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Measuring Fractals by Infinite and
Infinitesimal Numbers

YAROSLAV D. SERGEYEV

Traditional mathematical tools used for analysis of fractals allow one to distinguish results
of self-similarity processes after a finite number of iterations. For example, the result of
procedure of construction of Cantor’s set after two steps is different from that obtained
after three steps. However, we are not able to make such a distinction at infinity. It is
shown in this paper that infinite and infinitesimal numbers proposed recently allow one to
measure results of fractal processes at different iterations at infinity too. First, the new
technique is used to measure at infinity sets being results of Cantor’s procedure. Second, it
is applied to calculate the lengths of polygonal geometric spirals at different points of
infinity.
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1. INTRODUCTION

During last decades fractals have been intensively studied and applied in various fields
(see, for instance, [4, 11, 5, 7, 12, 20]). However, their mathematical analysis (except, of
course, a very well developed theory of fractal dimensions) very often continues to have
mainly a qualitative character and there are no many tools for a quantitative analysis of
their behavior after execution of infinitely many steps of a self-similarity process of
construction.

Usually, we can measure fractals in a way and can give certain numerical answers to
questions regarding fractals only if a finite number of steps in the procedure of their
construction has been executed. The same questions can remain without any answer if we
consider execution of an infinite number of steps. For example, let us consider the famous
fractal construction – Cantor’s set (see Fig. 1). If a finite number of steps, n, has been done
constructing Cantor’s set, then we are able to describe numerically the set being the result

of this operation. It will have 2n intervals having the length n
1

3  each. Obviously, the set

obtained after n + 1 iterations will be different and we also are able to measure the lengths
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of the intervals forming the second set. It will have 2n+1 intervals having the length n 1
1

3 �

each. The situation changes drastically in the limit because we are not able to distinguish
results of n and n+1 steps of the construction if n is infinite.

We also are not able to distinguish at infinity the results of the following two processes
that both use Cantor’s construction but start from different positions. The first one is the
usual Cantor’s set and it starts from the interval [0,1], the second starts from the couple of

intervals 1
3[0, ]  and 2

3[ ,1] . In spite of the fact that for any given finite number of steps, n,

the results of the constructions will be different for these two processes, we have no tools to
distinguish and, therefore, to measure them at infinity.

Another class of fractal objects that defies length measurement are spirals that fascinated
mathematicians throughout the ages (see, e.g., [12]). Let us consider two kinds of polygonal
spirals shown in Figs. 2 and 3. Both of them are geometric polygonal spirals related to
geometric sequences. The spiral shown in Fig. 2 is constructed as follows. The unit interval
is our initial piece and we draw it vertically from bottom to top. At the end we make a right
turn and draw the unit interval again from left to right. Then we draw the interval having a
length q < 1 by continuation in the same direction from left to right. At the end we make
another right turn and draw again the same interval having the length q from top to bottom.
At the end of this line we draw the interval with the length q2 and continue using the same
principle. Fig. 3 shows the same construction for q > 1. Evidently, for q = 1 we obtain just
a square.

If we try to calculate the length of geometric polygonal spirals, we obtain immediately
that it is equal to

i

i

S q q q q2 3

0

2(1 . . . ) 2 ,
�

�

� � � � � � � (1)

Figure 1: Cantor’s Construction
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which is a geometric series and, therefore, its limiting length for q < 1 is 2 / (1–q), i.e., a
finite value different for each given q. Then, for all q > 1 traditional analysis tells us that the
spiral has the infinite length, i.e., we are not able to distinguish the spirals in dependence of
the value of q.

In this paper, we show how a recently developed approach (see [8, 15, 16, 17, 18, 19])
that allows one to write down infinite and infinitesimal numbers and to execute arithmetical
operations with them can be used for measuring fractals at infinity. Particularly, the lengths
of intervals of Cantor’s set and the lengths of spirals from Figs. 2 and 3 for any q will be
calculated.

The rest of the paper is organized as follows. Section 2 introduces the new methodology
and Section 3 describes a general framework allowing one to express by a finite number of
symbols not only finite but infinite and infinitesimal numbers too. Section 4 describes how
infinite and infinitesimal numbers can be used for measuring fractal objects. Finally, Section
5 contains a brief conclusion.

2. METHODOLOGY

Usually, when mathematicians deal with infinite objects (sets or processes) it is supposed
that human beings are able to execute certain operations infinitely many times (see [1, 2, 3,
10, 14]). For example, in a fixed numeral system it is possible to write down a numeral with
any number of digits. However, this supposition is an abstraction (courageously declared
by constructivists in [9]) because we live in a finite world and all human beings and /or
computers finish operations they have started.

