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Rainbow Option Pricing of Fractional version with

Hurst exponet H being in 1
( ,1)
2

DA-YE LI  JIONG RUAN

The Label rainbow was coined by Rubinstein (1991), who emphasizes that this option was
based on a combination of various assets like a rainbow is a combination of various colours.
More generally, rainbow options are multi-asset options, also referred to as correlation
options. Rainbow can take various other forms but the combining idea is to have a payoff
that is depending on the assets sorted by their performance at maturity. In this article, we
introduce Hurst exponents into the dynamics of stock log-price, and deduce the

corresponding rainbow option pricing formulas with Hurst exponents being in 
1

( ,1)
2

.

1. INTRODUCTION

Since it’s appearance in the 1970s, the Black-Scholes formula [1] has become one of the
most popular method for option pricing and its generalized version has provided
mathematicallly beautiful and powerful results on option pricing. However, they are stil
theoretical adoptions and not necessary consistent with empirical features of financial return
series, such as nonnormality, nonindependence, nonlinearity, etc. For example: Berg and
Lyhagen [2], Lo [3], Hsieth [4] and Huang and Yang [5] showed that returns are of short-
term (or long-term) dependency.

Lo and Mackinlay [6], Elton and Gruber [7], Frennberg and Hansson [8], Fama and
French [9] and Poterba and Summer [10] reported the positive auto-correlation for stock in
the short run and negative auto-correlation in the long run.

Let S(t) denote the stock log-price. S(t) is defined to be statistical self-similar with
Hurst exponent H (H � (0,1)) if (S(�t),t � 0) has the same probability law as (�HS(t),t � 0).

As we have known, mentioned from [19], many facts show that Hurst exponent H
varies in (0, 1) for different stocks returns or commodities prices or various exchange rates
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at al.. These inspire us to consider the option pricing with Hurst exponents (H � (0,1) (H

may not equal to 
1
2

). In fact, in this field, some models have been made. For instance,

Takahashi [16], Cutland et al. [17] and Ren et al. [18] have considered the option pricing

problems for H
1

( ,1).
2

�  In the case of H
1

(0, ),
2

�  as we have known, it has been studied

by Wang et al. [19]. But they all considered the option involving one asset.

In this paper, we will study the rainbow option involving two assets with H
1

( ,1)
2

�  by

using the similar way of Wang [19] , and deduce option pricing formula while the dynamics
of stock log-price S of stock I and II satisfy

ii i i H idS t dt t dB H i H H1
1 22( ) ( ) , ( ,1)( 1,2),� � � � � � � (1.1)

respectively, where �i(t) and �i(t) (i = 1, 2) are deterministic functions of time t and

i iH HB B t i( , ) ( 1,2)� � �  is a normalized fractional Brownian motion (fBm) on a probability

space (�,��, P). Furthmore, we obtain generalized rainbow option pricing formula involving
k (k � 1) assets.

2. SOME MATHEMATICAL PRELIMINARIES

In this section, we will consider the stochastic integral with respect to the fractional Brownian
motion (fBm) that have the Hurst exponent in (0, 1) and the corresponding general It�’s
formula with respect to a function f (t,x1 (t),. . .,xk (t)), where {xi(t),t�[a, b]} (i = 1, . . ., k)
are stochastic processes.

we work in probability space (�,��, P). Fractional Brownian motion BH = BH(t) with
Hurst exponent H ��(0, 1) is a continuous Gaussian process with stationary increments and
with the following properties:

(1) BH(0) = 0;

(2) E BH(t) = 0 for all t � 0;

(3) H H H
H HE B s B t t s t s2 2 21

2[ ( ) ( )] [ | | ]� � � �  for all s,t � 0.

The standard Brownian motion B is a fBm with Hurst exponent

H H HH r n E B B n B n1
2 . ( ) [ (1)( ( 1) ( ))],

�
� � � �  then we have the following properties from [20]:
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(a) if 
n

H r n1
2 0

(0, ), | ( ) | ;
�

�
� � ��

(b) if H HH B n B n1
2 , { ( 1) ( )}� � �  is uncorrelated;

(c) if 
n

H r n1
2 0

( ,1), | ( ) | .
�

�
� � ��

Actually, if H r n1
2(0, ), ( ) 0� �  for  n � 1 (negative correlation); if H r n1

2( ,1), ( ) 0� �

n � 1 (positive correlation). The property 
n

r n
0
| ( ) |

�
�

� ��  is often referred to as

long-range dependence. A fBm is also self-similar, that is, (BH(�t),t � 0) has the same
probability law as (�HBH(t),t � 0). A stochastic process x = {x(t)}t�R is self-similar with

index H > 0 (H-ss) if, for any � > 0, if, for any 
d

H
t R t Rx t x t0,{ ( )} { ( )} ,� �� � � � � �where d

�

stands for the sense of the finite-dimensional distributions.

