(E,G) = \inf \left\{ \sum_{e \in E} ||e - y|| : y \in G \right\}.$$

Such infimum need not be attained. In case the infimum is attained for any subset $E \subset X$, we say that *G* is |E|-simultaneously proximinal in *X*, where |E| is the cardinality of *E*. We say *G* is 2-simultaneously proximinal in *X* if for any x_1, x_2 in *X*, there exists some $y \in G$ such that $||x_1 - y|| + ||x_2 - y|| = \inf\{||x_1 - z|| + ||x_2 - z|| : z \in G\} = d(\{x_1, x_2\}, G)$. In case |E| = 1 then 1-simultaneous proximinality is just proximinality. The first result on 2-simultaneous approximation in C(I, R), the space of continuous real valued functions on some compact interval *I*, is due to Dunham [2]. Many good results had appeared since then. We refer to [1], [4], [5], [6], [7], [8], and [9]. However, all these results except for [7], dealt with the space of continuous functions with d_{∞} instead of d_1 .

It is the object of this paper to study 2-simultaneous approximation in vector valued function spaces with d_1 distance. We present a formula for $d_1(E, G)$ when X is the space of Bochner integrable functions on some interval I. Many other results are presented.

Let *I* be a compact interval. With no loss of generality we assume I = [0, 1]. For a Banach space *X*, $L^1(I, X)$ denotes the space of strongly measurable functions *f* on *I* such that $\int ||f(t)|| dt < \infty$. For $f_1, f_2 \in L^1(I, X)$ and *G* a closed subspace of *X*, we set

$$d_1(\{f_1, f_2\}) = \inf(J(||f_1(t) - g(t)|| + ||f_2(t) - g(t)||)dt : g \in L^1(I, G)).$$

For any Banach space *Y* and closed subspace *F* of *Y*, we set:

$$J(Y) = Y \bigoplus_{i=1}^{n} Y$$
 with $||x + y|| = ||x|| + ||y||$

$$D(F) = \{(z, z) : z \in F\}, \text{ with } ||(z, z)|| = ||z|| + ||z||.$$

Clearly, D(F) is a closed subspace of J(Y). Further, F is 2-simultaneously proximinal in Y if and only if D(F) is proximinal in J(Y).

2. THE DISTANCE FORMULA

In this section we deduce a distance formula for best simultaneous approximation in $L^1(I, X)$. We discuss only the distance for two functions.

Theorem 2.1: Let $f_1, f_2 \in L^1(I, X)$, and *G* be a closed subspace of *X*. Define

$$\varphi(s) = \inf\{\|f_1 - z\| + \|f_2 - z\| : z \in G\}.$$

Then ϕ is measurable and

$$\int \varphi(s)ds = \inf\{\|f_1 - h\| + \|f_2 - h\| : h \in L^1(I, G)\} = d(\{h_1, h_2\}, L^1(I, G)).$$

Proof: Let f_1, f_2 be any two elements in $L^1(I, X)$. Then there exist two sequences f_{1n} and (f_{2n}) , of simple functions, such that $||f_1(t) - f_{1n}(t)|| \to 0$ and $||f_2(t) - f_{2n}(t)|| \to 0$. Now, the function

$$d((x, y), D(G)) = \inf\{||x - z|| + ||y - z|| : z \in G\}$$

is continuous. Consequently

$$\lim(d(f_{1n}(t), f_{2n}(t)), D(G)) = d((f_1(t), f_2(t)), D(G)).$$

Define the sequence of functions $\phi_n : I \to R$,

$$\varphi_n(s) = d((f_{1n}(s), f_{2n}(s)), D(G)) = \inf\{||f_{1n}(s) - g|| + ||f_{2n}(s) - g|| : g \in D(G)\}.$$

Since f_{1n} and f_{2n} are simple functions, then we can assume: $f_{1n} = \sum_{i=1}^{n} \mathbf{1}_{A_i} \otimes x_i$ and

 $f_{2n} = \sum_{i=1}^{n} 1_{A_i} \otimes y_i \text{ with } A_i \text{ are disjoint. But then one can see that}$ $\phi_n(s) = \inf\{\sum A_i(s)(||xi - g|| + ||y_i - g||)$

$$= \sum 1A_{i}(s) \inf(||x_{i} - g|| + ||y_{i} - g||),$$

since the A_i^{s} are disjoined. Hence, each φ_n is a simple function, and consequently the function φ is measurable. Now, let $g \in L^1(I, G)$. Then

$$\begin{aligned} \|f_1 - g\| + \|f_2 - g\| &= \int_I (\|f_1(s) - g(s)\| + \|f_2(s) - g(s)\|) ds \\ &\geq \int_I d((f_{1n}(s), f_{2n}(s)), D(G)) ds = \|\varphi\|_1. \end{aligned}$$

