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Stochastic Self-Similar Universe, Oscillating
Solutions and Quantum Particles

G.IOVANE & E. BENEDETTO

In this paper, starting from the hierarchical self-similar Universe, we analyze the
cosmological Schrodinger equation. Thanks to the first quantization, it is possible to recast
Einstein equations in a Schrodinger-like form. By performing a numerical analysis, we
find that, when assigned the value of a mass, the probability to find a particle in fixed mass
range is the same everywhere in Universe models: open-close-flat, with or without
cosmological constants. Considering different masses the probability changes, but they
seem to be self-similar. In addition we have the question of if dark matter really exists, and
if could consist of by ultra-light particles.

1. INTRODUCTION

Understanding the experimental rotation curves of galaxies is one of the main open problems
in astrophysics. We know that it required a condition of equilibrium between gravitational
force and centrifugal one for a body in rotation on itself to be dynamically stable. If the
body rotates faster than a certain maximum velocity, it will disintegrate by its own centrifugal
force. There are galaxies which rotate faster than the theoretical maximum velocity and,
beyond this, the velocity of the stars along the arms does not seem to decrease in a Keplerian
way. To justify the equilibrium one can hypothesize the existence of dark matter which
increases the mass. In [1] and [2] by using E-Infinity theory as developed by Mohamed El
Naschie [3], [4], [5], we have proposed an approach based on the Fantappie’s
transformations; in fact, the study of projected spacetime, acknowledges a new law of time
dilatation that we associated with the two different time scales. That is, seen through
electromagnetic time, the processes such as rotation of celestial bodies were strongly
accelerated in the past, while the behaviour of light and atomic processes remained invariable.
In this paper we want to follow an approach based on quantum cosmology. The enigma of
quantum gravity is the most crucial problem of modern theoretical physics and at present
quantum cosmology does not exist but we know that gravity induces quantum effects as,
for example, the evaporation of black holes. We will analyze the cosmological Schrédinger
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equation as it has been proposed in different contexts by the first author of this paperin [6]
and other authors in [7], [8]. These authors, following Rosen [9], reduced the Einstein’s
equations to a quantum mechanical system and we want to show that, the solutions of this
equation, give a different oscillations of the probability function to find the quantum particles
at a given scale factor a(r).

The paper is organized as follows: we first discuss about the large scale structure of
Universe in Sect.2; Sect.3 presents the scale factor a() and its consequences; Sect.4 is
devoted to the cosmological Schrodinger equation; in Sect.5 we analyze the numerical
solutions of this equation; conclusions are drawn in Sect.6.

2. THE LARGE SCALE STRUCTURE OF THE UNIVERSE

Observation shows that the Universe has a structure with scaling rules, where the clustering
properties of cosmological objects reveals a form of hierarchy. In the previous paper, the
first author considers the compatibility of a Stochastic Self-Similar, Fractal Universe with
the observation and the consequences of this model. In particular, it was demonstrated that
the observed segregated Universe is the result of a fundamental self-similar law, which
generalizes the Compton wavelength relation, R(N) = (h/ Mc)N®, where R is the radius of
the astrophysical structures, # is the Planck constant, M is the total mass of the self-gravitating

J5-1
2

[6]. This expression agrees with the Golden Mean and with the gross law of Fibonacci and

system, ¢ the speed of light, N the number of nucleons within the structures, and ¢ =

Lucas [10],[11]. If the distribution of galaxies is random, with a mean density of n galaxies
for unitary volume, the relative probability to find a near galaxy in a volume dV to a distance
r from any galaxy is dP = ndV. Instead the distribution is certainly not random and we have
[12]

dP =ndV [1 + ()], (D)

where the correlation function {(r) characterizes the excess of probability and the

experimental observations show that
SMpc
==, @)

for r < 20Mpc. For clusters of galaxies we have

2
§(r) = (%)1’8, 3)
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for r < 100Mpc. Finally Broadhurst et al. found a periodicity in the three dimensional
distributions of galaxy superclusters with a characteristic scale of 128 Mpc[13]. It seems to
exist a regular network of superclusters and voids with a step size of 128 Mpc where chains
of superclusters are separated by voids of almost equal size.

