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Stability Analysis for a Class of Nonlinear
Fuzzy Systems with Delays

JIALI YU AND ZHANG YI

The method of Takagi-Sugeno (T-S) fuzzy systems provides an effective representation of
complex nonlinear systems by fuzzy sets and fuzzy reasoning. Most existing results of
T-S method represent global nonlinear systems by connecting local linear systems. However,
many complex nonlinear systems cannot be represented by linear systems. In this paper,
by T-S method, a class of local nonlinear systems having nice dynamic properties is
employed to represent some global complex nonlinear systems. The stability of these global
complex nonlinear systems is studied based on these local nonlinear systems. Conditions
for global exponential stability are derived. Examples are employed to illustrate the theory.
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1. INTRODUCTION

The well known Takagi-Sugeno (T-S) model of fuzzy systems was first proposed in [1].
The T-S model gives an effective method to combine some simple local systems with their
linguistic description to represent complex nonlinear dynamic systems. From the
mathematical point of view, the essence of T-S model is to connect some simple local
systems to form global complex nonlinear systems.

Stability of T-S model fuzzy systems is quite important for practical applications. It has
been widely studied by many authors, see, for examples, [2-8].

T-S model of fuzzy systems with delays was first introduced in [9]. The stability between
T-S model fuzzy systems with and without delays is essentially different. In recent years,
some authors have paid their attention to control of nonlinear systems with delays by using
T-S fuzzy models. There exist two kinds of delays, one is continuous, see, for examples,
[3, 10-17] and the other is discrete, see, for examples, [5, 18, 19]. In [3], delays are assumed
to be any uncertain bounded continuous functions. The delays are not required to be
differentiable and it is also not necessary to know the bounds of the delays. The stability of
the fuzzy systems can be determined by searching a common positive definite matrix P.
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As we know, in most reported stability results of T-S model, simple linear systems are
used to form global nonlinear fuzzy systems. However, there are many complex nonlinear
fuzzy systems cannot be connected by using local linear systems. In this paper, unlike using
local linear systems in previous study, a class of nonlinear systems with delays having nice
dynamical properties [20] will be used as local systems to form some global complex nonlinear
fuzzy systems by T-S method. We will study the stability of the global complex nonlinear
fuzzy systems and derive some simple conditions to guarantee the exponential stability.

This paper is organized as follows. In Section 2, some preliminaries for delayed fuzzy
control systems will be given. In Section 3, conditions for global exponential stability of
fuzzy systems with delays will be proposed and proved. In Section 4, state feedback
stabilization of delayed fuzzy control systems will be discussed. In Section 5, simulations
will be given. This paper will be concluded in Section 6.

2. PRELIMINARIES

Let bC0  be the set of any nonnegative continuous and bounded functions defined on [0,+

). For any s
j bt C s n0( ) ( 1,. .. , ),� � �  consider a nonlinear time-delay system composed of n

subsystems. The ith subsystem is described as follows:

� �

� �� � � � � � �� �� ��
n m

s s s
i i ij j ij j s ij j

j j

x t x t a f x t b f x t t c u t
1 1

( ) ( ) ( ( )) ( ( ( ))) ( ) (1)

for t  0 and s = 1, . . ., r, i = 1, . . ., n. Where s s s
ij ij ija b c, ,  are constants.

The above local systems can be written in compact vector form

x t( ) �� – x(t) + As f (x(t)) + Bs f (x(t – s(t))) + Csu(t), (s = 1, . . . ,r) (2)

where x(t) = (x1(t), . .  ., xn(t))
T is the state vector, � �s

s ij n n
A a

�
�  and � �s

s ij n n
B b

�
� are constant

matrices, u(t) is the input vector, s(t) is the time delay, r is the number of IF-THEN rules.
For any x  Rn, f (x) = (f (x1), . . ., f (xn))

T, and the function f is defined as follows:

f (s) = max {0, s}, s  R.

The function f  is a piecewise linear function, which is continuous, unbounded and
non-differentiable. Figure 1 shows this function. So the local system is nonlinear which is
the main feature of this paper different from others.
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For each s = 1, . . ., r, the T-S fuzzy time-delay model is composed of r plant rules that
can be represented as follows.