Definition 2.1 Let f be a real-valued function on [a, b] × ��such that

(I) f is a second order random function;

(II) is � [a, b] × ��– measurable.

If  m
i i ii

f t f t t t
1

1)0
( ) [ , ( )

�
��

� � �  is a random step-function, then we define

mb

H i H i H ia
i

f x dB t f B t B t
1

1
0

( ) ( ) [ ( ) ( )]
�

�
�

� ���

In general, let � : a = t0 < t1 < . . . < tm = b be a partion of [a, b]. Set

i i i m i if f t t t0 1 1( ),| | max | |,� � � �� � � ��  m
m i H i H ii

I f f B t B t
1

10
( , ) [ ( ) ( )],

�
��

� � ��  where i i it t t 1[ , ].���

If Im (f,�) converges to a random variable I (f,�) in quadratic mean (q.m) as |�| �0,
then we define

b

Ha
f x dB t I f( ) ( ) ( , )� ��

We denote the set of functions such that 
b

Ha
f x dB t( ) ( )�  exists by � (H).

Theorem 1: Let f (t,�) be a real-valued function defined on [a, b] × ��such that
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(C.1) both (I) and (II) hold;

(C.2) for each �����, f (t,�) is absolutely continuous on [a, b] and 
b

ta
E f t dt2[ ( , )] ,� � ��

where ft denotes the partial derivative of f with respect to t;

(C.3) the process f = (f (t, �))t�[a,b] and BH = (BH(t))t�[a,b] are independent, then f ����(H).

Note that for each t � [a, b], f (., �) and BH(., �) are �-measurable. When f is a
deterministic function of time t, condition (C.3) is naturally satisfied. This is the situation
in which we will use this theorem in the next section.

Theorem 2: Let al(t,�),  bl(t,�) be �[a,  b] × �-measurable such that

b

la
a t dt2| ( , ) |� � ���  for almost every w and bl(t,�) satisfies (C.1)-(C.3) with H = Hi in

Theorem 1(l=1,2). Set

i

t t

l l l l Ha a
x t x a a d b dB( ) ( ) ( , ) ( , ) ( )� � � � � � � � �� � (2.2)

Let f : [a, b] × R × R ��R. Assume that p qx x
f

1 2
 and p qx x t

f p q n
1 2

( , 0,. . ., )�  are all

continuous, where 
�� � � � � � �p q p q p q

p q p q
x x x x t x x

f f x x f f t
1 2 1 2 1 2

1 2/ , / .  Set Y(t) = f (t, x1(t), x2(t)).

Assume that 1/n < H1 � 1 /(n –1) and H1 � H2 < 1. Then for any given n � 2, we have

Y(t) – Y(s)

t

x xs
f x x a f x x a f x x d

1 21 2 1 1 2 2 1 2[ ( , ( ), ( )) ( ) ( , ( ), ( )) ( ) ( , ( ), ( ))]� � � � � � � � � � � � � � ��

p j p

jm n
p p j p p j p
j i i i i i H i H ix x

i j p
m

C f t x t x t b t b t B t B t
j 1 21 2

1 1

1 2 1 2
| | 0 0 1 0

1
lim ( , ( ), ( ) ( ) ( )[ ( )] [ ( )]

!
�

� �
� �

�� � � �
���

� ��� �

t

x xs
f x x a f x x a f x x d

1 21 2 1 1 2 2 1 2[ ( , ( ), ( )) ( ) ( , ( ), ( )) ( ) ( , ( ), ( ))]�� � � � � � � � � � � � � � ��

p j p

pH j p H

jm n
p p j p
j i i i i ix x

i j p
m

C f t x t x t b t b t
j 1 2

( ) 11 2

1 1

1 2 1 2
| | 0 0 1 0

1
lim ( , ( ), ( ) ( ) ( )

!
�

� � �

� �
�

�� � � �
���

� ��� �

p j p
H i H i H i H iB t B t B t B t

1 2 21 11[ ( ) ( )] [ ( ) ( )] �
� �� � �
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in the sense of probability, where [s, t] � [a, b].

Proof: See Appendix A.