3. FRACTAL SCALE FACTOR a(r) AND QUANTUM PARTICLES

Below the Plank scale, we find the quantum fluctuations of the space-time geometry. For
this reason, the scale of the order 10*°cm represents the quantum memory that we find
againg in the present Universe. Indeed, it is well-known that at the Plank scale, or equivalently
after 10~ seconds after the Big Bang, Universe starts emerging from the fluctuating quantum
geometry in the way that we know and then producing the “building blocks” of nature, like
quarks, leptons, fermions and bosons [14], [15], [12]. Could it be detected any trace of
these processes? We will see that the Einstein’s equations could have a solution for the
scale factor a(f) which is equivalent in form to the length R(N), which generalizes the
Compton wavelength. In some sense we can say that a kind of quantum imprinting is present
in the actual Universe.

Let us start from the well-known Einstein’s equations

1
Ruw =5 8 R = (87G /T, + Mg, @

where RW is the Ricci tensor, R is the Ricci scalar, TW is the stress-energy tensor, and A is
the cosmological constant; we assume a standard perfect fluid matter so that we may write

T,=@+puu -pg,, )
where p is the pressure, p the energy density and u, the velocity.

In [6] it was considered the case with cosmological constant A = 0. By taking into
account the Friedman-Robertson-Walker Metric

dr?
1-kr?

ds* =ctdt? — a* (t)( +r2d0* +r? sin® Gd(p2 J, (6)

the author obtained the following relation

a(r) = Pr''*> )

In this way it is proved that the scale factor a(¢) has a scale law in time, where f is the
following evaluated constant
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32 G~ 5 1/4
B=( = a4pj : (8)

3¢

where the symbol % denotes quantities at the present time. Besides it was found

3¢t
321G

p(1) = . )

It means that p(#) has no dependence from the present condition of the Universe. If we
assume that also the scale factor is a function of the number of the constituents, a = a(N),
that is

h
a(N)=—N?, (10)
m,c

by considering that when Universe passes from the dominance of radiation to the dominance
of matter p, =p . Consequently, we have

~3 ~4 ~4
a a a

ﬁmat 3 ﬁmd 4 —>m, ~ lsrat (11)
a a a
and so

an) __ h

N°,
Cl(f) Cﬁrad&4 (1 2)

It is obvious that a(N) / a(t) = 1 for every physical time; then, it follows

c 1/¢
N =(zﬁmd&“j : (13)

In other words, the number of components N into a structure is constant as it could be
suspected.

We now consider the general case represented by curvature k =0, £1 and cosmological
constant A =0 and A # 0. Starting from the following Bianchi’s identities

TH, =0, (14)
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we obtain
2= A 15
3 (15)
e 8 AT 16
p 2 32 — Pt 3 (16)

1
By multiplying for Emaz, finally we rewrite the previous (0, 0) Einstein equation as

lmc'z2 —%(@p+Acz)a2 = —%mkc , (17)

where m is the mass of a quantum test particle.

4. COSMOLOGICAL SCHRODINGER EQUATION

In the usual approach to quantum gravity Universe is assumed to be a quantum system
[16], [17], [18], [19] or as a classical background with primordial quantum processes, as in
the context of quantum field theory on curved spacetime [20]. This approach is based on
the Wheeler-De Witt equation

2
Gy =2

3) 1/2 1/2
; = Rh'"" +2Ah"")P(h;)=0, 18
ijkl 4
L) ahz:jahkl i ( )

where hij is the spatial metric, ®'R is the scalar curvature of the intrinsic geometry of the
three-surface and

1

1 _
G.].klah “2(hlkhﬂ +hyhjy — hyhyy). (19)

Here we have considered Universe as a fractal spacetime background, where primordial
quantum processes have given rise to the present segregated macroscopic structures.

Following Rosen, we write

T+V=E, (20)
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2D

where T has the role of the kinetic energy, V of the potential energy, and E of the total

energy with the following expression
1
T =—ma*,V(a)= —gm[SnG/c2)p +Ac?ld? E = —=mke?