The new computational paradigm introduced in [16, 17, 18, 19] does not use this
abstraction and, therefore, is closer to the world of practical calculations than traditional

Figure 2: The First Construction Steps of a Polygonal Geometric Spiral with q < 1
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approaches. Its strong computational character is enforced also by the fact that the first
simulator of the Infinity Computer able to work with infinite, finite, and infinitesimal numbers
introduced in [16, 17, 18, 19] has been already realized (see [8, 15]).

In order to introduce the new methodology, let us consider a study published in Science
by Peter Gordon (see [6]) where he describes a primitive tribe living in Amazonia - Pirahã
- that uses a very simple numeral system for counting: one, two, many. For Pirahã, all
quantities bigger than two are just ‘many’ and such operations as 2+2 and 2+1 give the
same result, i.e., ‘many’. Using their weak numeral system Pirahã are not able to see, for
instance, numbers 3, 4, 5, and 6, to execute arithmetical operations with them, and, in
general, to say anything about these numbers because in their language there are neither
words nor concepts for that. Moreover, the weakness of their numeral system leads to such
results as

‘many’+ 1 = ‘many’, ‘many’+ 2 = ‘many’,

which are very familiar to us in the context of views on infinity used in the traditional
calculus

������������������������������

This observation leads us to the following idea: Probably our difficulty in working with
infinity is not connected to the nature of infinity but is a result of inadequate numeral
systems used to express numbers.

We start by introducing three postulates that will fix our methodological positions with
respect to infinite and infinitesimal quantities and mathematics, in general.

Figure 3: The First Construction Steps of a Polygonal Geometric Spiral with q > 1
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Postulate 1. We accept that human beings and machines are able to execute only a
finite number of operations.

Thus, we accept that we shall never be able to give a complete description of infinite
processes and sets due to our finite capabilities. Particularly, this means that we accept that
we are able to write down only a finite number of symbols to express numbers.

The second postulate that will be adopted is due to the following consideration. In
natural sciences, researchers use tools to describe the object of their study and the used
instrument influences results of observations. When physicists see a black dot in their
microscope they cannot say: The object of observation is the black dot. They are obliged to
say: the lens used in the microscope allows us to see the black dot and it is not possible to
say anything more about the nature of the object of observation until we’ll not change the
instrument - the lens or the microscope itself - by a more precise one.

Due to Postulate 1, the same happens in mathematics studying natural phenomena,
numbers, and objects that can be constructed by using numbers. Numeral systems used to
express numbers are among the instruments of observations used by mathematicians. Usage
of powerful numeral systems gives possibility to obtain more precise results in mathematics
in the same way as usage of a good microscope gives a possibility to obtain more precise
results in physics. However, the capabilities of all mathematical tools will be always limited
due to Postulate 1.

Postulate 2. Following natural sciences, we shall not tell what are the mathematical
objects we deal with; we just shall construct more powerful tools that will allow us to
improve our capacities to observe and to describe properties of mathematical objects.

Particularly, this means that from our point of view, axiomatic systems do not define
mathematical objects but just determine formal rules for operating with certain numerals
reflecting some properties of the studied mathematical objects.

After all, we want to treat infinite and infinitesimal numbers in the same manner as we
are used to deal with finite ones, i.e., by applying the philosophical principle of Ancient
Greeks ‘The part is less than the whole’. This principle, in our opinion, very well reflects
organization of the world around us but is not incorporated in many traditional infinity
theories where it is true only for finite numbers.

Postulate 3. Following Ancient Greeks, we adopt the principle ‘The part is less than
the whole’ to all numbers (finite, infinite, and infinitesimal) and to all sets and processes
(finite and infinite).

Due to this declared applied statement, such concepts as bijection, numerable and
continuum sets, cardinal and ordinal numbers cannot be used in this paper because they
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belong to the theories working with different assumptions2. However, the approach proposed
here does not contradict Cantor. In contrast, it evolves his deep ideas regarding existence
of different infinite numbers in a more applied way.

Let us start our consideration by studying situations arising in practice when it is
necessary to operate with extremely large quantities (see [16] for a detailed discussion).
Imagine that we are in a granary and the owner asks us to count how much grain he has
inside it. There are a few possibilities of finding an answer to this question. The first one is
to count the grain seed by seed. Of course, nobody can do this because the number of seeds
is enormous.

To overcome this difficulty, people take sacks, fill them in with seeds, and count the
number of sacks. It is important that nobody counts the number of seeds in a sack. At the
end of the counting procedure, we shall have a number of sacks completely filled and some
remaining seeds that are not sufficient to complete the next sack. At this moment it is
possible to return to the seeds and to count the number of remaining seeds that have not
been put in sacks (or a number of seeds that it is necessary to add to obtain the last completely
full sack).

