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Dynamics, Chaos and Synchronization of Self-sustained
Electromechanical Systems with Clamped-free
Flexible ARM

C.A. KITIO KWUIMY & P. WOAFO

An electromechanical system with flexible arm is considered. The mechanical part is linear
flexible beam and the electrical part is nonlinear self substained oscillator. Oscillatory
solutions are obtained using averaging method. Chaotic behaviour is studied via the
Lyapunov exponent. The sysnchronization of regular and chaotic states of two such devices
is discussed and the stability boundaries for the synchronization process are derived using
the Floquet theory. We compare the results the results obtained from a fininte difference
simulation to those from the classical modal approach.
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1. INTRODUCTION

Recentlym various studies have been devoted to nonlinear electromechanical devices
consisting of a nonlinear electric circuit coupled magnetically electrostaticallty to ridid
arm [1-7]. These devices are described by two coupled nonlinear differential equations.
The particular interest to these devices is that they are inherently present in everyday life
both at the domestic and industrial levels for the automation of various processes [2]. This
is for example the case of multi-frequency or chaotic industrial shaker.

The aim of this paper is to extend the above studies to electromechanical devices with
flexible arms. This constitutes a new mathematical and numerical challenge. Moreover,
this is a new interesting area of application since many industrial tasks are carries out
through flexible structures. The device under consideration here consists of a Rayleigh-
Duffing electrical cirucit coupled magnetically to a clamed-free flexible beam.

The paper is organized as follows. Section 2 consists of three parts. The first part presents
the nonlinear electromechanical devices as well as the reuslting partial differential equations.
The second  part considers the none-mode aproximation of the beam dynamics to derive a set

Mathematical Methods, Physical Methods and Simulation Science and Technology
Vol. 2 (January-December, 2018)



of two nonlinear differential equations for the amplitudes of the first mode and electric charge
of the capacitor. These equations constitute the basis of the analytical and the semi-analytical
investigation. The third part of section 2 deals with the presentation of the finite difference
alogorithm for the direct numerical simulation of the full equations of the electromechanical
device. In section 3, the averaging method is used to derive approximate oscillatory states
whose amplitudes are compared to the results of the numerical simulation. Section 4 is devoted
to the question of chaotic behaviour while section 5 uses the unidirectional coupling scheme
to find the good parameters leading to the  synchronization of a second similar device (slave
device) to the motion of the first device called master. This is done both in the case of periodic
oscillatory and chaotic behavior.  Conclusion is given in section 6.

2. MODEL, EQUATIONS AND NUMERICAL SCHEME

2.1 Model

The model shown in Figure 1 is an electrical oscillator coupled through a magnet to a
camped-free flexible beam. The electrical part consists of a non-linear resistor (NLR), a
non linear condenser (NLC) C and an inductor L, all connected in series. Two types of non
linear components are considered in the model. The voltage of the condenser is a non linear
function of the instantaneous electrical charge and is expressed by

CV q a q
C

3
0 3 0

0

1
� � (1)

where C0 is the linear value of C and a3 is a non linear coefficient depending on the type of
the capacitor [8]. The current- voltage characteristics of the resistor is defined as

Figure 1: An electromechanical transducer with clamped-free flexible arm
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where R0 and i0 are, respectively, the characteristics resistance and current; i is the current
through the resistor. This non linear resistor can be realized using a block consisting of two
transistors [9] or series of diodes [10]. With this resistor the system has the property to
exhibit self excited osciallations. The current-voltage characteristics of the linear inductor
is

L
di

V L
d

�
�

(3)

where � is the time.

The mechanical part is a flexible beam of length l0. The beam is presumed to be a
slender, isotropic, uniform rod. It is fixed at its top and free at the base. The magnetic
coupling between both parts is made at a point X1. It creates the Laplace force in the
mechanical part and the Lenz electromotive voltage in the electrical part. Using the electrical
and mechanical laws, it is found that the model is described by the following equations

f
d q dq dq q W

L R a q B l X X
d d Cd i

22
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00
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1 ( )
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(4)

fB l dqW W W
S EI X X

l dX
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�� ��� �

(5)

The beam boundary conditions are given as follows

(0, ) 0; (0, ) 0,
W

W
X  ����� ,   at the clamped end, (6)

