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Dark Energy Models in Alternative Theories of Gravity

GIANLUCA ALLEMANDI & MAURO FRANCAVIGLIA

This paper presents a review on new theories and new approaches, that have been recently
investigated in deeper detail, to provide coherent alternative models for Dark Energy in
the Cosmological framework. One of the most striking experimental result is nowadays
the acceleration of the Universe. Physicists and Mathematicians have to face this
experimental evidence and should give a coherent theoretical explanation to the striking
experimental results. Dark Energy models are usually assumed to be a solution to this
theoretical problem, even if they are (mainly formally) inconsistent from a physical
viewpoint. The general procedure consists in assuming Einstein equations with matter and
suitably introduce exotic matter to fit the experimental data.

New kinds of models have been recently introduced and studied, dealing with modifications
of the gravitational contribution to the relativistic theory, rather than of the usual
modifications of the matter contribution to the model, which are necessarily assumed to be
some negative pressure dark matter fluids (so-called Dark Energy).

PACS numbers.

I. INTRODUCTION

General Relativity (GR) was formulated by A. Einstein in 1916, on the bases of the theory
of Mach and in the mathematical framework of Riemann geometry. It was originally intended
as a geometric theory to describe the Universe. GR is based on three fundamental principles,
which are by no means independent on each other:

• Covariance principle : The laws of nature are merely statements about spacetime
coincidences; they therefore find their only natural expression in generally covariant
equations.

• Equivalence principle : Inertia and weight are identical in nature. It follows
necessarily from this and from the results of the Special Theory of Relativity that
the symmetric fundamental metric tensor g�� determines the metrical properties of
space, the inertial behaviour of bodies in it, as well as gravitational effects.

• Mach’s principle : The g-field is completely determined by the masses of bodies.
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Since mass and energy are identical in accordance with the results of the Special
Theory of Relativity and the energy is described formally by means of the symmetric
energy tensor T�� , this means that the g-field is conditioned and determined by the
energy tensor of matter.

These three principles represent the philosophical background for General Relativity
and they imply a deep connection between the (curved) geometry of spacetime, gravitational
forces and masses. They set the bases not only for General Relativity, but they are a general
framework to describe the Physics of Nature, a general requirement that each field theory
has to satisfy.

The Equivalence Principle gives g�� a physical meaning and requires the theory to be a
field theory in which the metric tensor is one of the fundamental fields. It can be reformulated
from a local point of view by saying that: in each infinitesimal region of spacetime (such
that the variation of the gravitational field can be neglected in it) there exists a local
coordinate system in which each physical phenomenon is independent on gravity.

Mach’s Principle otherwise states that the components of the metric tensor are deeply
related to the matter fields and in this context the matter and the geometry of spacetime
interact with each other. Matter fields can influence and change the geometry of spacetime.
This concept is the translitteration of the equivalence between inertial mass and gravitational
mass. It is usually assumed that GR is the only geometric theory, able to describe the
experimental results: new and strange experimental results are usually interpreted by means
of modifications of the matter content of the Universe. However, in the framework of the
same Mach’s principle, it is otherwise possible to consider the case of modifications of the
geometric content of the theory, reproducing somehow modifications of matter as we will see
later. This is extremely important when matter contributions are physically non-consistent.

The fundamental Einstein’s field equations of motion can be derived from those three
fundamental principles, using a heuristic proof1 or using a variational principle as we will
see later. The metric is then related to the energy-momentum tensor of matter according to
Mach’s principle:

G R Rg T
1

4
2

�� �� �� ��� � � � (1)

Here G�� is the Einstein tensor, R�� is the symmetric Ricci tensor, R = R��g
�� is the

scalar curvature and T�� is the stress energy tensor of matter. We stress that each object in
the first two terms of (1) is deeply related to the geometry of spacetime. General Relativity
can be otherwise constructed, setting the metric g and the matter fields � as fundamental
fields, as a Lagrangian field theory. The Lagrangian chosen is second order in the metric
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and first order in the matter fields and it is presented as the sum of a gravitational Lagrangian
LH and a matter Lagrangian

Lmat:

L = LH(g, �g, �2g) + Lmat(g, �, ��) (2)

The standard Hilbert Lagrangian for the gravitational field is set to be:

HL gRds
k

1
2

� (3)

where R is the Ricci’s curvature scalar, g  denotes g
1
2| det || |||��  and ds is a local volume

element of spacetime. Hamilton’s principle, a variational principle based on the minimal
action principle, will provide the correct Einstein’s field equations.