If the granary is huge and it becomes difficult to count the sacks, then trucks or even
big train waggons are used. Of course, we suppose that all sacks contain the same number
of seeds, all trucks – the same number of sacks, and all waggons – the same number of
trucks. At the end of the counting we obtain a result in the following form: the granary
contains 17 waggons, 23 trucks, 2 sacks, and 84 seeds of grain. Note, that if we add, for
example, one seed to the granary, we can count it and see that the granary has more grain.
If we take out one waggon, we again be able to say how much grain has been subtracted.

Thus, in our example it is necessary to count large quantities. They are finite but it is
impossible to count them directly using elementary units of measure, u0, i.e., seeds, because
the quantities expressed in these units would be too large. Therefore, people are forced to
behave as if the quantities were infinite.

To solve the problem of ‘infinite’ quantities, new units of measure, u1,u2, and u3, are
introduced (units u1 – sacks, u2 – trucks, and u3 – waggons). The new units have the following
important peculiarity: it is not known how many units ui there are in the unit ui+1 (we do not
count how many seeds are in a sack, we just complete the sack). Every unit ui+1 is filled in
completely by the units ui. Thus, we know that all the units ui+1 contain a certain number Ki

of units ui but this number, Ki, is unknown. Naturally, it is supposed that Ki is the same for
all instances of the units. Thus, numbers that it was impossible to express using only initial
units of measure are perfectly expressible if new units are introduced. This key idea of
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counting by introduction of new units of measure will be used in the paper to deal with
infinite quantities.

In order to have a possibility to write down infinite and infinitesimal numbers by a
finite number of symbols, we need at least one new numeral expressing an infinite (or an
infinitesimal) number corresponding to the chosen infinite unit of measure3. Then, it is
necessary to propose a new numeral system fixing rules for writing down infinite and
infinitesimal numerals and to describe arithmetical operations with them.

3. INFINITE AND INFINITESIMAL NUMBERS AND
OPERATIONS WITH THEM

Different numeral systems have been developed by humanity to describe finite numbers.
More powerful numeral systems allow us to write down more numerals and, therefore, to
express more numbers. A new positional numeral system with infinite radix described in
this section evolves the idea of separate count of units with different exponents used in
traditional positional systems to the case of infinite and infinitesimal numbers.

The infinite radix of the new system is introduced as the number of elements of the set
� of natural numbers expressed by the numeral �  called grossone. This mathematical
object is introduced by describing its properties postulated by the Infinite Unit Axiom
consisting of three parts: Infinity, Identity, and Divisibility (we introduce them soon). This
axiom is added to axioms for real numbers similarly to addition of the axiom determining
zero to axioms of natural numbers when integer numbers are introduced. This means that it
is postulated that associative and commutative properties of multiplication and addition,
distributive property of multiplication over addition, existence of inverse elements with
respect to addition and multiplication hold for grossone as for finite numbers.

Note that usage of a numeral indicating totality of the elements we deal with is not new
in mathematics. It is sufficient to remind the theory of probability where events can be
defined in two ways. First, as union of elementary events; second, as a sample space, �, of
all possible elementary events from where some elementary events have been excluded.
Naturally, the second way to define events becomes particularly useful when the sample
space consists of infinitely many elementary events.

The Infinite Unit Axiom consists of the following three statements:

Infinity. For any finite natural number n it follows n < �

Identity. The following relations link � to identity elements 0 and 1

� � � � � � � �00 . . 0 0, 0, 1, 1, 1 1, 0 0.� ��
� � � � �

�
(2)
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Divisibility. For any finite natural number n sets �k,n,1 �  k ��  n, being the nth parts of
the set, �, of natural numbers have the same number of elements indicated by the numeral

n

�
 where

Nk,n = {k, k + n, k + 2n, k + 3n, . . .}, 1 �  k �  n,  
n

k n
k

,
1�

��� � (3)

Divisibility is based on Postulate 3. Let us illustrate it by three examples. If we take n = 1,
then �1,1 = � and Divisibility tells that the set, �, of natural numbers has � elements.

If n = 2, we have two sets �1,2 and �2,2 and they have 
2
�

 elements each. If n = 3, then we

have three sets �1,3,��2,3, and �3,3 having 
3
�

 elements each.

� ��� = {1, 2, 3, 4, 5, 6, 7, . . . }

1,2

2,2

{1, 3, 5, 7, . . . }

{ 2, 4, 6, . . . }2

�
�

�

�
��
�

3

��
�
�

  

�

�

�

� �

� �

� �

1,3

2,3

3,3

{1, 4, 7, }

{ 2, 5, }

{ 3, 6, }

Before the introduction of the new positional system let us study some properties of
grossone. First of all, as was already mentioned above, it is necessary to remind that � is
not either Cantor’s  �0 or � that have been introduced in Cantor’s theory on the basis of
different assumptions. It will be shown hereinafter that grossone unifies both cardinal and
ordinal aspects in the same way as finite numerals unify them. Its role in our infinite arithmetic
is similar to the role of the number 1 in the finite arithmetic and it will serve us as the basis
for construction of other infinite and infinitesimal numbers.