Plant Rule s: IF 1(t) is M1s AND . . . AND p(t) is Mps THEN

s s s sx t x t A f x t B f x t t C u t( ) ( ) ( ( )) ( ( ( ))) ( )� � � � � � ��

where 1(t), . . ., p(t) are the premise variables and eachMis(i = 1, . . ., p; s = 1, . . . r) is the
fuzzy set corresponding to i(t) and plant rule s. Let Mis( i(t)) be the membership function
of the fuzzy set Mis at the position i(t) and denote

p

s is i
i

w t M t s r
1

( ( )) ( ( )), ( 1, . . . , ).
�

� � � ��

Then, the resulting delayed fuzzy control system is inferred as the weighted average of
the local model and has the form as

r

s s s s s
s

r

s
s

w t x t A f x t B f x t t C u t

x t

w t

1

1

( ( ))[ ( ) ( ( )) ( ( ( ))) ( )]

( )

( ( ))

�

�

� � � � � � �
�

�

�

�
�

r

s x s s s
s

h t x t A f x t B f x t t C u t
1

( ( ))[ ( ) ( ( ) ( ( ( ))) ( )]
�

� � � � � � � �� (3)

Fig. 1. The function f (s).
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for t  0, where

s
s r

i
i

w t
h t

w t
1

( ( ))
( ( ))

( ( ))
�

�
� �

��

which satisfies

hs(a(t))  0,  and 
r

s
s

h t
1

( ( )) 1.
�

� ��

By using the membership functions, the local nonlinear delayed systems of (2) are
smoothly connected to form a global nonlinear delayed fuzzy control system of (3).

For each system of (3), since the delays s bt C s n0( ) ( 1, . . . , ),� � �  there must exit a constant

 > 0 such that 0  s(t)   (s = 1, . . . , r). For each solution, the initial value is assumed to
be

x(t) = (t),  t  [– , 0]

where (t) = ( 1(t), . . . , n(t))
T is a vector continuous function. We define

n
2 2
1

0
|| || sup ( ) . . . , ( ).

�����
� � � � � �� �

In this paper, for a matrix S, we will use S > 0 and S < 0 to denote that S is a symmetric
positive matrix or a symmetric negative matrix, respcetively.

Lemma 1 [20] For above function f (s) = max{0, s}, s  R.

s
sf s f s f d2

0
( ) ( ) 2 ( )� � � ��

for any s  R.

Lemma 2 [20] For above function f,

i
n xT T T

i

f x x x f x f x f x f d
0

1

( ) ( ) ( ) ( ) 2 ( )
�

� � � � ���

for any x = (x1, . . . , xn)
T  Rn.
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Lemma 3 [3] Let Q be any of a n × n matrix, we have for any constant k > 0 and any
symmetric positive matrix S > 0 that

T T T Tx Qy kx QS Q x y Sy
k

1 1
2 �� �

for all x, y  Rn.

D+ is used to denote the upper righthand Dini derivative in this paper. For any continuous
function f : R  R, the upper righthand Dini derivative of f (t) is defined as

f t f t
D f t

0

( ) ( )
( ) lim sup

�

�

��

� � �
�

�
.

It is easy to see that if f (t) is locally Lipschitz then |D+f (t)| < + .

3. STABILITY OF FREE FUZZY DELAYED SYSTEMS

First, we will give a class of fuzzy system with time delay

r

s s s s
s

x t h t x t A f x t B f x t t
1

( ) ( ( ))[ ( ) ( ( )) ( ( ( )))]
�

� � � � � � ��� (4)

for t  0. We can see that it is a global nonlinear fuzzy system and its nonlinear local
delayed systems are represented as follows

s s sx t x t A f x t B f x t t s r( ) ( ) ( ( )) ( ( ( ))), ( 1, . . . , )� � � � � � �� (5)

From [3], we can see that the fuzzy system (4) is globally exponentially stable, if there
exist constants � > 0 and   1 such that

||x(t)||  || ||e– t

for all t  0.

