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Topological Horseshoe in a Simple 4D
Hyperchaotic Oscillator

QINGDU LI

This paper studies hyperchaotic dynamics of a simple four dimensional circuit in terms of
topological horseshoe. By means of interval analysis, two blocks are found in a carefully
chosen 3D cross-section that can guarantee existence of a horseshoe for the corresponding
second-return Poincare map on the both blocks expands in two directions. It justifiably
indicates that there exists hyperchaos in the circuit.

1. INTRODUCTION

Hyperchaotic system is usually classified as chaotic system with more than one positive
Lyapunov exponent, indicating that the chaotic dynamics of the system is expanding in
more than one direction giving rise to a more complex attractor. So it is believed that
hyperchaos can play a better role in most applied fields of chaos. In this way, hyperchaos
has been studied with increasing interest in recent years, in the fields of nonlinear circuits
[1, 2, 3, 4], secure communications [5], neural networks [6, 7], control [8] and
synchronization [9, 10].

The existence of a horseshoe embedded in a dynamical system should be the most
compelling signature of chaos, both in dissipative and conservative systems. Now it is
recognized that horseshoe theory (Sample horseshoe or current topological horseshoe theory)
with symbolic dynamics provides a powerful tool in rigorous studies of complicated
dynamics such chaos in dynamical systems [11, 12, 13, 14, 15, 16]. This tool has been
widely applied in the studies of the common chaos with one positive Lyapunov exponent
[13, 17, 18]. However, due to the high complexity and high dimension of hyperchaos, to
reveal the inside dynamics of hyperchaos with topological horseshoe theory is still a
challenge.

Since R�ssler introduced the first hyperchaotic system in [19], many systems have
been proposed to exhibit hyperchaos [1, 2, 3, 4, 6, 7]. The simplest one among them should
be the 4D hyperchaotic electronic circuit propossed in [3].
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This system is not only simple in the circuit structure, but also simple in its dimensionless
state equations which can be regard as switch system consisted of two simple linear systems.

In this paper, we revisit the electronic circuit, and present a 3D horseshoe numerically
found in a certain Poincar� map. From this, a computer-assisted verification of hyperchaos
in the circuit; is derived by virtue of topological horseshoe theory.

This paper is organized as follows: Section 2 recalls a result of topological horseshoe
theory; Section 3 revisits the circuit; Section 4 presents discussions about the existence of
hyperchaos in the circuit in terms of horseshoe; Section 5 draws conclusions.

2. A RESULT OF TOPOLOGICAL HORSESHOE THEORY

Before studying the hyperchaotic dynamics in the following sections, let us first recall a
result on horseshoes theory, which is essential for rigorous verification of chaoticity of a
chaotic system in terms of horseshoes.

Let X b a metric space, Q is a compact subset of X, and f : Q  X is map satisfying the
assumption that there exist m mutually disjoint compact subsets Q1,Q2, . . . , Qm of Q, the
restriction of f to each Qi i.e. f |Qi is continuous.

Definition 1: Let be a compact subset of Q, such that for each 1  i  m, i =   Qi is
non-empty and compact, then is called a connection with respect to  Q1,Q2, . . . , Qm

satisfying property:   F  f ( i)  F. Then F is said to be an f-connected family with
respect to Q1,Q2, . . . , Qm

Theorem 1: Suppose that there exists on f-connected family with respect to Q1,Q2, . . .
, Qm . Then there exists a compact invariant set K  Q, such that f / k is semiconjugate to m-
shift dynamics.

For details about the proof of this theorem, see [15], and for details of symbolic dynamics
and horseshoe theory, see [11].

3. THE SIMPLE HYPERCHAOTIC CIRCUIT

The simple hyperchaotic circuit is shown in Fig. 1, which includes a combined parallel-
series LC circuit, L1Cl – L2C2. The opamp OA and the resistors R1, R3 and R4 play the role of
a negative impedance converter (NIC). For R3 = R4 the input impedance of the NIC is simply
– R1. The only nonlinearity is involved by the diode. The oscillator in Fig. 1 is described by
the set of equations:

v
R

C dv dt i i1

1
1 1 1 2/ � � �
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L di dt v1 1 1/ � (1)

L di dt v v2 2 1 2/ � �

v v
R

C dv dt i H v v2 0

2
1 2 2 2 0/ ( )�� � �

Figure 1: The fourth- order hyperchaotic

where v1 and v2 are the voltages acroos C1 and C2, i1 and i2 denote the currents through L1

and L2, v0 is the forward voltage drop of the diode, and H(u) is the Heaviside function, i.e.
H(u < 0) = 0 and H(u  0) = 1.