Even if General Relativity is worldwide considered as the geometric theory for spacetime
some alternative theories, based on the same principles, but on different Lagrangians, have
recently assumed some importance. In this paper we try to better understand and to analyze
possible cosmological applications of these alternative theories of Gravity in relation with
their capability to explain the cosmological acceleration of the Universe, both in early
times (inflation) and in present time universes. This is equivalent to state that these models
represent alternatives for Dark Energy, as we will explain in the following. We will focus
our attention on the possible theoretical explanations of the present cosmological
acceleration.

Recent astronomical observations have shown in fact that the universe is accelerating
at present time (see [1] and [2] for supernova observation results; see [3] for the observations
about the anisotropy spectrum of the cosmic microwave background (CMBR); see [4] for
the results about the power spectrum of large-scale structure). Physicists have thus to face
the evidence of the acceleration of the Universe and should give a coherent theoretical
explanation to those experimental results. The first attempts to explain accelerating models
of the Universe where made in the context of dark energy theories. The real nature of dark
energy, which is required by General Relativity in this cosmological context, is unknown
but it is fairly well accepted that dark energy should behave like a fluid with a large negative
pressure. The dark energy models with effective equation of state weff (which determines
the relation between pressure p and density of matter p) smaller than weff < –1 are currently
preferrable, owing to the experimental results of [3].

Another possibility to explain the physical evidence is to assume that we do not yet
understand Gravity at large scales, which suggests to us that General Relativity should be
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modified or replaced by alternative gravitational theories of Gravity when the curvature of
spacetime is small (see for example [8], [9], [10] and references therein), thus providing
modified Friedmann equations. Hints in this direction are suggested moreover from the
quantization on curved spacetimes, when interactions among the quantum fields and the
background geometry or the self interaction of the gravitational field are considered. It
follows that the standard Hilbert-Einstein Lagrangian has to be suitably modified by means
of corrective terms, which are essential in order to remove divergences [8]. These corrective
terms turn out to be higher-order terms in the curvature invariants (such as R, R��R��,
R����R����, R�

lR), or non-minimally coupled terms between scalar fields and the gravitational
field. It is moreover interesting that such corrective terms to the standard Hilbert-Einstein
Lagrangian can be predicted in higher dimensions by some time-dependent compactification
in string/M-theory (see [9]) and corrective terms of this type arise surely in brane-world
models with large spatial extra dimensions [10]. As a matter of facts, if these brane models
are the low energy limit of string theory, it is likely that the field equations should include
in particular the Gauss-Bonnet term, which in five dimensions is the only non-linear term
in the curvature which yields second order field equations. In this framework Gauss-Bonnet
corrections should be seriously taken into account and cosmological models deriving from
the Gauss-Bonnet term have been recently studied; see [12] and references therein.

As an alternative to extra dimensions it is also possible to explain the modification to
Friedmann equations (which could provide a theoretical explanation for the acceleration of
the Universe) by means of a modified theory of four-dimensional gravity. The first attempts
in this direction were performed by adding to the standard Hilbert-Einstein Lagrangian
some suitable analytical term in the Ricci scalar curvature invariant [11]. A simple task to
modify General Relativity, when the curvature is very small, is hence to add to the Lagrangian

of the theory a piece which is proportional to the inverse of the scalar curvature R
1  or to

replace the standard Hilbert-Einstein action by means of polynomial-like Lagrangians,
containing both positive and negative powers of the Ricci scalar R and logarithmic-like
terms. Such theories have been analyzed and studied both in the metric [13] and the Palatini
formalisms [14], [16]. It turns out hat both in the metric and the Palatini formalism they can
provide a possible theoretical explanation to the present time acceleration of the universe.
In these paper we also discuss briefly cosmological applications of f (R) theories, referring
to [14] and [15] for further references and discussions.