We start by the following important comment: to introduce n
�  we do not try to count

elements k,k + n, k + 2n, k + 3n, . . . In fact, we cannot do this due to the accepted Postulate
1. In contrast, we apply Postulate 3 and state that the number of elements of the nth part of
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the set, i.e., n
� , is n times less than the number of elements of the whole set, i.e., than �. In

terms of our granary example � can be interpreted as the number of seeds in the sack.

Then, if the sack contains � seeds, its nth part contains n
�  seeds. It is worthy to emphasize

that, since the numbers n
�  have been introduced as numbers of elements of sets �k,n, they

are integer.

The introduced numerals n
�  and the sets �k,n allow us immediately to calculate the number

of elements of certain infinite sets. For example, due to the introduced axiom, the set

{3,8,13,18,23,28, . . .} = �3,5

and, therefore, has 5
�  elements. The number of elements of sets being union, intersection,

difference, or product of other sets of the type �k,n is defined in the same way as these
operations are defined for finite sets. Thus, we can define the number of elements of sets
being results of these operations with finite sets and infinite sets of the type �k,n. For example,
the set

{3,8,13,18,23,28, . . .}\{3,23} = �3,5\{3,23}

and, therefore, it has 5 2��  elements.

Other results regarding calculating the number of elements of infinite sets can be found
in [16, 19]. Particularly, it is shown that the number of elements of the set, �, of integers is
equal to 2 � 1 and the number of elements of the set, �, of different rational numerals is
equal to 2�2+1.

The new numeral � allows us to write down the set, �, of natural numbers in the form

� = {1,2,3, . . . � –2,� – 1, �} (4)

because grossone has been introduced as the number of elements of the set of natural
numbers (similarly, the number 3 is the number of elements of the set {1, 2, 3}). Thus,
grossone is the biggest natural number and infinite numbers

. . .  � – 3, � – 2, � – 1 (5)

less than grossone are also natural numbers as the numbers 1,2,3, . . . They can be viewed
both in terms of sets of numbers and in terms of grain. For example, �  – 1 can be interpreted
as the number of elements of the set � from which a number has been excluded. In terms of
our granary example � –1 can enterpreted as a sack minus one seed.
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Note that the set (4) is the same set of natural numbers we are used to deal with. Infinite
numbers (5) also take part of the usual set, �, of natural numbers4. The difficulty to accept
existence of infinite natural numbers is in the fact that traditional numeral systems did not
allow us to see them. In the same way as Pirahã are not able to see, for instance, numbers 3,
4, and 5 using their weak numeral system, traditional numeral systems did not allow us to
see infinite natural numbers that we can see now using the new numeral �.

Postulate 3 and the Infinite Unit Axiom allow us to obtain the following important
result: the set � is not a monoid under addition. In fact, the operation ��+ 1 gives us as the
result a number grater than �. Thus, by definition of grossone, � + 1 does not belong to �
and, therefore, � is not closed under addition and is not a monoid.

This result also means that adding the Infinite Unit Axiom to the axioms of natural

numbers defines the set of extended natural numbers indicated as �̂  and including � as a

proper subset

�̂  = {1,2, . . . , � – 1,�, � + 1, . . . , �2– 1, �2, �2+ 1, . . .}.

Again, extended natural numbers grater than grossone can also be interpreted in the
terms of sets of numbers. For example, �+ 3 as the number of elements of the set ���
{a,b, c} where numbers a,b, c � � and �2 as the number of elements of the set

C = {(a1,a2) : a1 � �, a2 � �}.

In terms of our granary example � + 3 can be interpreted as one sack plus three seeds
and �2 as a truck.

 Analogously, we can consider the set, �̂ , of extended integer numbers

�̂  = {. . . , –� –1, –�, –� + 1. . . , –2, –1,0,1,2, . . . , �–1,�, �+ 1, . . .}.