From Theorem 2 and by using Taylor’s formula, we also have:

Corollary 1: Under the condition of Theorem 2,

t x xY t t Y t f t x t x t a t f t x t x t a t f t x t x t t
1 21 2 1 1 2 2 1 2( ) ( ) [ ( , ( ), ( )) ( ) ( , ( ), ( )) ( ) ( , ( ), ( ))]� � � � � � �

+ p j p

pH j p H

jn
p p j p
j x x

j p

C f t x t x t b t b t
j 1 2

( ) 11 2

1

1 2 1 2
1 0

1
( , ( ), ( )) ( ) ( )

!
�

� � �

�
�

� �
� �

          p j p
H H H HB t t B t B t t B t o t

1 1 2 2
[ ( ) ( )] [ ( ) ( )] (| |).�� � � � � � � � �

Similar to Theorem 2, we also have the generalized conclusion:

Theorem 3: Let al(t,�),  bl(t,�) be �[a,  b] × �-measurable such that

b

la
a t dt2| ( , ) |� � ���  for almost every w and bl(t,�) satisfies (C.1)-(C.3) with H = Hi in

Theorem 1(l=1, . . ., k). Set

i

t t

l l l l Ha a
x t x a a d b dB( ) ( ) ( , ) ( , ) ( )� � � � � � � � �� �

Let f : 
k

a b R R R[ , ] . . . .� � � ������ Assume that p pk
kx x

f
1

1 ...  and p pk
kx x t

f p pk n
1

1
1...

( , . . ., 0, . . ., )�  are

all continuous, where k k
p p pp pp k kk k kk

p p pp
k x x t x xx x

f f x x f f t1 1
1 11 1 11

. . .
1 ... . . ....

/ . . . , / .� �� � � � � � �  Set Y (t)

= f (t,x1(t), . . . ,xk(t)). Assume that 1/n < H1 � 1/(n – 1) and H1 � H2 � . . . � Hk < 1. Then for
any given n ��2, we have

kt

k l xl ks
l

Y t Y s f x x a f x x d1 1
1

( ) ( ) [ ( , ( ), . . ., ( )) ( ) ( , ( ),. . ., ( ))]�
�

� � � � � � � � � � ���

k

k

p pm n

ki j p p j
m

j
j p p

1

1

,. . ., 01 1

| | 0 10 1 . . .

1 !
lim

! !. . . !

�� �

� � � � � � �
���

� �� �

        � �� � � k
pp k k kk

pp
i i k i H i H i H i H ix x

f t x t x t B t B t B t B t1
1 1 11

1 1 1. . .
( , ( ), . . ., ( ))[ ( ) ( )] . . .[ ( ) ( )]
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l

kt

k l x ks
l

f x a f x x dx1 1
1

[ ( , ( ), . . ( )) ( ) ( , ( ),. . ., ( ))]. ,�
�

� � � � � � � � � ���

�� �

� � � � � � �
���

� �� �
kk

k

ppp pm n
i ik

ki j p p j
m

b t t

p p

b11

1

,. . ., 01 1
1

| | 0 10 1 . . .

( ) . . ( )
lim

!. . . !

.

       pp k k kk

p pk
i i k i H i H i H i H ix x

f t x t x t B t B t B t B t1
1 1 11

1 1 1. . .
( , ( ), . . ., ( ))[ ( ) ( ))] . . .[ ( ) ( )]� �� � �

l

kt

k l x ks
l

f x a f x x dx1 1
1

[ ( , ( ), . . ( )) ( ) ( , ( ),. . ., ( ))]. ,�
�

� � � � � � � � � ���

kk

k
p H pkHk

ppp pm n
i ik

ki j p p j
m

b t t

p p

b11

1
. . .1 1 1

,. . ., 01 1
1

| | 0 10 1 . . .

( ) . . ( )
lim

!. . . !

.

� �

�� �

�� � � � � �
���

� �� �

       pp k k kk

p pk
i i k i H i H i H i H ix x

f t x t x t B t B t B t B t1
1 1 11

1 1 1. . .
( , ( ), . . ., ( ))[ ( ) ( ))] . . .[ ( ) ( )]� �� � �

in the sense of probability, where [s, t] � [a, b].

Proposition 1: [18] Suppose H � (0, 1), then

H
HHt

B
P V

t t0
lim sup 1,

( ) log | log |� � �

� ��
� �� �� �� �� �

where VH= �(2 – 2H) cos(�H) / �H(1 – 2H)> 0.

3. MODEL OF RAINBOW OPTION PRICING FOR 1
2 1� �H

In this section, we will give a fractional version of the Black-Scholes formula of rainbow

option pricing in case of the Hurst exponent H 1
2( ,1).�  Considering the option written on

a stock I and stock II, suppose that:

(A.1) There are no-transaction costs, and it is possible to hedge the risk of a portfolio in
markets.