We start hereafter discussing f (R) theories in the metric formalism. We then consider
the case of f (R) theories in the Palatini formalism and their cosmological applications as
Dark Energy models. We will see as it is possible to interpret the present acceleration of the
Univerrse in the framework of this class of models.
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II. ALTERNATIVE THEORIES OF GRAVITY IN
THE METRIC FORMALISM

We consider the case of f (R) gravitational theories in the metric formalism. In general,
fourthorder theories of gravity are given by an action of the general kind

g f R( )� �� , (4)

where f (R) is an arbitrary (analytic) function of the Ricci curvature scalar R. We are here
considering the simplest case of fourth-order gravity but we could construct such kind of

theories also using other invariants in Rµ� or R
���

� . The standard Hilbert–Einstein action is

of course recovered for f (R) = R. Varying with respect to g��, we get the field equations

f R R f R g f R g g g g;1
( ) ( ) ( ) ( ),

2
��

�� �� �� �� �� ��� � �� � (5)

which are fourth-order equations due to the term f R ;( ) ��� ; the prime indicates the derivative

with respect to R, while ; denotes covariant derivative with respect to the metric. By a
suitable manipulation the above equation can be rewritten under the form:

G g f R Rf R f R g f R
f R ;

1 1
[ ( ) ( )] ( ) ( ) ,

( ) 2�� �� �� ��
� �� � � �� �
� �

� � �
� (6)

where the gravitational contribution due to higher-order terms can be simply reinterpreted
as a stress-energy tensor contribution. This means that additional and higher order terms in
the gravitational action produce in the theory the same effects of a stress-energy tensor of
matter, related to the chosen form of f (R). This allows to reinterpret these theories as
possible models for Dark Energy [11], [13]. The analytical form of f (R), which can suitably
chosen, rules the corresponding stress energy tensor of matter. In the more general case of
matter theories, where a minimal interaction between the gravitational field and matter
fields is present, i.e.

matg f R L( ) ( ),� � ��� (7)

than the stress-energy tensor due to higher order gravitational terms in the Lagrangian adds
to the true stress-energy tensor T�� of matter, giving:

G g f R Rf R f R g f R T
f R ;

1 1
[ ( ) ( )] ( ) ( ) ,

( ) 2�� � �� �� ���
� �� � � � �� �
� �

� � �
� (8)
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where matL
gg

T 2 .
��

�
�� �� �  The case of standard General Relativity is of course reproduced for

f (R) = R. In this particular case, in fact, the higher order terms in field equations vanish
identically, due to the fact that the derivatives of f (R) vanish. This is related with the
degeneration of the Hilbert-Einstein Lagrangian.

III. FIRST ORDER NON LINEAR f (R) GRAVITY

We study hereafter the so-called Palatini formalism for alternative theories of Gravity, that
we deeply investigated in view of cosmological applications [14, 15]. The action for f (R)
Gravity is introduced to be:

grav mat matA A A g f R L d x4( det ( ) 2 ( ))� � � � � �� (9)

where R � R(g, �) = g��R��(�) is the generalized Ricci scalar and Rµ�(�) is the Ricci tensor
of a torsionless connection �. The gravitational part of the Lagrangian is again controlled
by a given real analytic function f (R) of one real variable, that now depends on the two
independent variable g and �. The total Lagrangian contains also a matter part Lmat in minimal
interaction with the gravitational field, depending on matter fields � together with their
first derivatives and equipped with a gravitational coupling constant � = 8�G.

Equations of motion, ensuing from the first order á la Palatini formalism are (we assume
the spacetime manifold to be a Lorentzian manifold M with dim M = 4; see [39]):

f R R f R g T( )
1

( ) ( ) ( )
2�� �� ��� � � �� (10)

gf R g( det ( ) ) 0� ��
�� �� (11)

where matL
gg

T 2
��

�
�� �� �  denotes again the matter source stress-energy tensor and �� means

now covariant derivative with respect to �.

