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Chaos Control for Periodically Forced Complex
Duffing’s System Based on Fuzzy Model

XIN GAO & XINGWEN LIU

In this paper, a new chaotic control method for periodically forced complex Duffing’s
system is proposed by using Takagi-Sugeno fuzzy model to represent original chaotic
system and adapting parallel distributed compensation (PDC) scheme. The result is
represented by means of linear matrix inequalities (LMIs), thus designing controller
becomes very convenient. Numerical simulations are given to illuminate the correctness
of the theoretical result.

1. INTRODUCTION

In recent years, control of chaotic systems has been more and more interesting to related
researchers since the pioneering work of Ott et al. [1]. Generally speaking, there are two
ways to control chaos: feedback control methods and non-feedback control methods. Many
Feedback control methods [2-6] are used to control chaos by stabilizing a desired unstable
periodic solution, which is embedded in a chaotic attractor, and non-feedback methods
[7-10] suppress chaotic behaviours by applying weak periodic perturbation to some control
parameters or variables. In the past few years, there has been a significant discovery that a
continuous nonlinear system can be well approximated by a Takagi-Sugeno (T-S) fuzzy
linear model. Therefore, interest in fuzzy control for nonlinear systems is rapidly growing
based on the T-S model [11-13]. Since chaotic systems are a class of typically nonlinear
systems, there have existed many studies concerning the control and synchronization for
the chaotic systems based on T-S fuzzy model [14-18].

Chaotic behaviour and chaos control for complex nonlinear systems have constantly
been studied [8,10,19-22]. This paper considers the problem of controlling chaos of the
complex Duffing’s system with periodically forcing excitations [8]. We propose a new
method to control the periodically forced complex system via nonlinear feedback controller
using Lyapunov stability theory. First, the periodically forced complex Duffing’s system is
represented by T-S fuzzy model. Then, a new fuzzy control criterion is proposed in terms of
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linear matrix inequalities (LMIs), which are used here to achieve the parameters of controller.
Finally, simulation results show that the state feedback controller designed can stabilize the
periodically forced complex Duffing’s chaotic system to its equilibrium.

2. FUZZY MODEL OF THE PERIODICALLY FORCED
COMPLEX DUFFING’S SYSTEM

The Duffing’s system with negative linear stiffness, damping and periodic excitation is
often written in the form

txxxx ��� cos3 ���� ��� (1)

Mahmoud etc.[8] extended the Duffing’s system to the complex domain in order to
study strange attractors, chaotic behaviour and the problem of chaos control. The periodically
forced complex Duffing’s system of the form

tzzzzz ���� cos
2 ����� ��� (2)

where 2 exp( ), , , ,4
i�� � � � � �� � are constant parameters, z x iy� � is a complex

function. Eq (2) can be reduced to the famous Duffing’s system (1) when z = x ( 0,y � �� is

real ) and =1. We substitute z = x + iy into Eq (2), and let yxyxxxxx �� ���� 4321 ,,, , (2)

can be written as the following model:
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when 0.13, 1, 0.18� � �� � �  system (1) exhibits chaotic activity, which is shown in Fig.1.

In this section, we will construct the T-S fuzzy model of (3) using the method introduced
by [13]. (3) can be rewritten as

1 1

2 2
2 1 3 2

33

2 2 4
4 1 3

0 1 0 0 0

1 ( ) 0 0 cos
.

00 0 0 1

cos0 0 1 ( )

x x

x x x x t

xx
x tx x x

� � � �

� �� �

� �� � � �� �� �� � � �� �� �� � � �� � � � �� �� � � �� �� �� �� � � �� �� �� � � �� �� �� � � �� �� �� � � �� �� � � � �� � � �� � � �� �� � � �

�

�

�

�
(4)

28



Define 
2 2
1 3( ) 1 ( ),z t x x�� � �  and assume that � �1 , ,x d d� �  where d is a constant and d

= 2 in this paper. It follows that
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Let 2
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Thus we can construct the following fuzzy model of (1):

Rule ( 1,2)i i � : IF ( )z t  is iM , THEN ( ) ( ) ( )ix t A x t v t� �� , where x = 1 2 3 4, , ,
T

x x x x� �
� �� � , ( )v t  =

0, cos , 0, cos
T

t t� � � �� �
� �� � , and

Figure 1. Periodically Forced Complex Duffing System’s Attractor
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Then the fuzzy system can be represented as
2

1

( )) ( ),i i
i

x M z t Ax v t
�

� ��� (5)

whose phase plots are shown in Fig.2. Comparing Fig.1 and Fig.2, we can see that system

(5) is identical with (3) if � �1 ,x d d� �  and 3 , .x d d� �� �� �� �

To control (5) we introduce the control input
4( ) .u t R�  Thus (5) with control input

term is
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Figure 2. Fuzzy Periodically Forced Complex Duffing System’s Attractor
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where ( ) ( ) ( ).u t u t v t� �

We will use the parallel distributed compensation (PDC) design method, each control
rule is designed from the corresponding rule of a T-S model in the premise parts. So, we
construct the following fuzzy controller via the PDC:

Control Rule i (i  = 1,2): IF z(t) is Mi,  THEN ( ) ( ),iu t F x t��  where
4 4

1 2 3 4[ , , , ]Ti i i i iF F F F F R �� �  is a constant gain matrix to be determined later.