W W
l l

X X

2 3

0 02 3
( , ) 0, ( , ) 0,

� � � �� �
� � � �� � � �� � � �� �� � � �

 �����  at the free end. (7)

E is the Young modulus of the beam, � is the beam density, S and I are respectively the area
and the moment of inertial of the beam cross section. W(X, �) is the transversal deflection
of the beam, X is the spatial coordinate, � is the mechanical damping coefficient which is
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assumed to be constant, Bf is the intensity of the magnetic field and l is the length of the
current wire in the coupling domina. �(.) stands for the Dirac delta function, it expresses
the fact that the coupling is made at a point X1 of the flexible beam.]

We introduceteh dimensionless variables

W X
t v x q Qq

l l1 0
0 0

, , , ,�� � � � � (8)

Where �1 =  (1.875)2 rad/s and 
i

Q 0

0

3.�
�  Consequently, equations (4) and (5) become

� � �� �� �� � � � � � � � �� �� � �� �� �

d q dq dq v
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dt dt tdt
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and the boundary conditions (6) and (7) become

v
v t t

x
(0, ) 0, (0, ) 0,

�
� �

�
 ����� , at the clamped end, (11)

v v
t t

x x

2 3

2 3
(1, ) 0, (1, ) 0,

� �
� �

� �
 ����� , at the free end. (12)

2.2 Mode Equations

For the analytical investigation, it is convenient to assume an expansion of the deflection v
(x, t) in terms of the combination of linear free oscillation. Due to the complexity of the
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eigen-functions of the beam fixed at one end and free at the other, we will consider in the
analytical treatment only the first mode. Thus we can write

v (x, t) = y1 (t) �1(x) (13)

where

k k
x k x k x k x k x

k k
1 1

1 1 1 1 1
1 1

cos( ) cosh( )
( )cos( ) cosh( ) [sin( ) sinh( )]

sin( ) sinh( )
�

� � � �
� (14)

The expression of �1(x) can be found in classic books on beam dynamics such as Ref. [11].
The eigenvalue km

 for the mode m is obtained from the transcendenttal equation

m mk kcos( )cosh( ) 1 0� � (15)

This equation gives k1 � 1.875.

Inerting equation (13) into equations (9) and (10), multiplying equation (10) by �1(x),
intergrating over the non-dimensional length of the beam and using the orthogonality of
eigenfunctions, we obtain

dyd q dq dq
w q bq f

dt dt dtdt

22
2 3 1

1 0 212
1
� �� �� �� � � � � � �� �� �� �� �

(16)

d y dy dq
w y f

dt dtdt

2
21 1

2 0 1 112
� � � � (17)

f f x f f x11 1 1 1 21 2 1 1( ), ( )� � � �   and   w w a2 2 2
01 1�

Thus the one-mode dynamics is described by a Rayleigh-Duffing oscillator coupled to
a linear harmonic oscillator equaton. A linear stability analysis of the fixed stationary point

dydq
dt dtq y 1

1( 0, 0, 0, 0)� � � �  shows that it is stable for 
f f11 21

1
1 2 �� � � � .

2.3 The Finite Difference Algorithm

For obtaining a numerical solution of equations (9) and (10), we use the finite difference
scheme. In this respect, we divide the non-dimensional beam length in n intervals of length

hx, e.g.  x nh 1 .�  Also the time is discretized in units of length ht. Therefore one can write xi

= (i – 1) hx and tj = jht where i and j are integer variables. Consequently, equations (9) and
(10) become
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xi j i j i j i j i j i j i j i i
dq
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for i = 2, . . , n + 1 and � j � N,

with
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v1, j = 0,  v0, j = v2, j at the clamped end, (20)

n j n j n j n j n j n j n jv v v v v v v2, 1, , 3, 1, 2, ,2 , 2 2 ,� � � � �� � � � �  at the free end. (21)

One can show that the discretization scheme is stable is stable if

t

x t

h

h h

2
2

4 2

( )8 1
[1 1 ]

4
�

� � � (22)

with �2ht � 2

3. OSCILLATORY STATES

Oscillatory solutions of equations (11) and (12) are obtained by using the Krylov-Bogoliubov
averaging method described in References [12,13]. In this line we set q = A sin(�0t + �1), y1

=  B sin(�01t + �2). The amplitudes A and B satisfy the following set of first order differential
equations

f BwAdA
A w

dt w
2 2 21 011

0
0

3
1 cos( )

2 4 2
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� �

(23)
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dt w
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� � � � (24)

f Bw f Awd bA
dt w Aw Bw
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(25)
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with � = �1– �2. For the steady-states solutions, se obtain

c6 A
6 + c4 A

4 + c2 A
2 + c0 = 0 (26)
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Let us note that there is a trivial steady-state defined by A0 = B0 = 0. Equations (26) and
(27) are solved using the Newton-Raphson algorithm.