(A.2) The value process D (t) of the riskless bond is given by
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dD(t) =  r(t) D(t)dt, (3.1)

where r(t) is the risk-free interest rate, which is a deterministic function of t. The log-Price
S of stock I and stock II satisfy

ii i i H idS t dt t dB H i H H1
1 22( ) ( ) , ( ,1)( 1,2),� � � � � � � (3.2)

respectively, where ui(t) and �i(t)(i = 1,2) are deterministic functions of time t and satisfy
the conditions of Theorem 2.

(A.2) Let C (t, S1, S2) and P (t, S1, S2) be the values at time t of European call and
European put written on the stock I and stock II with expiration date T and exercise price
X1, X2 respectively. Suppose C (t, S1, S2) and P (t, S1, S2) satisfy the terminal conditions

T T

i i

S ST T

S S

C T S S e X e X

C t

C t S S
i

e

1 2
1 2 1 2

1 2

( , , ) max( , ,0) ;

( , , ) 0 ;

( , , )
lim 0 ( 1,2).���

�
� � � �
�� �� �� ��
�
� � �
��

(3.3)

and

T T

i i

S ST T

r T t

S S

P T S S X e X e

P t X X e

P t S S
i

e

1 2
1 2 1 2

( )
1 2

1 2

( , , ) max( , ,0) ;

( , , ) max( , ) ;

( , , )
lim 0 ( 1,2).

� �

���

�
� � � �
�� �� �� ��
�
� � �
��

(3.4)

(A.4) There exists a portfolio involving stock I, stock II, and rainbow option written on
them such that this portfolio itselft is riskless. That is, the value of the riskless bond D(t)
can be exactly replicated by a ‘self-financing’ investment strategy involving stock I, stock
II and the rainbow option written on both of them, i.e., when we take the number of unit of
the rainbow option written on stock I and stock II as one, this ‘self-financing’ strategy
satisfies the following conditions:

S SND t C t S S N e N e1 2
1 2 1 2( ) ( , , )� � � (3.5)
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and

S SN D t C t S S N e N e o t1 2
1 2 1 2( ) ( , , ) ( )� � � � � � � � (3.6)

where Si= Si(t, ���(i = 1,2) denotes the log-price of stock I and stock II respectively, and N
and Ni(i = 1,2) denote the number of units of the riskless, stock I and stock II at date t,
respectively.

Since it is possible to hedge the risk of a portfolio, let’s consider how to do hedge the
risk of a portfolio. Like the Black-Scholes case, we can form a riskless portfolio involving
two stocks and a rainbow option written on them. First, from corollary 1, we have

S S S
He t e t t e B o t1 1 1

11 1( ) ( ) ( ),� � � � � � � � �

S S S
He t e t t e B o t2 2 2

22 2( ) ( ) ( )� � � � � � � � �

and

C C C C C
H Ht S S S SC t S S t t t t B t B o t

1 21 2 1 2
1 2 1 2 1 2( , , ) ( ( ) ( ) ) ( ( ) ( ) ) ( )� � � � �

� � � � �� � � � � � � � � � � � � � �

Now we derive the rainbow option pricing formula. Applying Corollary 1 to

S Se e and C t S S1 1
1 2, ( , , )� � � , we see that it follows from (3.1), (3.2), (3.5) and (3.6) that

� �S Sr t C t S S N e N e t1 2
1 2 1 2( ) ( , , ) ,� �

� �� � �
� � � � � � � � � �� �� � �� �

S SC C C
t t N t e N t e t

t S S
1 2

1 2 1 1 2 2
1 2

( ( ) ( ) ) ( ) ( )

S S
H H

C C
t N t e B t N t e B o t

S S
1 2

1 21 1 1 2 2 2
1 2

( ) ( ) ( ) ( ) ( ).
� � � �� �

� � � � � � � � � � � �� � � �� �� � � �
     (3.7)

Dividing both sides of (3.7) orderly by H Ht t t t t1 2( ) log | log |,( ) log | log |,� � � � �

and let �t � +0, we get from proposition 1 that

SC
t N t e

S
1

1 1 1
1

( ) ( ) 0
�

� � � �
� (3.8)
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SC
t N t e

S
2

2 2 2
2

( ) ( ) 0
�

� � � �
� (3.9)

� �S S S SC C C
r t C t S S N e N e t t N t e N t e

t S S
1 2 1 2

1 2 1 2 1 2 1 1 2 2
1 2

( ) ( , , ) , ( ( ) ( ) ) ( ) ( )
� � �

� � � � � � � � � �
� � � (3.10)