Taking the infimum over all $g \in L^1(I, G)$, we get

$$d((f_1, f_2), L^1(I, G)) \ge \|\varphi\|_1$$
(1)

For the reverse inequality: Let $\epsilon > 0$ be arbitrary. Choose *P* and *Q*, simple functions such that

$$P=\sum_{i=1}^m \mathbf{1}_{B_i} \oplus z_i, Q=\sum_{i=1}^m \mathbf{1}_{B_i} \oplus w_i,$$

 $||f_1 - P|| < \epsilon$, and $||f_2 - Q|| < \epsilon$, where the B_i^{s} are disjoint and $\mu(B_i) > 0$ for all *i*.

From the definition of the distance there exists $h_i \in G$ such that

$$||z_i - h_i|| + ||w_i - h_i|| < d((z_i, w_i), D(G)) + \epsilon.$$

Now

$$\begin{split} d((f_1, f_2), D(L^1(I, G))) &= \inf\{||f_1 - h|| + ||f_2 - h|| : h \in L^1(I, G)\} \\ &\leq \inf\{||f_1 - P|| + ||f_2 - Q|| + ||h - P|| + ||h - Q|| : h \in L^1(I, G)\} \\ &\leq 2\epsilon + \inf\{||h - P|| + ||h - Q|| : h \in L^1(I, G)\} \\ &\leq 2\epsilon + \inf\{||g - P|| + ||g - Q|| : g \in L^1(I, G), \end{split}$$

with g of the form $g = \sum_{i=1}^{m} 1_{B_i} \otimes h_i \bigg\}$

$$\leq 2\epsilon + \inf \sum_{i=1}^{m} \mu(B_i) (\|z_i - h_i\| + \|w_i - h_i\|)$$

$$\leq 3\epsilon + \sum_{i=1}^{m} \int_{B_i} d((z_i, w_i), D(G)) ds \qquad (\text{since } \sum \mu(A_i) = 1)$$

$$\leq 2\epsilon + \inf \sum_{i=1}^{m} \mu(B_i) [d((z_i, w_i), D(G)) + \epsilon]$$

$$\begin{aligned} &= 3\epsilon \int_{I} d(P(s), Q(s)), D(G)) ds \\ &= 3\epsilon \int_{I} \inf\{||P(s) - z|| + ||Q(s) - z|| : z \in G\} ds \\ &\leq 3\epsilon + \int_{I} \inf\{||f_{1}(s) - z|| + ||f_{2}(s) - z|| + ||f_{1}(s) - P(s)|| + ||f_{2}(s) - Q(s)|| : z \in G\} ds \\ &\leq 3\epsilon + \int_{I} \inf\{||f_{1}(s) - z|| + ||f_{2}(s) - z|| : z \in G\} ds + (||f_{1} - P|| + ||f_{2} - Q||) \\ &\leq 5\epsilon + \int_{I} \inf\{||f_{1}(s) - h(s)|| + ||f_{2}(s) - h(s)|| : h \in L^{1}(I, G)\} ds \\ &\leq 5\epsilon + ||\varphi||_{1} \end{aligned}$$

$$(2)$$

Since ϵ was arbitrary, equations (1) and (2) ends the proof.

As an application to Theorem 2.1 we have:

Theorem 2.2: Let G be a closed subspace of the Banach space X, and $f_1, f_2 \in L^1(I, X)$. Then for any $g \in L^1(I, G)$, the following are equivalent.

- (i) g is a best simultaneous approximant for f_1, f_2 in $L^1(I, G)$.
- (ii) g(t) is a best simultaneous approximant for $f_1(t), f_2(t)$ in G.

Another nice application of Theorem 2.1 is

Theorem 2.3: Let *G* be a closed subspace of *X*. If $L^1(I, G)$ is simultaneously proximinal in $L^1(I, X)$, then *G* is simultaneously proximinal in *X*.

Proof: Let $x, y \in X$. Define $f_1 = 1 \otimes x$ and $f_2 = 1 \otimes y$, where 1 is the constant function 1. Clearly f_1 and f_2 are in $L^1(I, X)$. By assumption, there exists $g \in L^1(I, G)$ such that

$$||f_1 - g|| + ||f_2 - g|| \le ||f_1 - h|| + ||f_2 - h||$$
 for all $h \in L^1(I, G)$.

By Theorem 2.1,

$$||f_1(t) - g(t)|| + ||f_2(t) - g(t)|| \le ||f_1(t) - h(t)|| + ||f_2(t) - h(t)|| \text{ for all } h \in L^1(I, G).$$

Thus

$$||x - g(t)|| + ||x - g(t)|| \le ||x - h(t)|| + ||x - h(t)||$$
 for all $h \in L^1(I, G)$.