Figures 2 and 3 show the amplitude curves of the beam at its free end and the charge of
condenser in term of the mechanical dissipative coefficient �2

 for two different sets of values
of parameters of the system. The numerical simulation results of equations (16) and (17)
those of equations (18) and (19) are also reported in the same figures. The numerical results
of the equations (16) and (17) are called semi-analytical ones. For Figure 2, the analytical
and semi-analytical curves show a complete quenching phenomena of oscillation in the

region 
f f11 21

1
1 2 .�� � � �  This results was also obtained in Refs. [1, 5] for a self-sustained

oscillator coupled to a rigid rod. With this choice of values, the numerical curves (those
from equations (18) and (19) do not corroborate this result. This is due to the fact that for
the analytical and semi-analytical treatment, only one mode (the first) was taking into
account. We observe that the effects of other modes, in spite of the fact that we are at the
perfect resonace, can not be always neglected. Making another choice of values of the
parameters, we obtain quenching phenomena also with the partial differential equation
(Figure 3) for 0.032 < �2 < 0.53, while with the semi-analytical treatment, this occurs for

0.01 < �2 < 0.73. This corresponds to the stability interval 
f
f
11

21
1 2� � � �  of the statinary

point dydq
dt dtq y 1

1( 0, 0, 0, 0).� � � �
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Figure 2a

Figure 2b

Figure 2: Amplitudes of the mechanical part (a) and electrical part (b) as function of beam
dissipation coefficient. Analytical curve (lines); semi-analytical curve (options);

numerical curve (dash lines) with b = 0.1, a = 1, w
01

 = w
0
 = w

1
a,

1
 = 0.05, f

1
 = 1.4, f

2
 = 0.1
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Figure 3a

Figure 3b

Figure 3: Amplitudes of the mechanical part (a) and electrical part (b) as function of beam
dissipation coefficient. Analytical curve (lines); semi-analytical curve (points);

numerical curve (dash lines) with b = 0.01; a = 1; w
01

 = w
0
 = w

1
a;

1
 = 0.01; f

1
 = 0.2; f

2
 = 0.05
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4. CHAOTIC BEHAVIOUR

In this section, we find how chaos arises in our device as its parameters evolve and compare
the results of the modal approach to those of the direct numerical simulation of the partial
differenctial equations. For this aim, we use the Lyapunov exponent. The results hereafter
are obtained by numerically solving equations (16) and (17) and equations (18) and (19)
with their corresponding variational equations. In the case of finite difference simulation,
the Lyapunov exponent is defined by

t

d t
lyan

t
1ln( ( ))

lim
��

� (29)

with

2 2
2 2

1
1 1

n n

i i
i i

d
d dq dq dv dv

dt t
(30)

while for the ordinary differential equation (equations (16) and (17), one has

2( ( ))
lim
t

In d t
lyas

t
(31)

with

� � � �� � � �� � � �
� � � �

d d
d dq dq dy dy

dt dt

2 2
2 2

2 1 1 (32)

where dq, dvi and dy1 are the variation of q, vi and y1 respectively.