By introducing the following notations:

x v v x i v x i v x v v t t L C1 1 0 2 1 0 3 2 0 4 2 0 1 1/ , / , / , / , / ,� � � � � � �

L C a R b R c L L e C C1 1 1 2 1 2 1 2/ , / , / , / , / ,� � � � � � � �

we have the following dimensionless state eqautions of (1)
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where h = eb for x4  1 and h = 0 for x4  1.

A typical trajectory of the system is shown in Fig. 2 with the “classical” parameter
values: a = 0.7, b = 10, c = e = 3 [3, 9 10]. The Lyapunove exponents comupted by the
method proposed in [20] are approximately [0.119, 0.060, 0.000, –9.833]. Since the first
two of them are positive and the sum of them is negative, there should exist a hyperchaotic
attractor in the state space of the circuit. In order to verify the existence of hyperchaos, we
will give detailed discussions about horseshoes imbedded in this attractor in the next section.

4. CROSS-SECTION AND POINCARJ MAP

Since (2) can be regarded as switching system consisted of two very simple linear subsystems,
the Poincar section plane just takes the switching hyperplane P : x4 = 1 for the convenience
of numerical computing by means of interval analysis, as shown in Fig. 2. The Poincar
map  : P  P is chosen as follows:

Figure 2: The phase plot of (2)

For each X  P,  (X) is taken to be the second return point in P under the flow with the
initial condition X.

In order to seek a horseshoe, thousands of return points are calculated by interating
with Xn+1 = (Xn) from a random point in P, as illustrated in Fig. 3. It is easy to see from this
figure that most of the return points are very close to a 2D plane, which means that the
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expanding directions of the following Poincar map almost parallel this plane. For clarity,
we introduce the following coordinate transformation:

Y = HX, i.e. [y1,y2,y3,y4]
T = H [x1,x2,x3,x4]

T (3)

where H is a Householder matrix and

H

0.99517608095718 0.00016242079179 0.09810474764354 0

0.00016242079179 0.99999453131088 0.00330317541594 0

0.09810474764354 0.00330317541594 0.99517061226805 0

0 0 0 1

�� �
� ��� ��
� ��
� �
� �� �

(4)

so that the 2D plane parallels the plane XOY.

In the section hyperplane, we take two blocks (hexahedrons) by many attempts. The
first one is a with its eight vertices in term of (y1,y2,y3) to be

A1 = (–0.767496277234,  0.675440856023,  0.110530023201),

A2 = (–0.425820092816,  0.751530551862,  0.110530023201),

A3 = (–0.422723329815,  0.538248828677,  0.110530023201),

A4 = (–0.701431999884,  0.417197039842,  0.110530023201),

A5 = (–0.767496277234,  0.675440856023,  0.090530023201),

A6 = (–0.425820092816,  0.751530551862,  0.090530023201),

A7 = (–0.422723329815,  0.538248828677,  0.090530023201),

A8 = (–0.701431999884,  0.417197039842,  0.090530023201),

and the second one is b with its eight vertices in term of (y1,y2,y3) to be

B1 = (–1.119046544236,  0.723944393104,  0.110530023201),

B2 = (–0.933088808164,  0.811254057430,  0.110530023201),

B3 = (–0.894820978232,  0.742413745173,  0.110530023201),

B4 = (–0.009026533183,  0.650066984829,  0.110530023201),

B5 = (–1.119046544236,  0.723944393104,  0.090530023201),

B6 = (–0.933088808164,  0.811254057430,  0.090530023201),
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B7 = (–0.894820978232,  0.742413745173,  0.090530023201),

B8 = (–1.009026533183,  0.650066984829,  0.090530023201),

as shown in Fig. 3 and Fig. 4 For block a, it is easy to see that the top sursface |A1 A2 A3 A4|
and the bottom surface |A5 A6 A7 A8| are parallel, and they are both quadrangular. The other
four surface of a called the side of a in the following discussions (indicated with Sa) are all
rectangular. For block b, it has the same situation with a, and the side of b is indicated
with Sb.