Theorem 1 The free fuzzy system (4) is globally exponentially stable subject to

any  s bt C s r0( ) ( 1, . . . , )� � �  if there exists a diagonal matrix D > 0 and some constants

ks > 0 (s = 1, . . . , r) such that

Ts
s s s

s

k
D DA DB D B D D s

k
r1 1

0,( 1, . .
2 2

. , )�� � � � � �  (6)
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Proof: For any s bt C s r0( ) ( 1, . . . , ),� � �  there must exist a constant   0 such that 0 

s(t)   (s = 1, . . . , r) for all t  0.

By (6), obviously, there exist a sufficient small constant � > 0 such that

Ts
s s s

s

k e
D D DA DB D B D D

k

2
1 0

2 2

�
�� � � � �

�

�

for s = 1, . . . , r.

Using the above constant � and the matrix D, we select a diffierentiable function

i
n x tt

i
i

V t e d f s ds2

0
1

( ) ( )
�

� � ��

for all t  0, denote D = diag(di)(i = 1, . . . , n). Then the derivative of the function V (t) along
the trajectories of (4) is

r
t T T

s s
s

V t e h t f x t Dx t f x t DA f x t2

1

( ) ( ( )) ( ( )) ( ) ( ( )) ( )( ))
�

�� � � ���� �

T
s sf x t DB f x t t V t( ( )) ( ( ( ))) 2 ( )�� � � �� �

for all t  0. By the Lemma 3 in last section, it follows that

r
t T T

s s
s

V t e h t f x t Dx t f x t DA f x t2

1

( ) ( ( )) ( ( )) ( ) ( ( )) ( )( ))
�

�� � � ���� �

T T
s s sk f x t DB D B Df x t11

( ( )) ( ( ))
2

��

T
s s

s

f x t t Df x t t V t
k
1

( ( ( ))) ( ( ( ))) 2 ( )
2

�
� � � � � ��

�
�

for all t  0. Using the Lemma 1 and Lemma 2 in last section, then

r
t T

s s
s

V t h t e f x t D D DA2

1

( ) ( ( )) ( ( ))(
�

�� � � � ���� � �
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t
T

s s s
s

e
k DB D B D x t V t t

k

2
1

2
1

( ) ( ( ))
2

� ��� � � � ��
� �

�

r
t T ts

ss

h t
e f x t Dx t e

k
2 2

1

( ( )) 1
( ( )) ( )

2�

� �� ���
�� �

� � �sV t t( ( ))]

r
t s

s
ss

h t
e V t V t t

k
2

1

( ( ))
[ ( ) ( ( ))]

�

�
� � � � ��� (7)

for all t  0.

Let dmax and dmin to denote the largest and smallest ones of di(i = 1, . . . , n), respectively.
Obviously, dmax > 0, dmin > 0. For any c > 1, by the Lemma 1, we can see that

n n
t

i i i
i i

V t e d f x t cd x t cd2 2 2 2
max max

1 1

1 1 1
( ) ( ( )) ( ) || ||

2 2 2� �

� � � �� ��

for all t  [– , 0]. We will prove that V t cd 21
max2( ) || ||� �  for all t  0. If this is not true,

there must exist a t1 > 0 such that V t cd 21
1 max2( ) || ||� �  and V t cd 21

max2( ) || ||� �  for all all

t  [– , t1). Hence, V t1( ) 0.��  However, from (7) we have

    
r

t s
s

ss

h t
V t e V t V t t

k
2 1

1 1 1 1
1

( ( ))
( ) [ ( ) ( ( ))]

�

�
� � � � ��� �

 
r

t s

ss

h t
e cd cd

k
2 2 21

max max
1

( ( )) 1 1
|| || || ||

2 2�

� � �� � � �� �
� �

��

= 0.