The classical equation of mass motion is
md = _V (22)
da’
(23)

By defining the momentum of mass as
P =ma,
24)

the Hamiltonian as

p2
H=—+V(a),
2m

and by using the standard procedure of first quantization, we obtain the Schrédinger equation
(25)

ih@mp,
Ot

where 1) is the wave function. In other words, a quantum particle of mass m has the probability

|1)|* to be at a given scale factor a(r). Taking into account the relation between the scale
(26)

factor and the red-shift
= H =,

27)

and so
=1+z,

we can easily obtain the red-shift z to observe the quantum particles. To complete this
analysis, by using the standard quantum mechanics, the Schrodinger stationary equation
(28)

Q|

H¢=E¢7
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has the stationary state of energy E

Pa, t) = (a)e ™" (29)
Therefore, we can write
n* d*{
—Q— +V(a
2 dd (o) (30)

and the Schrédinger stationary equation can be written in the form

8nm’G mActa®  m*ke?
Rl ey pa’ + o v=0 31)

where the prime indicates the derivative with respect to a.

Since

p= - 32
D (32)

where M is the mass of all Universe, we have

pa’

p=—% 33
e (33)
and finally we obtain
A Lo
V' +[—+Ba” +Clv=0 (34)
a
where
_ 8um’G 53 G35)
3n%c? .
Remembering that
3H?c?
= , 36
Pe="g G (36)
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we obtain

2 2~
_m°c aldy,

A Py,

(37)

S. SELF-SIMILAR NUMERICAL SOLUTIONS

We have analyzed the numerical solutions of the cosmological Schrodinger equation for
different models of Universe and we have considered the oscillating solutions in a red shift
range from z=0to z= 1. Let us remember the useful relations for the study of the equation

~ 2 2
1:p£+;\l-fl2 —%=9M+QA+Q,(

- Km
H=100h—— with0.4<h<1
Mpc

G =2 =3000h"Mpc for k=0

e ¢ 30007 Mpc

AJa, +Q, -1 JQ, +q, -1 ork=1
. ¢ 30007 Mpc
a= for k=-1

AJ1-Q, +Q, J1-Q,+Q,
h=1,05459.10"erg .s

c=3.100"
S

22
mc°A
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Figure 1: Probability wawes to find a particle of mass 10~%’g in a red shift range
fromz =0 toz =0.5.

If the cosmological constant A = 0, the equation becomes

A

WS =0
a
w“+[é+C]¢=O.
a

The first equation is valid in an Euclidean space, the second in a not Euclidean space.
Vice versa, if the cosmological constant A # 0 we obtain

ﬂ/’+[é+Ba2]w=0
a

b +[§+Ba2 +C=0.
a

By observing the numerical solutions, we note that, the oscillations of probability to
find a quantum particle, depend only on the value of the mass ( see fig.1-5 ). That is, they
do not depend on the Universe model and besides they are not tied to the initial conditions.
The oscillations increase as the mass grows, but they appear self-similar. Inside the solar
system, the peaks of |1|* correspond to a masses range from m = 10-*g to m = 10~*"g. Then,
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in the solar system, the particles that have a greater probability to be found, are nucleons,
electrons and neutrinos. The ultra light particles, if they exist, have probability to be found
on galactic and extragalactic scale and they could form halos of dark matter. Fig.3 is a
zoom of fig.2; thanks to it we can observe the self-similarity of the probability. The same
results is shown in fig.4-5 at different mass scale.

1l|"|l.1‘.1;k.|1 fi 5

a.1 0.2 0.3 0.4 0.5

—51,

Figure 2: Probability wawes to find a particle of mass 10~'g in a red shift range

fromz =0 to z =0.5.

0.0z 0.04 0. 0e 0.0 0.1

Figure 3: The preceding graph in the range five times smaller and enlarged to the same scale
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Figure 4: Probability wawes to find a particle of mass 10’ in a red shift range

fromz=0toz=0.5

0.015 0.o2

Figure 5: Probability wawes to find a particle of mass 10’ in a red shift range twenty five
times smaller and enlarged to the same scale.

6. CONCLUSIONS

In this paper we have reduced the cosmological dynamical system to Schrdédingerlike
equation. Analyzing this equation numericaly, we have noted that they are Mass dependent
and appear to be self-similar. It seems that particles are selfsimilar in the sense of quantum
physics, that is as probability waves. Therefore, if this method is valid, the large scale
structure of Universe is self-similar not only in a geometrical sense, but the particles obey
in it a self-similar probabilistic distribution.
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