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Fuzzy Platonic Spaces as A Model for
Quantum Physics

M.S. EL NASCHIE

We start from the geometry of classical platonic solids and their generalization to four
dimensional polytopes. Subsequently it is shown how the so obtained relationships are
related to high energy particle physics. In particular the topology of a fuzzy Dodecahedron
is used to give information about the elementary particles content of the standard model of
high energy physics.

INTRODUCTION

It was around 1919 when a very young school boy at an impressionable age, called Werner
Heisenberg read for the first time Plato’s dialogue “Tomaeus” where a philosophical
proposition was advanced putting the five regular platonic solids in relation to the building
blocks of the universe [1]. It was in the late sixties when the author came across Heisenberg’s
writing on the subject which made a deep impression on him and in particular the role of
symmetry in particle physics [2-4]. None the less, in all these past years, the author was
reasonably convinced that the platonic solids themselves are of marginal importance being
merely the carrier of the over powering idea of intrinsic space symmetry. It was only relatively
recently that a direct interest in the topology of the platonic solids was rekindled due to

work on fuzzy hyperbolic and Kähler manifolds such as F
4M  and K(E( )) discussed in

various relatively recent publications [5,6]. A second source of inspiration was undoubtedly
the work of Luminet as well as Iovane [8].

In the present work we will start by reviewing basic properties of the topology of the
platonic solids and establishing some connections with particle physics. Subsequently we
look into the generalization to four dimensional polytopes and possible connections with
super strings and P-Brane theories. Finally the relation between the sharp and fuzzy forms
of the platonic theory is explored following F. John’s idea of adding and subtracting “small
terms” in order to simplify the field equations without affecting the accuracy of predictions
[9,10].
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1. The Topology of the Platonic Solids

We start by recalling the basic combinatorial fact of the original five platonic solids fixing
their topology (Fig. 1). For the sake of completeness we have included in Table (1) two
more solids, namely the Dihedron and its dual.

Figure 1: The Five Classical Platonic Solids

Table 1
Combinatorial Facts about the Regular Polyhedron

Number of
m n Vertices Edges Faces

Dihedron k 2 k k 2 (k  3)
Dual dihedron 2 k 2 k k (k  3)
Tetrahedron 3 3 4 6 4
Cube 4 3 8 12 6
Octahedron 3 4 6 12 8
Dodecahedron 5 3 20 30 12
Icosahedron 3 5 12 30 30

Let us calculate first the Euler characteristic which is given by [11-13]

= Number of faces + number of vertices – number of edges
= F + V – E

It is evident that in all cases, the value is that of a topological sphere, namely  = 2. For
example in the case of the Dodecahedron we find following Table (1) that:

� = 12 + 20 – 30

= 32 – 30
= 2

as should be. The same is naturally true for the dual topology of the Icosahedron.
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In a previous work we showed that adding all the elements of the Dodecahedron or for
that matter its dual form, then we obtain a lower bound on the number of elementary particles
of the standard model. In other words we have [11-13]

N(SM) = F = V + E

= 12 + 20 + 30

= 62

particles. It is important to interpret this number of elements in what we have termed the
solution of certain equations for the three-orbit case as shown in Table (2). There we see
that the total number of elements is 2 (k + 1), 14, 26 and 62 for the Dihedron, the Tetrahedron,
the Octahedron and the Dodecahedron respectively. For the Icosahedron we find the same
value of the Dodecahedron.

Equally important to note is our conjecture which is similar to that made in the standard
model as well as string and other similar theories that the number of elementary particles in
the standard model is accurately approximated by the dimension (order) of the relevant
symmetry group as given in Table (3). Thus we may write

Table 2
Solutions of the Equation for the Three-orbit Case

Number of elements in the orbit

Case mp mq mr n p q r

(i) 2 2 k 2k k k 2 (k  2)

(ii) 2 3 3 12 6 4 4

(iii) 2 3 4 24 12 8 6

(iv) 2 3 5 60 30 20 12

Table 3
Rotational Symmetries of the Regular Polyhedron

Number of axes of orders: Order of the
2 3 4 5 k symmetry group

Dihedron k — — — 1 2k

Dual dihedron k — — — 1 2k

Tetrahedron 3 4 — — — 12

Cube 6 4 3 — — 24

Octahedron 6 4 3 — — 24

Dodecahdron 15 10 — 6 — 60

Icosahedron 15 10 — 6 — 60
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N(SM) �  Dim (sym. Dode.)

�  60 .

This is the number of elementary particles believed to have already been discovered
and consequently the difference between N(SM) = 62 and N(SM) = 60 may be interpreted
as the two most elusive particles of quantum physics, namely the graviton and the Higgs
[6,14].