Figure 4 shows the Lyapunov exponent as the coupling coefficient f2 increases. On
finds that for f2 � [1.85; 2.3] there is a series of domain corresponding to a chaotic dyanmics
with the modal approach while with the finite difference scheme this occurs for f2 � [1.6;
2.08] ��[2.12; 2.25]. For the two approaches we have plotted the phase portrait for a value
of f2 leading to chaos (see Figures 5 and 6). The results of Figures 4 to 6 show an almost
qualitative agreement between the modal approach and the finite difference simulation.
However, one finds that the chaotic domains predicted by the first approach are different to
those of the second approach. An explanation of this fact is that the modal approach has
been restricted to only one mode of vibration. Although at resonance, the first mode possesses
the main part of the energy of the system, the effects of the neglected modes can be
perceptible on the sensitive behaviours as found in the chaotic state.
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Figure 4: Variation of the Lyapunov exponent as function of the coupling coefficient f
2
 from the

modal approach (lines) and from the finite difference simulation (dash line) with

k
b a w w f2

1

1
01 0 1 10.1; ; 1; 2.466; 3.518;.� � � � � � �

Figure 5a
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Figure 5: Phase portrait of the mechanical part (a) and electric part (b) from the finite
difference simulation with the parameters of Figure 5 and f

2
 = 2.2.

Figure 5b

The next section is devoted to the synchronization of the regular and chaotic states of
two electromechanical devices.

5. SYNCHRONIZATION OF TWO SELF-SUSTAINED
ELECTROMECHANICAL SYSTEMS WITH FLEXIBLE ARM

5.1 Model and Equations of Motion

In this section, we derive the characteristics of the unidirectional synchronization of two
self-sustained electromechanical devices with flexible arm. The master system is described
by the components q and v, while the slave system has the corresponding components p
and u. The enslavement is carried out by an electric device consisting of operational
amplifiers (see Figure 7). The equations of the slave are

� � �� �� �� � � � � � � � � � � �� �� � �� �� �

d p dp dp u
w p bp f x x K p q H t T

dt dt tdt

22
2 3

1 0 2 1 02
1 ( ) ( ) ( ) 0 (33)
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Figure 6a

Figure 6b

Figure 6: Phase portrait of the mechanical part (a) and electric part (b) from modal
approach with the parameters of Figure 5 and f

2
 = 2.2.
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Figure 7: The Master-slave electromechanical devices

u u u dp
a f x x

t dtt x

2 4

2 1 12 4
( ) 0

� � �
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�� �
(34)

In the modal approach, they transform themselves to

dp dp dp
w p bp f K p q H t T

dt dt dtdt

22
2 3 1

1 0 21 02
1 ( ) ( ) 0
� �� � �� �� � � � � � � � � �� �� �� �� �

�
(35)

d d dp
w f

dt dtdt

2
2

2 0 112
0� � � � �� �

�
� �

� (36)
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where 
C

C C C L
K 1

2 1 2 1( )� ��  (with C0 � C2), is the dimensionless feedback coupling coefficient

or strength, H (x) the Heaviside function defined as H (x) = 0 for x = 1for x > 0, and T0 the
onset time of synchronization.

5.2 The Formalism for Optimal Synchronization

When the synchronization process is launched, the slave configuration changes and one
woud like to determine the range of K for the synchronization to be achieved, and for the
dynamics of the slave to remain stable. To carry out such an investigation, let us introduce
the following variables � = p – q and z =  u – v which measure the nearness of the slave to
the master. Introducing these variables in equation (35) and (36) and taking z (x, t) = �1 (t)
�1(x), we obtain that � and ��satisfy the variational equations

dd dq d
f

dt dt dtdt

2
2 2 1

1 212
(1 ( ) ) 0

�� �
� � � �� � � � (37)

d d d
w f

dt dtdt

2
21 1

2 0 1 112
0

� � �
� � � � � � (38)

where w bq K2 2 2
0 3� � � �

The synchronization processs is achieved when � and z go to zero as t increases or,
practicallty, are less than a given pricision. The behaviour of the slave depends on K and
the form of the master. Assuming that �1 is small, the master variables take the form

q =  A cos(�0 t – �1 (39)

y1 =  B cos(�01 t – �2) (40)

where the amplitudes A and B depend on the system parameters as described by equations
(26) and (27). With this form of the master, equations (37) and (38) takes the form

dd d
F t G t f

dt dtdt

2
1

1 1 212
( ) ( ) 0

�� �
� � � � � (41)

d d d
F t G t f

dt dtdt

2
1 1

2 2 1 112
( ) ( ) 0

� � �
� � � � � (42)

with F t A2 23
1 0 0 12( ) cos(2 )� � � � � � ,  � �G t A2 2 23

1 0 1 02( ) , 1� � � � � � � � ,  F t G t 2
1 2 2 01( ) , ( )� � � � ,

t0 1.� � � � �
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Setting the following transformations