This leads to a contradiction and it proves that

V t cd 2
max

1
( ) || ||

2
� �
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for all t  0. By the definition of V (t), we have

n
t t

i i i
i

V t e d f x t d e f x t2 2 2 2
min

1

1 1
( ) ( ( )) ( ( ))

2 2�

� ��� �

for all t  0 and i = 1, . . . , n. Hence,

t t
i

cdV t
f x t e e

d d
max

min min

2 ( )
| ( ( )) | || ||� �� � �� �

By

n
s s

i i ij j ij j s
j

x t x t a f x t b f x t t
1

( ) ( ) ( ( )) ( ( ( )))
�

� �� � � � � �� ���

We have

n
s s

i i ij j ij j s
j

D x t x t a f x t b f x t
1

| ( ) | | ( ) | || ( ( )) | || ( ( ))) |�

�

� �� � � � � �� ��

 
n

s t
i ij

j

cd
x t a e

d
max

min1

| ( ) | | | || || �

�

�
� � ��

��
� �

st ts
ij

cd
b e

d
( ( ))max

min

| | || || � �� �
� � �

��

�

 
n

s s t t
i ij ij

j

cd
x t a b e e

d
max

min1

| ( ) | (| | | | ) || || �

�

� � � �� � �

Thus, it follows that

n
s s t
ij ij

j t
i

cd
a b e

d
x t e

max

min1

(| | | | )

| ( ) | 1 || ||
1

� �

� �
�� �

� �� � �� ��
� �
� �
� �

� �

�
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n
s s t
ij ij

j t

cd
a b e

d
e

max

min1

(| | | | )

|| ||
1

� �

�

� �
�

� �

�

�

n
s s t
ij ij

j

cd
a b e

d
max

min1

(| | | | )

|| || 1
1

�

�� �
��� �

�� �� � ��� ���� �
� ��� ��

� �

�

n
s s t
ij ij

j t

cd
a b e

d
e

max

min1

(| | | | )

1
� �

�
� �

�� ��
�
��

� �

�

�

for all t  0 and i = 1, . . . , n. The proof is completed.

From Theorem 1, we can get the condition to guarantee the exponential stability of the
nonlinear time-delay fuzzy systems of (4). To check the inequalities of (6), it needs to find
a common diagonal matrix D > 0. Generally, it is not easy to solve inequalities of (6) to find
such a common diagonal matrix D > 0. By using Schur complement, we can have the
following corollary which is equivalent to the matrix inequalities in (6) easily.

Corollary 1 The fuzzy system (4) is globally exponentially stable subject to any

s bt C s r0( ) ( 1, . . . , )� � �  if there exists a common matrix D > 0 and constants ks > 0(s = 1, .

. . , r) such that the following LMI’s hold

s

s

s sk

T
s k

D DA D DB
s

B D D

1
2

2
0,( 1, . . . ,)

� �� � �
� � � �
� ��� �

If we give a special D and select the parameters ks > 0(s = 1, . . . , r) carefully, we can get
the next corollary which gives some simple conditions for stability.

Corollary 2 If
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T
s s sB B I A smax( ( ) 1) 0, ( 1, . . . ,)� � � � �

where I is the n × n identity matrix, then the free fuzzy system (4) is globally exponentially

stable subject to any s bt C s r0( ) ( 1, . . . , ).� ��

Proof: Let D = I, and choose

T
s s

T
s s

B B
s

if B B
k

otherwise
max

1
max

( )
, ( ) 0

,

�
� � ��
�
�� ���

We can derive the above result from Theorem 1 directly. The proof is completed.

It is hard to check the above matrix inequalities if the dimensions of the matrices are
much high. Next, we will derive some global exponential stability conditions which will be
presented in some simple algebraic inequalities. They are very easy to check.

Theorem 2 If

n
s s s
ii ij ij ij

j

a a b
1

1 | | (1 ) | | 0
�

� �� � � � � � �� ��

for all i = 1, . . . , n and s = 1, . . . , r, where

��
� � �

��
ij

i j

i j

1,

0,

then, the free fuzzy system (4) is globally exponentially stable subject to any

s bt C s r0( ) ( 1, . . . , ).� ��

Proof: For any delays s bt C s n0( ) ( 1, . . . , ),� ��  the free fuzzy system of (4) can be

rewritten as

� �
r n

s s
i i s ij j ij j s

s j

x t x t h t a f x t b f x t t
1 1

( ) ( ) ( ( ) ( ( )) ( ( ( )))
� �

� �
� � � � � � �� �

� �� �
� ��

for all t  0 and (i = 1, . . . , n). Then, it follows that

42



r
s

i i s ii i
s

D x t x t h t a f x t
1

| ( ) | | ( ) | ( ( ))[ | ( ( )) |�

�

� � � ��

�
r

s
ij ij j

l

a f x t
1

| | (1 ) | ( ( )) |
�

� � ��

�s
ij j sb f x t t| || ( ( ( ))) | �� � � � (8)

for all t  0 and (i = 1, . . . , n).