We shall use the standard notation denoting by R(µ�) the symmetric part of Rµ�,

i.e. R R R1
( ) 2 ( );�� �� ��� �  notice that for an arbitrary torsionless � the Ricci tensor is not a

priori symmetric. In order to get (11) one has to additionally assume that Lmat is functionally
independent on �; however it may contain metric covariant derivatives �g ��of fields. This
means that the matter stress-energy tensor T�� = T��(g, �) depends on the metric g and
some matter fields denoted here by �, together with their derivatives. From (11) one sees
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that g f R gdet ( ) ���  is a symmetric twice contravariant tensor density of weight 1, so that

if not degenerate one can use it to define a metric hµ� such that the following holds true

g f R g hhdet ( ) det�� ���� (12)

This means that both metrics h and g are conformally equivalent. The corresponding
conformal factor can be easily found to be f�(R) (in dim M = 4) and the conformal
transformation results to be:

hµ� = f��(R)gµ� (13)

Therefore, as it is well known, equation (11) implies that � = �LC(h), i.e. � coincides
with the Levi-Civita connection �LC of the metric h defined by (12) and R(µ�)(�) = Rµ�(h) �
Rµ��� Let us now introduce a (1,1)-tensorfield P by

P g R h( )� ��
� ��� (14)

so that (10) re-writes as

f R P f R T
1

( ) ( )
2

� � �
� � �� � � �

�
� (15)

where we set T T g T� ��
� ��� �

� �
 and from (14) we obtain that R = trP.

Equation (15) can be supplemented by the scalar-valued equation obtained by taking
the trace of (15); i.e.

f��(R)R – 2f (R) = �g���T�� ���� (16)

which controls solutions of (15) (we define trT� �
�

). We shall refer to this scalar-valued

equation as the structural equation of spacetime. The structural equation (13), if explicitly
solvable, provides an expression of R = F(�) and consequently both f (R) and f�(R) can be
expressed in terms of �. More precisely, for any real solution R = F(�) of (16) one has that
the operator P can be obtained from the matrix equation (15):

f F
P I T

f F f F
( ( ))

2 ( ( )) ( ( ))
� �

� �
� �

�

� � (17)

Now we are in position to introduce generalized Einstein equations under the form

g P R h( )�
�� � ���  (18)
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where hµ� is given by (13) and P�
�  is obtained from the algebraic equations (16) and (17)

(for a given gµ� and Tµ�); see also [14] and [39]. For the matter-free case we find that R =
F(0) becomes a constant, thus implying that the two metrics are proportional and the operator
P is proportional to the identity (i.e. to Kronecker delta). Equation (18) is hence nothing but
Einstein equation for the metric g, almost independently on the choice of the function f (R),
as already obtained in [39]. Also the standard Einstein equation with a cosmological constant
� can be recasted into the form (18). It corresponds to the choice f (R) = R – � . These
properties justify the name of generalized Einstein equation given to (18). In the presence
of matter, equation (18) expresses a deviation for the metric g to be an Einstein metric as it
was discussed in [14]. It can be otherwise interpreted as an Einstein equation with additional
stress-energy contributions deriving from the modified gravitational Lagrangian [16] as
much as in the previous metric formalism, or possibly as a modified theory of gravity with
a time dependent cosmological constant.

A. Cosmological Applications of First-order Non-linear Gravity

We give here a brief summary of the results obtained in [14] where cosmological applications
of f (R) Gravity were deeply discussed. Owing to the cosmological principle we assume g
to be a Friedmann-Robertson-Walker (FRW) metric which (in spherical coordinates) takes
the standard form:

� �g dt a t dr r d d
r

2 2 2 2 2 2 2
2

1
( ) sin ( )

1
� �� � � � � � � �� ���� �

(19)

where a(t) is the so-called scale factor and K is the space curvature (K = 0, 1,–1). We
further choose a perfect fluid stress-energy tensor for matter:

Tµ� = (�+ p)uµu�+ pgµ� (20)

where p is the pressure, � is the density of matter and uµ is a co-moving fluid vector, which
in a co-moving frame (uµ = (1, 0, 0, 0)) becomes simply:

��
��

�� �
� �
� �
� �
� �
� �� ��� �

pa

rT
pa t r

pa t r

2

21

2 2

2 2 2

0 0 0

0 0 0

0 0 ( ) 0

0 0 0 ( ) sin ( )