Let *h* runs over all functions of the form $1 \otimes z$, for $z \in G$, the result follows.

Now, we give a very simple proof of one of the main results in [7].

Theorem 2.4: Let *G* be a reflexive subspace of the Banach space *X*. Then $L^1(I, G)$ is simultaneously proximinal in $L^1(I, X)$.

Proof: Since G is reflexive then D(G) is a reflexive subspace of $G \bigoplus_{i=1}^{n} G \subseteq X \bigoplus_{i=1}^{n} X$.

Now $L^1(I, X) \bigoplus_{I} L^1(I, X)$ is isometrically isomorphic to $L^1(I, X \bigoplus_{I} X)$, and $D(L^1(I, G))$ is isometrically isomorphic to $L^1(I, D(G))$. The result now follows from the main result in [3]. That ends the proof.

3. FURTHER RESULTS

A closed subspace *G* is called 1-summand in *X* if there exists a subspace(closed) *Y* such that $X = G \bigoplus_{i=1}^{n} Y$. It is known that [3], that a 1-summand subspace *G* of *X* is proximinal, and $L^{1}(I, G)$ is proximinal in $L^{1}(I, X)$. Now we prove:

Theorem 3.1: Let *G* be a 1-summand subspace of *X*. Then *G* is simultaneously proximinal.

Proof: Let *x*, *y* be any two elements in *X*. Since *X* is 1-summand, then $X = G \oplus M$.

So
$$x = x_1 + x_2$$
 and $y = y_1 + y_2$. Let $z = \frac{x_1 + y_1}{2}$. Then $x - z = \frac{x_1 - y_1}{2} + x_2$, and $y - z = \frac{y_1 - x_1}{2} + y_2$. Hence
 $||x - z|| + ||y - z|| = \left\|\frac{x_1 - y_1}{2}\right\| + \left\|x_2\right\| + \left\|\frac{y_1 - x_1}{2}\right\| + \left\|y_2\right\|$
 $= ||x_2|| + ||y_2|| + ||x_1 - y_1||$
 $\leq ||x_2|| + ||y_2|| + ||x_1 - w|| + ||y_1 - w||$, (for any $w \in G$)
 $= (||x_2|| + ||x_1 - w||) + (||y_2|| + ||y_1 - w||)$
 $= ||x - w|| + ||y - w||.$

Hence z is a best simultaneous approximation in G for x and y, and G is simultaneously proximinal.

As a corollary, we get the following:

Theorem 3.2: If *G* is 1-summand in *X*, then $L^1(I, G)$ is simultaneously proximinal in $L^1(I, X)$.

Proof: $L^1(I, X) = L^1(I, G \bigoplus_{I} M) = L^1(I, G) \bigoplus_{I} L^1(I, M)$. Hence $L^1(I, G)$ is 1-summand in $L^1(I, X)$. Hence by Theorem 3.1, $L^1(I, G)$ is Simultaneous Proximinal.

REFERENCES

- [1] Chong, Li. and Watson, G.A. On Best Simultaneous Approximation. J. Approx. Theory., **91** (1997), 332-348.
- [2] Banac Dunham, C.B. Simultaneous Chebyshev Approximation of Functions on an Interval. *Proc. Amer. Math. Soc.*, **18** (1967), 472-477.
- [3] Khalil, R. Best Approximation in L^{*p*}(*I*, *X*). Math. Proc. Camb. Phil. Soc., **94** (1983), 177-279.
- [4] Mach, J. Best Simultaneous Approximation of Bounded Functions with Values in Certain h spaces. Math. Ann., 240 (1979), 157-164.
- [5] Tanimoto, S. Characterization of Best Simultaneous Approximation. J. Approx. Theory., 59 (1989), 359-361.
- [6] Tanimoto, S. On Best Simultaneous Approximation. Math. Jap., 48 (1998), 275-279.
- [7] Saidi, F. Hussein, D. and Khalil, R. Best Simultaneous Approximation in *L^p*(*I*, *X*). *J. Approx. Theory.*, **116** (2002), 369-379.
- [8] Shany, B.N. and Singh, S.P. On Best Simultaneous Approximation in Banach Spaces. J. Approx. Theory., 35 (1982), 222-224.
- [9] Watson, G.A. A Characterization of Best Simultaneous Approximations. J. Approx. Theory., 75 (1993), 175-182.

Abu-Sirhan I. & Khalil R.

Dept. of Math. University of Jordan Amman, Jordan. *E-mail: roshdi@ju.edu.jo*