2. The Transfinite–Fuzzy Topology of Certain Platonic Solids

We normally think of the platonic bodies, their geometry and topology as the epitome of
precision and exactness which leaves no space what so ever for the notion of fuzziness.
However let us look at Table (4) to see how the geometry of these solids is fixed. A mere
glance at this Table suffices to make clear that in the case of the Dodecahedron and its dual
form, the corner points and consequently the entire shape cannot be fixed with infinite
exactness. This is true even when we disregard the ever present problem of physical

measurement because of the involvement of the golden mean �  = ( 5  – 1) / 2. This

number, as is well known, is the most irrational number, i.e. the least accurately approximated

using a rational continued expansion. At the same time we know that c
(0)d  =�  = ( 5  – 1)

/ 2 is the backbone Hausdorff dimension of E-infinity and plays a central role there [5,6,17].
For this reason it is feasible to think, when appropriate, of the Dodecahedron not as a sharp
geometrical-topological shape but as a dynamically fluctuating fractal-like shape. Proceeding
in this way one could utilize the procedure first advanced by the Courant Institute
mathematician, the American Prof. F. John of adding or subtracting small terms to simplify
the equations of curved elastic surfaces without affecting the accuracy of the end result
[9,10]. Further extension of this method in E-infinity theory is more rooted into the
compactification procedure of modular spaces [6].

Thus the dimension of the compactified Klein curve Dim (7)�  = 336 increases to

Dim c(7)�  = 336 + 16k �  339 where k = � 3 (1 – � 3) = 0.18033989 and�  is the golden

mean. Similarly the Euler characteristic for K3 Kähler manifold increases from�  = 24

to�  = 26 + k = 26.18033989 in the case of a fuzzy K3 [5,6]. Proceeding in the same vain

of the above, we can write for the fuzzy version of the classical Dodecahedron that

F�� � = < F > + < V > – < E >

= (13) + (22 + k) – (33 + 2k)
= 2 – k�  2
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For < N(S) > on the other hand, one finds

     < N(SM) > = 68 + 3k
= o�  / 2

as in the exact E-infinity solution [5,6]. Note that in the low dimensional theory there is no
straight forward mechanical way of adjusting the value using the transfinite correction
scheme. However the situation is clearer when considering higher dimensional topology as
will become evident later on.

3. Generalization to Higher Dimensionalities

Let us consider the evaluation of the topology of a point to a cube as shown in Fig. (2). It is
thus not difficult to see that a systematic induction leads to what we may label four
dimensional cube 4�  as shown at the extreme right of the figure (2) and which has the
following values:

16 vertices, 23 edges, 24 faces in addition to 8 cells which do not exist at all in
the three dimensional case.

Table 4
The Coordinates of the Five Platonic Solids

Polyhedron Coordinates

tetrahedron (1,1,1), (1,-1,-1), (-1,-1,1), (-1,1,-1)

hexahedron (1,1,1), (1,1,-1), (1,-1,1), (-1,1,1),
(1,-1,-1), (-1,1-1), (-1,-1,1), (-1,-1,-1)

octahedron (1,0,0), (0,0,1), (0,1,0),
(-1,0,0), (0,-1,0), (0,0-1)

dodecahedron (0, ± –1, ± (± –1, ± , 0),
(± 0, ± –1), (

icosahedron (1,0, ), (1,0, – ), (–1,0, ), (–1,0,– ),
(0, ,1), (0, ,–1), (0, – ,1), (0, – –1),
( ( ,–1,0), (– (– –1,0)

Table 5
Combinatorial Facts of the 4 Dimensional Polytopes

Name Schafli symbol N
0

N
1

N
2

N
3

g

5-cell, 
4

. . (3, 3, 3) 5 10 10 5 120
16-cell, 

4
. . (3, 3, 4) 8 24 32 16 384

Tessaract, 
4

. (4, 3, 3) 16 32 24 8
24-cell . . (3, 4, 3) 24 96 96 24 1152
600-cell . . (3, 3, 5) 120 720 1200 600 14400
120-cell . . (5, 3, 3) 600 1200 720 120
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This is once more shown in Table (5) where the solid is labelled following Coxeter

Tessaract 4� . Using the Schlafli symbol it is described as a { 4,3,3 } polytope. Finally,

following Coxeter we label all combinatorial values as Ni . In the case of 4�  we have thus

[16]

Figure 2: The Evolution of Topology from a Point to a 4-D cube

Figure 3: “Tomaeus” Correspondence between the Platonic Solids and the Elements,
the Earth and the Universe
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No = V = 16

N1 + E = 32

N2 = F = 24

and

N3 = cells = 8

Next we discuss the critical dimension D(10) = 10 of string theory before showing how we
can use four dimensional polytopes in high energy “spacetime” particle physics [11-15].