(21)
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The metric h turns out to be conformal to the FRW metric g by means of the conformal
factor f�(R), which can be moreover expressed in terms of ��by means of (16) and finally as
a function of time

b(t) = f�(R(�)) (22)

by an abuse of notation. From (18) we can obtain an analogue of the Friedmann equation
under the form

a b f
H

a b b a

2

2

( )ˆ
2 3 2

� � � � � �� �� �� � � � � �� � � ��� �� �

��
(23)

which can be seen as a generalized definition of a modified Hubble constant. � �a b
a b

H 2
ˆ ,� � ��

taking into account the presence of the conformal factor b(t) which enters into the definition
of the conformal metric h (see [14] for details). This equation reproduces, as expected, the
standard Einstein equations in the case f (R) = R.

Considering the particular example f (R) = �Rn of a pure-power Lagrangian we have
obtained that the Hubble constant for the metric g can be (locally) calculated to be:

w
n

K
H r n w a s n w

a

3( 1)
2

2
( , ) ( , )

� �

� � � (24)

where:

�� �
� � � � � �

� � �

� � ��� � �
�
� � �� � ��

nwn
w w n n n

n
w n n

r n w

s n w

1
(3 1)2

3(3 1)(3 ( 1) ( 3) (2 )

2
2

3 ( 1) ( 3)

( , )

( , )

are functions of the exponent n and of the equation of state for matter, through w. We
remark that the values of can be � = �1, in particular � = signR = 1 for odd values of n and
� = �1 for even values of n; see [14] for details. The deceleration parameter can be obtained
from the Hubble contant by means of the following relation:

H t
q t

H t H t2 2

( ) ä(t)
( ) : 1

( ) a(t) ( )

� � � �
� � � � �� � � �

� � � �

�
(25)
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and from (24) it turns out to be formally equal to:

w
n

w
n

w
n r n w a s n w Ka

q t w n
r n w a s n w Ka

3(1 )

3(1 )

3(1 ) 2
2

2

( , ) ( , )
( , , ) 1

( , ) ( , )

�

�

�� �

� �

� �
� � �

� �
(26)

It follows that when the term a–2 dominates over 
w

na
3(1 )

2
��  the deceleration parameter

turns out to be positive, i.e. q(t,w, n) � 0. On the contrary, when the term 
w

na
3(1 )

2
��   dominates

over a–2 (or in the case K = 0 corresponding to spatially flat spacetimes) the deceleration
parameter turns out to be:

w
q w n

n

3(1 )
( , ) 1

2
�

� � � (27)

which is negative for n < 0 or wn 3(1 )
2 0�� �  owing to the positivity of (1+ w) for standard

matter; see [14]. This implies that the accelerated behavior of the Universe is predicted in
a suitable limit. In particular it follows that super-acceleration (q < –1) can be achieved
only for n < 0. The effective weff can be obtained (as in [11]) by means of simple calculations
from (24) and (27). It turns out to be, for this theory:

eff
w

w q n w
n

2 1 ( 1)
( , ) 1

3 3
�

� � � � � (28)

We remark that the range of –1.45 < weff < –0.74 for dark energy, stated in [3], can be easily
recovered in this theory by choosing suitable and admissible values2 of n. We refer to [14]
for physical considerations and for more detailed discussions and examples concerning
polynomial-like Lagrangians in the generalized Ricci scalar.

IV. CONCLUSIONS

We have here proven the importance of alternative theories of Gravity as alternative models
for Dark Energy. These theories have been interpreted in the framework on General Relativity
principles and studied both in the metric and Palatini formalism.

A striking result is the possibility, in this framework, to interpret the present acceleration
of the Universe and to obtain the expected values both for the deceleration parameter and
for the effective barotropic parameter weff . More General theories, containing higher order

108



invariants, have been also studied to provide even a larger class of models and to enlarge
the number of models at our disposal to theoretically explain the recent and striking
experimental results.
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NOTES

1. This proof is based on a generalization of the Polsson’s equation from Newton’s theory to
General Relativity and on the requirements that the theory should be of second order, it should
be linear in the second derivatives of the metric and the divergence equations of the motion
should be zero.

2. As already explained in [14] the parameter n should not be an integer, it can be any real
number satisfying some reliability conditions, see [14] for further discussions and details.
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