U F t dt1
1

exp ( )
2

� �� � �� �
� �� (43)

V F t dt1 2
1

exp ( )
2

� �� � �� �
� �� (44)

we rewrite equations (41) and (42) in the standard form

d U dV
F t U f G t V

dtdt

2

21 22
( ) ( ) exp( ) 0

� �� � � �� �
� �

� (45)

d V dU
G t V R t U f

dtdt

2

112
( ) ( ) exp( ) 0

� �� � � � �� �
� �

� (46)

with

F(t) = �11+ 2� sin(2�) + 2�12�cos(2�) + 2�13 cos(4�),   G(t) = �21,

R t 22 21( ) 2 cos(2 ),� � � � � t A w2
2 0 1

1 3
( ) sin(2 ),

2 8
� � � � � � � ��

A w
2

2 4 40
11 1

9
,

4 32

�
� � � � � � A w4 3

11 1
3

,
4

� � � � bA A w2 2 2
12 0 1

3 3
,

4 8
� � � � �

A w4 4 2
13 1

9
,

64
� � � �  

f0 11
22 ,

2
�

� � A w f2 2
21 1 11

3
,

8
� � � �  w

2
2 2

21 01 .
4
�

� � �

Equatoins (45) and (46) are two coupled Hill’s equations. According to the Floquet
theory [12,13], the solutions are

n

n n
n

U t t a t1( )exp( ( ) exp( )
���

���

� � � � �� (47)

n

n n
n

V t t b t2( )exp( ( ) exp( )
���

���

� � � � �� (48)

where an = �1 + 2Jn�0, bn = �2 + 2Jn�0 (J
2 = –1). The function �(t) = �(t + �) and �(t) =
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�(t + �) are replaced by the Fourier series, with �1,�2 ��C  and �n,�n ��R. Inserting equations
(47) and (48) into equation (45) and (46) yields (�n � N)

� �
n n n n nJn

v
n n n n n

a J e J e
e

e e f b e

2 1

0

21 2

2
11 1 11 11 1 12 112

2 13 2 13 21 2

( ) ( ) ( )
0

�
��� � ��

�
��� � �

� �� � � � � � � � � � � � � �� � �� �
� � � � � � � �� �� �

�
� �

��� �� (49)

� �� �
n

Jn v vv
n n n n n n

n

e f a e e e b0 2 12 2
11 22 1 21 1 21 21( ) 0

���
� � � ��

� �
���

� � � � � � � � � � �� � � �� � �
(50)

Equating each of the coefficients of the exponential functions to zero one obtains the
following infinite set (S) of linear, algebraic, homogeneous equations for the �n and �n

� �
n n n n

n n n n

n n n n n n

a J e J e

S e e f b e

f a e e e b

2 1

21 2

2 2

2
11 1 12 11 1 12 11

2 2
2 13 2 13 21 2

2
11 22 1 21 1 21 21

( ) ( ) ( )

( ) 0

( ) ( ) 0

�
� �

��
� �

� ��
� �

�� � � � � � � � � � � � � �
��� � �� � � � � ��
�
�� � � � � � � � � � �� � � ��

� �

� � �

� � �� ��
(51)

where � � � �v t t A02 23
2 1 0 12 2 8 sin(2 ),��� � � � � � � � � � J t1 1 12 ,� � � ��  J2 1 22� � � ��

Applying the consideration of Ref. [5], we find that the boundary, that separates the
stability from the instability domains, is given by

det (S) = 0 (52)

Here we limit the calculation to the sixth order Hill’s determinant of the algebraic
system (S). Since, we have

t wA t20
1 1

3
exp sin(2 ) ( )

2 8

� ��� �� � � � � � � �� �� �
� �� �

(53)

t t2
1 2exp ( )

2

� ��� �� � � � �� �� �
� �� �

(54)

the Floquet theory states that the transition from stability to instability domains (or the the
reverse) occurs only in the two following conditions:

• �- periodic transitions at 01
1 1 2

�� � � �  and 21
2 2 2

�� � � �
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• 2�- periodic transitions at J02
1 1 2

�� � � � �  and J22
2 2 2 .�� � � � �

Thus replacing k�  by k
k k( 1,2)� � in equation (52), we obtain an equation which helps

us to determine the range of K in which the synchronization process is stable.