4. The Role of the Critical String Dimension D(10) = 10 and E-infinity Theory

It is well known that a transfinite string dimensional hierarchy may be generated from the

E-infinity inverse electro magnetic constant o�  = 137.082039325 as follows [6]:

( o�  / 2) (� 2) = 26 + k�  26

( “ ) (� 3) = 16 + k�  10

( “ ) (� 4) = 10

( “ ) (� 5) = 6 + k�  6

( “ ) (� 6) = 4 – k�  4

To show that D(10) = 10 is indeed a critical dimension in E-infinity, we must examine
closely two things. To start with we recall that for the Feigenbaum period doubling to

chaos, the parameter�  of [14]

n 1��  =� n�  (1 – n� )

is given for hyperbolic behaviour by [14]

4 <� �  4 + � 3

In other words we have an analogy between the Feigenbaum map and zooming in E-infinity
spacetime because of

nt = 4 <� �  ~ < n > = 4 + � 3

The criticality of D(10) = 10 becomes obvious from the above when we look at the convergence

of < n > towards ~ < n > = 4 + � 3 passing by < n > = nt = 4 . Thus writing the series of ~ <

n > explicitly we see that [17]
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< n > = 

n 9
n

n 0

(n)( )
�

�

��
                        = 3.951669397 < 4 = nt

while

< n > = 

n 10
n

0

(n)( )
�

��
                 = 4.070069955�  nt

Consequently n = D(10) = 10 must be the critical dimension taking spacetime to a
hyperbolic fractal geometry [14].

5. Four Dimensional Fuzzy Polytope, Super Strings and P-Branes

We start with the sharp 4-D generalization of the classical Dodecahedron { 5, 3, 3 }. This is
the Coxeter 120-cell polytope, the combinatorial value of which is given in Table (5).
Proceeding as in the classical case, one finds [6]

i

i 3

i 0

N
�

�
� = N0 + N1 + N2 + N3

= 600 + 1200 + 720 + 120

= 2640.

For the dual shape { 3, 3, 5 } we have similarly

i

i 3

i 0

N
�

�
� = 2640

Consequently the total is given by

       NT = (2) i

i 3

i 0

( N )
�

�
�

= (2) (2640)

= 5280
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It is clear from the above that NT is ten copies of the number of states of a theory which
contain besides strings, other extended objects, namely membranes and 5-Branes. The total
number of states of the basically 11-dimensional theory was given else where by [17]:

�0 =
11

1

� �
� �
� �

 +
11

2

� �
� �
� �

 + 
11

5

� �
� �
� �

= 11 + 55 + 462

= 528

Consequently we see that

� 0 = NT / D
(10)

= (5280) / 10

= 528

as should be. A subsequent 3 step symmetry breaking leads then to the number of elementary
particles which a minimally extended standard model should include, namely [17]

N(SM) = (N0) / D
(8)

= 528 / 8

= 66.

Assuming, as is currently believed, that we have experimentally discovered 60
elementary particles, then one could conclude from the above result that we should discover
6 more particles in the future. If we further exclude the graviton, then the five particles left
may well be three neutral and two charged Higgs particles as argued on earlier occasions
[17].

From the above model one could conjecture that the points-like particles of the standard
model are given by

N(SM) = N0 / D
(10)

= (600) / 10

= 60.

Consequently the graviton and the Higgs may be qualitatively different from the particles
we discovered so far and this may explain the difficulties of finding them. The Coxeter
number N1 could thus be interpreted as string-like particles while N2 and N3 correspond to
membrane and P-Brane respectively [17].
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Finally let us attempt to introduce fuzziness to { 5, 3, 3 }. In such a case we surmise that
the Ni could be modified as follows:

No = 600 � (� ) (10)3�  620

N1 = 1200 � D(10) ( o�  – D(9) )�  1271

N2 = 720 � (Sc
(7)) (10)2�  723

N3 = 120 � ew� �  128 .

Consequently

�����0 = (2) (620 + 1271 + 723 + 128)

= (2) (2742) .

Thus

N(SM) = �0 / [D
(10) D(8)]

= 68.55 = o�  / 2

particles which is almost the exact E-infinity value [17].

CONCLUSION

Tomaeus of Locri presented a mystical correspondence between four of what later became
known as the platonic solids, namely the Tetrahedron, the Octahedron, the Icosahedron and
the cube and the four natural elements, fire, air, water and earth. The fifth platonic solid, the
Dodecahedron is given by Tomaeus the astonishing interpretation of being the envelope of
the entire universe (Fig. 3). While it is understandable that the symmetry of the platonic
solids have provided inspiration and even insight for W. Heisenberg in his attempt to
understand the quantum structure of matter, it is almost surreal that the Poincaré
Dodecahedron should turn out to explain some basic contradictions in the recent WMAP
data [7].

Equally astonishing is the fact that the Dodecahedron model in some modified four
dimensional cases can provide a useful model for quantum physics supporting several of
the fundamental findings of E-infinity, super strings and P-Brane theory.
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