What can we say now about the number of elements of the sets �̂  and �̂ ? Our positional

numeral system with the radix � dose not allow us to say anything because it does not
contain numerals able to express such numbers (see Postulates 1 and 2). It is necessary to
introduce in a way a more powerful numeral system defining new numerals �,�, etc.
However, in spite of the fact that the numeral system using grossone does not allow us to

express the numbers of elements of �̂  and �̂ , we can work with those subsets of �̂  and

�̂  that can be defined by using numerals written down in our positional numeral system

with the radix �.
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We have already started to write down simple infinite numbers and to execute
arithmetical operations with them without concentrating our attention upon this question.
In general, to express a number C in the new numeral positional system with base � we

subdivide C into groups corresponding to powers of � :

�
�

�
�� � � � � � �m k

m k

p p pp p
p p p p pC c c c c c01

1 0

1
1. . . . . . .� � � � � (6)

Then, the record

m k
m k

p p pp p
p p p p pC c c c c c01

1 0

1
1. . . . . . �

�

�
�� � � � � � (7)

represents the number C, where finite numbers ci are called infinite grossdigits and can be
both positive and negative; numbers pi are called grosspowers and can be finite, infinite,
and infinitesimal (the introduction of infinitesimal numbers will be given soon). The numbers
pi are such that pi > 0, p0 = 0, p–i < 0 and

pm > pm–1 > . . . p2 > p1 > p–1 > p–2 > . . . p –(k –1) > p–k.

In the traditional positional systems there exists a convention that a digit ai shows how
many powers bi are present in the number and the radix b is not written explicitly. In the

record (7) we write ip�  explicitly because in the new numeral positional system the number

i in general is not equal to the grosspower pi. This gives possibility to write, for example,

such numbers as 4 3.17 84
3 19

�� �  where p1 = 4, p–1 = –3.1. Grossdigits ci,–k � i �  m, can be

integer or fractional and expressed by many symbols; in our example, c 7
4 3�  and c 84

3.1 19 .� �

Finite numbers in this new numeral system are represented by numerals having only
one grosspower equal to zero. In fact, if we have a number C such that m = k = 0 in

representation (7), then due to (2) we have C c c0 0 .� � ��  Thus, the number C in this case

does not contain infinite units and is equal to the grossdigit c0 which being a conventional
finite number can be expressed by any positional system with finite base b (or by another
traditional numeral system). It is important to emphasize that the grossdigit c0 can be integer
or fractional and can be expressed by a few symbols in contrast to the traditional positional
systems where each digit is integer and is represented by one symbol from the alphabet
{0,1,2, . . . ,b–1}. Thus, the grossdigit c0 shows how many finite units and/or parts of the
finite unit, 1 = �0, there are in the number C.

Infinite numbers in this numeral system are expressed by numerals having at least one
grosspower grater than zero. In the following example the left-hand expression presents
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the way to write down infinite numbers and the right-hand shows how the value of the
number is calculated:

23 3.4 66.2 23 3.4 66.221.4 1.45 852.1 21.4 1.45 852.1 .� �� � � �� � � � � �

If a grossdigit 
ipc  is equal to 1 then we write ip�  instead of ip1 .�  Analogously, if power

�0, is the lowest in a number then we often use simply the corresponding grossdigit c0

without �0, for instance, we write 23�145 instead of 23�145�0 or 8 instead of 8�0.

Infinitesimal numbers are represented by numerals having only negative grosspowers.

The simplest number from this group is 1 1� � ��  being the inverse element with respect to

multiplication for �:

� � � �
1 1

0 1.�
� �

(8)

Note that all infinitesimals are not equal to zero. Particularly, �
1

0
�

 because 1 > 0 and

� > 0. It has a clear interpretation in our granary example. Namely, if we have a sack and
it contains � seeds then one sack divided by � is equal to one seed. Vice versa, one seed,

i.e., 1
� , multiplied by the number of seeds in the sack, �, gives one sack of seeds.

Let us now introduce arithmetical operations for infinite, infinitesimal, and finite numbers
(see [16] for a detailed discussion and examples). The numbers A, B, and their sum C are
represented in the record of the type

ji i

i j i

K M L
mk l

k m l
i j i

A a B b C c
1 1 1

, , .
� � �

� � �� � �� � � (9)

The operation of addition of two given infinite numbers A and B returns as the result an
infinite number C constructed as follows (the operation of subtraction is a direct consequence
of that of addition and is thus omitted). Then the result C is constructed by including in it all

items i
i

k
ka �  from A such that ki � mj ,1 �� j � M, and all items j

j

m
mb �  from B such that

mj = ki, 1 �  i �  K. If in A and B there are items such that ki = mj for some i and j then this

grosspower ki is  included in C with the grossdigit 
i ik kb a ,�  i.e., as i

i i

k
k kb a( ) .� �  It can be
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seen from this definition that the introduced operation enjoys the usual properties of
commutativity and associativity due to definition of grossdigits and the fact that addition
for each grosspower of � is executed separately.

The operation of multiplication of two given infinite numbers A and B from (9) returns
as the result the infinite number C constructed as follows.

j i j

j i j

M K
m k m

j j m k m
j i

C C C b A a b j M
1 1

, . , 1 .�

� �

� � � � �� �� � (10)

Similarly to addition, the introduced multiplication is commutative and associative. It
is easy to show that the distributive property is also valid for these operations.