4( 1,2,3,4) , 0il ilF l R F� � �  means that there is a control input added on the lth equation of

(5) whereas 0i lF �  means not. Then the overall fuzzy controller is

2

1
( ) ( ( )) .i ii
u t M z t F x

�
� �� (7)

Applying (7) to (6), we have
2

1
( ( ))( ) .i i ii

x M z t A F x
�

� ��� (8)

Obviously, once ( 1,2)iF i � is obtained, the control input ( )u t can be computed by

( ) ( ) ( ).u t u t v t� �

3. MAIN RESULT

Theorem 1: System (8) is stable if there exist matrix Gi (i = 1, 2) and a positive definite
symmetrical matrix P, such that the following inequality holds

0, 1,2,T T
i i i iA P P A G G i� � � � � (9)

and the gain matrix 1.i iF G P��

 Proof: Let 1,P P��  and choose the Lyapunov function as

( ) ,TV t x Px�

Take the derivative of V (t) along the trajectories of (8), we have
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According to (9), we get

( ) 0, 1,2.T T T T
i i i i i i i iP A P PA G G P PA A P PF F P i� � � � � � � � � (11)

The proof is completed therefore.

4. NUMERICAL SIMULATIONS

In this section, we consider the following cases:

Case 1: Each equation of (5) is added a control input. Applying Theory 1, we can get
gain matrixes:

1 2

0.5000 1.0000 0 0 0.5000 -3.0000 0 0

1.0000 0.3700 0 0 -3.0000 0.3700 0 0
F ,F

0 0 0.5000 1.0000 0 0 0.5000 -3.0000

0 0 1.0000 0.3700 0 0 -3.0000 0.3700

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �

denote st  the time at which the control input starts. Simulation runs under condition

T
0x =[0.2, 0.1 ,-0.2, -0.1] , with the waveforms and control input shown in Fig.3. (a), (b)

(a) Closed loop state responses x
t
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Case 2: 3rd equation of (5) isn’ t added control input. Applying Theory 1, we can get
gain matrixes:

1 2

0.5000 0.0000 0 0 0.5000 -7.0000 0 0

2.0000 0.3700 0 0 1.0000 0.3700 0 0
F , F

0 0 0 0 0 0 0 0

0 0 2.4286 0.9414 0 0 -5.5714 0.9414

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �

the waveforms and control input shown in Fig.4. (a), (b)

Case 3: 2nd and 4th equations of (5) are added control input, and gain matrixes:

1 2

0 0 0 0 0 0 0 0

2.4286 0.9414 0 0  -5.5714 0.9414 0 0
F , F

0 0 0 0 0 0 0 0

0 0 2.4286 0.9414 0 0 -5.5714 0.9414

� � � �
� � � �
� � � �� �
� � � �
� � � �
� � � �

 (b) Control input u (t)

Figure 3: 150,st �  T
0x =[0.2, 0.1 ,-0.2, -0.1]
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(a) Closed loop state responses x

(b) Control input u (t)

Figure 4. 150,st �  T
0x =[0.2, 0.1 ,-0.2, -0.1]
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the waveforms and control input shown in Fig.5. (a), (b).

(a) Closed loop state responses x(b) Control input u (t)

Figure 5. 150,st �  T
0x =[0.2, 0.1 ,-0.2, -0.1]

(a) Closed loop state responses x
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Simulation results show that the designed fuzzy controller can stabilize the periodically
forced complex Duffing’s chaotic system to its equilibrium point, and one can easily see
that the control trajectories of full state feedback in Fig.3 is much better than those of
partial state feedback in Fig.4 (or Fig.5).

5. CONCLUSIONS

In this paper, we have explored the chaotic control problem of the periodically forced complex
Duffing’s system based on its T-S fuzzy model via state feedback, and proposed a control
criterion. One can see that from numerical simulations, the trajectory of chaotic system can
be driven to the zero equilibrium by designed fuzzy controller, and numerical simulations
show the effectiveness and feasibility of the proposed controller.
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