Solving (3.8) and (3.9), we obtain

sC
N e

S
1

1
1

��
� �

� (3.11)

sC
N e

S
2

2
2

��
� �

� (3.12)

Substituting (3.11) and (3.12) into (3.10), we get the equation for European call C (t,
S1, S2) written on stock I and stock II:

C C C
r t C t S S r t

t S S1 2
1 2

( ) ( , , ) ( )( )
� � �

� � �
� � � (3.13)

Solving (3.13) by using terminal condition (3.3), we obtain

S Sr t T t r t T tr t C t S S e X e e X e1 2( ) ( ) ( ) ( )
1 2 1 2( ) ( , , ) max(0, , )� � � �� � �� � (3.14)

where

T

t
r t r d

T t

1
( ) ( ) .� � �

� ��

Remarks 1: From put-call relationship, we have the corresponding equations to (3.13)

P C C
r t P t S S r t H H

t S S
1

1 2 1 22
1 2

( ) ( , , ) ( )( )( , 1).
� � �

� � � � �
� � �

Remarks 2: Similarly, we can obtain that if C (t,S1,S2, . . ., Sk)(k � 1) is the values at
time t of European all written on stock 1, Stock 2, . . .,stock k with expiration date T and
exercise X1, X2, . . ., Xk respectively and suppose C (t,S1,S2, . . ., Sk)(k � 1) satisfies the
terminal conditios
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TT T
k

k
Sii

SS ST T
k k

C t S S S
S e

C T S S S e X e X e X

C t

i k

1 2

1 2

1 2 1 2

( , , . . ., )

( , , ,. . ., ) max( , , . . ., ,0) ;

( , , ,. . ., ) 0

lim 1 ( 1,2,. . ., )���

� � � � ��� �� �� �� ��
�

� ���

(3.15)

we can get the equation:

k
k

C C C C
r t C t S S S r t

t S S S1 2
1 2

( ) ( , , ,. . ., ) ( )( . . . ).
� � � �

� � � � �
� � � � (3.16)

Solving the equation (3.16) by using the terminal conditions (3.15), we can obtain:

kSS Sr t T t r t T t r t T t
k kC t S S S e X e e X e e X e1 2( )( ) ( )( ) ( )( )

1 2 1 2( , , ,. . ., ) max( , , . . ., ,0)� � � � � �� � � �� � � (3.17)

where

T

t
r t r d

T t

1
( ) ( ) .� � �

� ��

Remark 3: From (3.14), we know that the price of rainbow option with terminal
conditions is closely related to the maximum of stock I and stock II but not only related to
stock I or stock II.

Remark 4: The terminal conditions (3.3) are simple, so we can get the analytic solution
to the equation (3.13). In another words, Maybe it’s very difficult for us to obtain tha
analytic solution when the terminal conditions is complicated.

Remark 5: If 1/n < H � 1/(n – 1) (n � 3), the equations which is deduced for getting
rainbow option pricing formulas become fairly complicated. Under that condition, it’s very
difficult for us to obtain the solution even when the terminal conditions are simple.

4. CONCLUSION

In this paper, we develop a fractional version of the Black-Scholes model for valuing rainbow
options with Hurst exponents in (1/2, 1). The formula on pricing rainbow option with terminal
conditions (3.3) and (3.4) are obtained, and also we deduce a more common version in
Remark 2. . More than those, we notice that:

1. As in the Black-Scholes model the ‘Delta neutral’ makes a portfolio a perfect
hedge when H � (1/2, 1). It is also the same perfect thing for the rainbow option
with H � (1/2, 1).
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2. In the Black-Scholes model, we must acquire the parameters such as the volatility
of the stock price and the risk-free interest which cannot be observed, But in our

model, When H � (1/2, 1), only r t( )� needs to be estimated.

3. Compared with the option formula by using historical volatility, the rainbow option
with H � (1/2, 1) is more simple.

4. It’s very obvious that the solution (3.14) and (3.17) have nothing to with implied
volatility and historical volatility.

5. Like [19], we can easily know our model is also no-arbitrage.

APPENDIX A
Proof of Theorem 2
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|V62(�) + V72(�)|
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Similarly,
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Now we estimate V64(w)  + V74(w)
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Finally, we note that
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For any given � > 0, by Markov inequality and Cauchy-Schwarz inequality with respect  to
expectation, and when 1/n < H1 < 1/(n – 1), we have
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where M is a constant. Therefore, p
V71( ) 0� �  as |�| � 0.

It follows from (A.1)-(A.9) that
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 in the sense of probability. If pH1 + (j – p)

H2 > 1, we also have
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Hence Theorem 2 follows from the above discussion.
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