In the operation of division of a given infinite number C by an infinite number B we
obtain an infinite number A and a reminder R that can be also equal to zero, i.e., C = A · B
+ R.

The number A is constructed as follows. The numbers B and C are represented in the

form (9). The first grossdigit 
Kka  and the corresponding maximal exponent kK are established

from the equalities

K L Mk l m K L Ma c b k l m/ , .� � �  (11)

Then the first partial reminder R1 is calculated as

K
K

k
kR C a B1 . .� � �  (12)

If R1 � 0 then the number C is substituted by R1 and the process is repeated by a complete

analogy. The grossdigit 
K ika ,
�

 the corresponding grosspower kK–i and the partial reminder

Ri+1 are computed by formulae (13) and (14) obtained from (11) and (12) as follows: lL and

Ll
c  are substituted by the highest grosspower ni and the corresponding grossdigit 

inr  of the

partial reminder Ri that in its turn substitutes C:

K i i Mk n m K i i Ma r b k n m/ , .
� �� � � (13)

K i
K i

k
i i kR R a B i1 . , 1.�

�� � � �� (14)

The process stops when a partial reminder equal to zero is found (this means that the
final reminder R = 0) or when a required accuracy of the result is reached.
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4. MEASURING OBJECTS BEING RESULTS OF SELF-
SIMILARITY PROCESSES AT INFINITY

We start by proving the following important result: the number of elements of any infinite
sequence is less or equal to �. To demonstrate this we need to recall the definition of the
infinite sequence: ‘An infinite sequence {an},an � A for all n � �, is a function having as
the domain the set of natural numbers, �, and as the codomain a set A � �’.

We have postulated in the Infinite Unit Axiom that the set � has � elements. Thus, due
to the sequence definition given above, any sequence having � as the domain has � elements.

One of the immediate consequences of the understanding of this result is that any process

can have at maximum � elements5. For example, if we consider the set, �̂ , of extended

integer numbers then starting from the number 1, it is possible to arrive at maximum to �

. . ., 3, 2 1, 0,1,2,3, 4, . . . 2, 1, , 1, 2, 3, . . .� � � � � � � ������������� � � � � �

�
(15)

Starting from 0 it is possible to arrive at maximum to � – 1

. . ., 3, 2 1,0,1,2,3,4, . . . 2, 1, , 1, 2, 3,. . .� � � � � � � ������������� � �� � �

�
(16)

Starting from – 1 it is possible to to arrive at maximum to � – 2

. . ., 3, 2 1,0,1,2,3,4, . . . 2, 1, , 1, 2, 3,. . .� � � � � � � ������������� � �� � �

�
(17)

Of course, since we have postulated that our possibilities to express numerals are finite,
it depends on the chosen numeral system which numbers among � members of these
processes we can observe.

In order to be able to measure fractals at infinity, we should reconsider the theory of
divergent series from the new viewpoint introduced in the previous sections. The introduced
numeral system allows us to express not only different finite numbers but also different
infinite numbers. Therefore, due to Postulate 3, we should explicitly indicate the number of
items in all sums independently on the fact whether this number is finite or infinite. Due to
Postulate 2, we shall be able to calculate the sum if its items, the number of items, and the
result are expressible in the numeral system used for calculations. It is important to notice
that even though a sequence cannot have more than � elements, the number of items in a
sum can be greater than grossone because the process of summing up not necessary should
be executed by a sequential adding items.
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For instance, let us consider two infinite series

S1 = 2 + 2 + 2 + 2 + 2 + . . . S2 = 1 + 2 + 1 + 2 + 1 + 2 + 1 . . .

The traditional analysis gives us a very poor answer that both of them diverge to infinity.

Such operations as S1– S2 or 
S
S

1

2
 are not defined. From the new point of view, the sums S1

and S2 can be calculated but it is necessary to indicate explicitly the number of items in both
sums.

Suppose that the sum S1 has m items and the sum S2 has n items:

S m

m
1( ) 2 2 2 . . . 2,� � � � ��������            

S n

n
2 ( ) 1 2 1 2 1 2 1 . . ..� � � � � � � ������������

Then S1(m) = 2m and

k k k if n k
S n

k k k if n k
n

2
2 3 2 ,

( ) 1 2 1 2 1 2 1 . . ..
2 1 3 1, 2 1,

� � ��
� � � � � � � � � �

� � � � � �������������

and giving numerical values (finite or infinite) to m and n we obtain numerical values for
results of the sums. If, for instance, m = n = 3� then we obtain S1(3�) = 6�, S2(3�) = 4.5�

because � is even (since, due to the Infinite Unit Axiom, 2
�  is integer) and

S2(3�) – S1(3�) = –1.5� < 0.