5.3 Synchronization of the Oscillatory Dynamics

In this sub-section we consider the master and the slave systems with a periodic behaviour
and compare the results of numerical simulation of equations (33) and (34) and equations
(35) and (36) to that of the above analytical treatment. The amplitude A = 0.31 is obtained
from equations (26) and (27) with �2 = 0.01 while the frequency �0 is set equal to �01(at the
resonance). From equation (52), the stability is achieved for K ��] –11.36;0] �]0; +�] with
the parameters of Figure 2. For the numerical simulation of equations (33) and (34) along
with equations (9) and (10) and equations (16) and (17) of the master, we use the initial

conditions � �dq v
dt tq v, , , (5.0,5.0,0.0,0.0)�

� �  for the master and � �dp u
dt tp u, , , �� �

(4.0,4.0,0.0,0.0)  for the slave. We obtain that the synchronization domain is K ��] –12.4;

0] �]0; +�] from the modal approach (ordinary differential equations) and K ��] –12.6;0]
�]0; +�] from the direct numerical simulation of the partial differential equations. We take
T0 = 800 and assume that the synchronization is achieved when |q – p| < h0, �t > T0 with h0

= 10–10. Figure 8 shows the synchronization time Ts versus K. The agreement between the
two approaches and the analytical investigation is quite acceptable. The singularity at K =
–0.7 can be the signature of parametric resonances.

5.4 Case of Chaotic States

Hereafter the master and slave systems are in the chaotic state, we proceed to numerical
simulation of equations (33) and (34) and (35) and (36) to determine the range of K for
which the synchronization in achieved. The criterion of numerical synchronization is that

used for the regular state. The initial conditions are � �dq v
dt tq v, , , (3.5,3.2,0.0,0.0)�

� �  fot the

master and � �dp u
dt tp u, , , (4.0,4.0,0.0,0.0)�

� �  for the slave. We find that the synchronization

is achieved for K ��]1.5; 3.7] �]3.8; 4.2]�]4.2; 8]�]11; 15], while the finite differences
simulation gives the synchronization for  K ��] 0.4; 15]. The synchronization time Ts is
plotted versus K and the results are reported in Figure 9 for the two approaches. The
differences between the modal approach and the finite difference simulation is very important
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Figure 8: Synchronization time T
s
 versus K with the parameter of Figure 2 and 

2
 = 0.01 from the

finite difference simulation (dash line) and the modal approach (line)

Figure 9: Synchronization time T
s
 versus K with the parametre of figure 5 from the finite difference

simulation (dash line) and the modal approach (line) in the chaotic regime
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if compared to what is observed in the case of oscillatory behaviour. This is understandable
since the harmonic oscillatory approximation (equations (39) and (40) used  for the
formulalism is invalid here. Indeed, it can not approximate the time behaviour of the chaotic
state. Figures 10 and 11 show respectively the deviations between the slave and the master
in the case of synchronization and in the case where the synchronization process has failed.

Figure 10: Time history of the deviations z (a) and  (b) with the parameters of Figure 5 and
K = 3 from finite difference simulation: case of synchronization failure.

Figure 10a

Figure 10b
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Figure 11: Time histroy of s the deviations z (a) and  (b) with the parameters of Figure 5 and K = -1
form the finite difference simulation: case of synchronization.

Figure 11a

Figure 11b

6. CONCLUSION

This paper has dealt with the synamics, chaos and synchronization of self-sustained
electromechanical systems with flexible arm consisting of a Rayleigh-Duffing oscillator
coupled magnetically to a flexible beam. The averaging method has been used to determine
the amplitudes of the oscillatory behaviour. The Lyapunov exponent helps us to study the
chaotic behaviour and typical chaotic phase portraits were reported. For the synchronization
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process, the analytical investigation has been based on the properties of the Hill equation
which describes the deviation between the slave and the master devices. The analytical
results have been compared to those of the semi-analytical studies as well as to those of a
direct numerical simulation of the partial differential equations. The next step following
this study is to carry out experimental investigations where the effects of parameters
mismatch is unavoidable.
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