Under the Poincar�map , a is send to its image a� =  (a) with

A A A A A A A A1 1 2 2 3 3 4 4( ), ( ), ( ), ( ),� � � � � � � �� � � �

A A A A A A A A5 5 6 6 7 7 8 8( ), ( ), ( ), ( );� � � � � � � �� � � �

Figure 3: The return map of  from different view angles.

60



and b is send to its image b� =  (b) with

B B B B B B B B1 1 2 2 3 3 4 4( ), ( ), ( ), ( ),� � � � � � � �� � � �

B B B B B B B B5 5 6 6 7 7 8 8( ), ( ), ( ), ( ).� � � � � � � �� � � �

Since each subsystem is linear, all solutions of the subsystems can be written in analytic
formulas. Because the Poincar map  can be regarded as a composition of four continuous
sub-maps by the subsystems, it is easy to prove that for the block a or b all sub-maps are
continuous, consequently, | Q is continuous.

By means of interval arithmetic [21, 22], each sub-map can be computed with estimating
accuracy. Since a detailed interval analysis for the 3D Poincar map will take incredible
long time, we use a simplified method. Figure 5 and 8 are computed by sampling two
millions of equally distributed points from the surface of a and b, that is, there is about one
sample point for each 0.0003 × 0.0003 square. This takes a computer (Atholon XP 2.2
GHz) about 180 hours. The maximal global error is less than 3 × 10–40 for a, and 8 × 10–6 for
b, which too small to be indicated in Fig. 5 and 8. From the two figures, we have the
following statement.

Proposition 1 For the Poincar map p corresponding to the cross sections Q a b,
�
� �

there exists a closed invariant set Q for which  / is semiconjugate to the 2-shift
map.

Figure 4: The position of block a and block b
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Figure 5: a� =  (a) wholly across a and b

Figure 6: The top view of Fig. 5.
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Figure 8: b� =  (b) wholly across a and b

Figure 7: The side view of Fig. 5.
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Proof: To prove this statement, we will find two disjoint compact subsets of Q, such
that the existence of a -connected family can be easily derived.

The first subset takes a as shown in Fig. 5, Fig. 6 and Fig. 7. From these figures, it is
easy to see that the Poincar� map sends this subset to its image a� as follows:

• The top quadrangular |A1 A2 A3 A4| and the bottom quadrangular |A5 A6 A7 A8| are
both expanded in two directions an wholly transversely intersect block a between
|A1 A2 A3 A4|  and |A5 A6 A7 A8| and block b between |B1 B2 B3 B4| and |B5 B6 B7 B8|. The

surface A A A A1 2 3 4| |� � � �  is below the surface A A A A5 6 7 8| |� � � � .

• The side of a, i.e. Sa, is mapped out side of Sa and Sb , as shown in Fig. 6.

In this case, we say that the image a��= (a) lies wholly across the blocks a and b with
respect to the sides of a and b, i.e. Sa and Sb .

The second subset takes b as shown in Fig. 8, Fig. 9 and Fig. 10. The Poincar� map
sends this subset to its image b� as follows:

• The top quadrangular |B1 B2 B3 B4| and the bottom quadrangular |B5 B6 B7 B8| are
both expanded in two direction and wholly transversely intersect block a between
|A1 A2 A3 A4| and |A5 A6 A7 A8| and block b between |B1 B2 B3 B4| and |B5 B6 B7 B8|. The

surface B B B B1 2 3 4| |� � � �  is upon the surface B B B B5 6 7 8| |� � � � .

• The side of b, i.e. Sb, is mapped out side of Sa and Sb, as shown in Fig. 9.

Figure 9: The top view of Fig. 8.
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In this case, we say that the image b� =  (b) lies wholly across the blocks a and b with
respect to the sides of a and b, i.e. Sa and Sb.

Note that the subsets a and b are mutually disjointed. It is easy to see from the whole
acrossness of (a) and (b) with respect to the both sides of a and b that there exists a -
connected family with respect to a and b. In view of Theorem 1, this means that the Poincar�
map is semiconjugate to 2-shift map.

The global picture of the images (a) and (b) suggests that | a and | b both expand
in two directions. Thereby it justifiably indicates that the attractor illustrator in Fig. 2 is
hyperchaotic.

5. CONCLUSIONS

This paper has presented a three dimensional horseshoe numerically found in a Poincar�
map derived from the hyperchaotic circuit. By means of topological horseshoe theory, the
hyperchaocity has been confirmed by computer assisted verification. This suggests an
excellent methodology for study hyperchaos.

Figure 10: The side view of Fig. 8.
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