If m = � and n = 3� + 1 we obtain S1(�) = 2�, S2(3�+1) = 4.5� + 1 and it follows

S2(3�+1) – S1(�) = 2.5� + 1 > 0.

If m = 3� and n = 4� we obtain S1(3�) = 6�, S2(4�) = 6� and it follows

S2(4�) – S1(3�) = 0.

Analogously, the expression 
S k
S n

1

2

( )
( )  can be calculated.

Let us return now to Cantor’s construction and remind that if a finite number of steps,
n, has been executed in Cantor’s construction starting from the interval [0,1] then we are
able to describe numerically the set being the result of this operation. It will have 2n intervals

having the length n
1

3  each. Obviously, the set obtained after n + 1 iterations will be different
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and we also are able to measure the lengths of the intervals forming the second set. It will

have 2n+1 intervals having the length n 1
1

3 �  each. The situation changes drastically in the

limit because traditional approaches are not able to distinguish results of n and n + 1 steps
of the construction if n is infinite. Now, we can do it using the introduced infinite and
infinitesimal numbers.

Since the construction of Cantor’s set is a process, it cannot contain more then � steps
(see discussion related to the example (15)-(17)). Thus, if we start the process from the
interval [0,1], after � steps Cantor’s set consists of 2� intervals and their total length, Ln, is

expressed in infinitesimals: � �L 2
3( ) ,�

�
�  i.e., the set has a well defined infinite number of

intervals and each of them has the infinitesimal length equal to 3–�. Analogously, after � –
1 steps Cantor’s set consists of 2�–1 intervals and their total length is expressed in

infinitesimals: � �L
-12

3( ) .�
�

�  Thus, the length Ln for any (finite or infinite) number of

steps, n, where 1 � n � � and is expressible in the chosen numeral system can be calculated.

It is important to notice here that (again due to the limitation illustrated by the example
(15)-(17)) it is not possible to count one by one all the intervals at Cantor’s set if their
number is superior to �. For instance, after �  steps it has 2� intervals and they cannot be
counted one by one because 2� > � and any process (including that of the sequential
counting) cannot have more that �  steps.

Let us consider now two processes that both use Cantor’s construction but start from
different initial conditions. Traditional approaches do not allow us to distinguish them at
infinity in spite of the fact that for any given finite number of steps, n, the results of the
constructions are different and can be calculated. Using the new approach we are able to
study the processes numerically also at infinity. For example, if the first process is the
usual Cantor’s set and it starts from the interval [0,1] and the second one starts from the

couple of intervals 1
30,� �� �  and 2

3 ,1� �� �  then after 2
�  steps the result of the first process will

be the set consisting of 22
�  intervals and its length � � � �L 22

2 3 .�
�

�  The second set after 2
�

steps will consists of 2
1

2
��  intervals and its length � � � �L 2

12
2 31 .

�
� �

�
�   Naturally, it becomes

possible to measure by a complete analogy other classical fractals such as the Koch Curve,
the Sierpinski Carpet, etc.
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In order to be able to calculate lengths of geometric polygonal spirals from Figs. 2 and

3 at infinity, we need to consider (see (1)) the geometric series i
i

q
0

�
��  from the new

viewpoint. Traditional analysis proves that it converges to q
1

1�  for q such that –1 < q < 1.

We are able to give a more precise answer for all values of q. Due to Postulate 3, to do this
we should fix the number of items in the sum. If we suppose that it contains n items then

n
i n

n
i

Q q q q q2

0

1 . . ..
�

� � � � � ��  (18)

By multiplying the left hand and the right hand parts of this equality by q and by subtracting
the result from (18) we obtain

Qn– qQn = 1 – qn+1

and, as a consequence, for all q � 1 the formula

n

n
q

Q
q

11
1

��
�

� (19)

holds for finite and infinite n. Thus, the possibility to express infinite and infinitesimal
numbers allows us to take into account infinite n too and the value qn+1 being infinitesimal
for a finite q < 1 and infinite for q > 1. Moreover, we can calculate Qn for q = 1 also because
in this case we have just

n

n

Q n
1

1 1 1 . . . 1 1.
�

� � � � � � ��������

As the first example, let us consider a spiral with q 1
3 .�  Traditional analysis tells us that

the length of the spiral is equal to

i
i

S
1

0 3

1 2
2 3.

13

�

�

� � �
��

By using the new computational paradigm we are able to give a more precise answer because
we are able to distinguish different infinite and infinitesimal numbers and, as a consequence,
we can speak not only about tendencies at infinity, as traditional analysis does, but give
precise numerical answers. Thus, if we know how many steps, n, have been executed during
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the process of the construction of the spiral, we can calculate its length Sn for finite and
infinite n using formulae (1), (18), and (19): Sn = 2Qn. For example, if �– 1 steps have been
executed, the spiral will have the length

�
� � � � � � � � �

�
S

1
3

-1 2 -1 -11
3

11 1 1 1
(1 . . . ) 2 3 .

3 13 3 3

�

� � � (20)

We can see from this formula that the new numeral system allows us to distinguish and to

measure the infinitesimal part of the length of the spiral, -1

1

3�
, that was invisible for

traditional numeral systems. Analogously, if n = �, the length of the spiral is equal to

�
� � � � � � � � � �

�
S

+1
1

3
2 -1 1

3

11 1 1 1 1
2(1 . . . ) 2 3 .

3 13 3 3 3

�

� � � � (21)

The second spiral has been obtained from the first one by adding two intervals having

infinitesimal length  1
3

.�  We can obtain this value by subtracting the right part of (20) from

the right part of (21)

S S -1 -1

1 1 2
3 (3 ) .

3 3 3
� � � � � �� � � � �

The new numeral system allows us to measure also the lengths of spirals with q > 1.
For example, from the traditional point of view it is not possible to measure and to compare
spirals having q = 2 and q = 3. We are forced just to say that their lengths are infinite
because the series

i

i 0

1 2 4 8 . . . 2 ,
�

�

� � � � �� i

i 0

1 3 9 27 . . . 3
�

�

� � � � ��

are divergent. The new approach allows us to measure both spirals and to compare them.
Suppose that the spiral with q = 2 has been constructed in n steps and the spiral with q = 3
in m steps and we want to calculate their lengths An and Bm. It follows from (1), (18), and
(19) that

n
n

nA
1

21 2
2 2 2,

1 2

�
��

� � �
�

m
m

mB
1

11 3
2 3 1.

1 3

�
��

� � �
�
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Both formulae work for finite and infinite values of n and m and allow us to measure

the lengths of spirals easily. For example, if n m 2 1,� � ��  then obviously

A 2

2

1

1 2 2,
�

� � �
�

� B 2

2
1 3 1.� � �

�

�

If in the construction of the first spiral one more step has been executed, i.e., n 2 ,� �  and in

the construction of the second spiral m 2 1,� ��  i.e., two steps have been added, then

A 2

2

2
2 2,

�� �
�

� B 2

2

2

1
3 1.

�
� � �

�

�

We can obtain the same results by direct calculation, i.e., by adding two pieces of the

length 22
�  to A

1
2
��  and two times pieces of the length 23

�  and 2
1

3
��  to B

1
2
��

� � � �
� � � � � � � �A 2 2 2 2

2

2 1 1 2

1
2 2 2 2 2 2 2,

� � � �

�

B 2 2 2 2 2 2

2

1 1 2

1 2(3 3 ) 3 1 2(3 3 ) 3 1.
� � �

� � � � � � � � �
� � � � � �

�

5. A BRIEF CONCLUSION

It has been shown in the paper that the new powerful numeral system allowing us to express
not only finite but also infinite and infinitesimal numbers gives a lot of new (in comparison
with traditional numeral systems able to express only finite numbers) information about
behavior of fractal objects at infinity and can be successfully applied for measuring fractals.

It has been emphasized that the philosophical triad – researcher, object of investigation,
and tools used to observe the object – existing in such natural sciences as physics and
chemistry exists in mathematics too. Usage of powerful numeral systems gives a possibility
to obtain more precise results in mathematics in the same way as usage of a good microscope
gives a possibility to obtain more precise results in physics. Infinite and infinitesimal numbers
introduced in [15, 16, 17, 18, 19]) allow us to distinguish at infinity different infinite iterations
and different fractal objects corresponding to that iterations that were undistinguishable
when traditional finite numbers were used.
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NOTES

1. We remind that numeral is a symbol or group of symbols that represents a number. The
difference between numerals and numbers is the same as the difference between words and
the things they refer to. A number is a concept that a numeral expresses. The same number
can be represented by different numerals. For example, the symbols ‘6’, ‘six’, and ‘VI’ are
different numerals, but they all represent the same number.

2. As a consequence, the approach used in this paper is different also with respect to non-standard
analysis introduced in [14] and built using Cantor’s ideas.

3. Note that introduction of a new numeral for expressing infinite and infinitesimal numbers is
similar to introduction of the concept of zero and the numeral ‘0’ that in the past have allowed
people to develop positional systems being more powerful than numeral systems existing before.

4. This point is one of the differences with respect to non-standard analysis (see [13, 14]) where
infinite numbers are not included in �.

5. This observation has a deep relation to the Axiom of Choice. The Infinite Unit Axiom postulates
that any process can have at maximum � elements, thus the process of choice too and, as a
consequence, it is not possible to choose more than � elements from a set. This observation
also emphasizes the fact that the parallel computational paradigm is significantly different
with respect to the sequential one because p parallel processes can choose p� elements from
a set.
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