By s bt C s r0( ) ( 1, . . . , )� � � , there exists a constant   0 such that 0  s(t)  

(s = 1, . . . , r) for all t  0. Since

n
s s s
ii ij ij ij

j

a a b
1

1 | | (1 ) | | 0
�

� �� � � � � � �� ��

for i = 1, . . . , n and s = 1, . . . , r, then there must exist a � > 0 such that

n
s s t s
ii ij ij ij

j

a a e b
1

1 | | (1 ) | | 0
�

� �� � � � � � �� �� ��

for all s = 1, . . . , r and i = 1, . . . , n. Denote

n
s s t s

is ii ij ij ij
j

a a e b
1

1 | | (1 ) | |
�

� �
� �� � � � � � � � �� �� �� �� �

� ��

for s = 1, . . . , r and i = 1, . . . , n, and let

is
i n s r1 ,1
min ( ).

� � � �
� � �

Obviously,  > 0.

Define some functions

zi(t) = |xi(t)|e
�t, (i = 1, . . . , n)

for all t  –  . Then, it follows from (8) that
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r
t s

i i s ii i
s

D z t x t e h t a f x t
1

( ) ( 1 ) | ( ) | ( ( ))[ | ( ( )) |�

�

� � � � ����

�
�

� � ��
n

s
ii ij j

j

a f x t
1

| | (1 ) | ( ( )) |

�s t
ij j sb f x t t e| || ( ( ( ))) | �� � � �

�

for all t  0 and (i = 1, . . . , n).

From the definition of function f, we can see that |f(xi(t))|  |xi(t)|, (i = 1, . . . , n). So,

r
t s

i i s ii i
s

D z t x t e h t a x t
1

( ) ( 1 ) | ( ) | ( ( ))[ | ( ) |�

�

� � � � ����

�
n

s
ij ij j

j

a x t
1

| | (1 ) | ( ( ) |
�

� � ��

�s t
ij j sb x t t e| || ( ( )) | �� � � �

�

� �
�

� � � ��
r

s
i s ii i

s

z t h t a z t
1

1 ( ) ( ( ))[ ( )�

�
n

s
ij ij j

j

a z t
1

| | (1 ) ( )
�

� � ��

�t s
ij j se b z t t| | ( ( )) �� � � �

�

 
r

s
s ii i

s

h t a z t
1

( ( )) 1 ) ( )
�

�� � � ��� �

�
n

s
ij ij j

j

a z t
1

| | (1 ) ( )
�

� � ��

�t s
ij j se b z t t| | ( ( )) �� � � �

�
(9)
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for all t  0 and (i = 1, . . . , n). For any constant c > 1, it is easy to see that zi(t) = | i(t)|e
�t 

||  ||< c ||  || (i = 1, . . . , n) for all t  [– , 0]. we will prove that zi(t) < c ||  || (i = 1, . . .
, n) for all t  0. Otherwise, then there must exist some i and a time t1 > 0 such that

zi(t1) = c ||  ||

and

j

c j i for t t
z t

c j i for t t
1

1

|| ||, , [ , )
( )

|| ||, , [ , ].

� � � � ���
�� � � � ���

Then, we have D+zi(t1)  0. But on the other hand, it follows from (9) that

r
s

i s ii
s

D z t h t a c1 1
1

( ) ( ( ))[( 1 ) || ||�

�

� � � � � �� �

� �
n

s s
ij ij ij

j

c a e b
1

|| || | | (1 ) | |�

�

�
� � � � � �

��
� �

r

s is
s

c h t1
1

|| || ( ( ))
�

� � � � ��

 c || ||�� �

< 0.

This is a contradiction and it proves that

zi(t) < c ||  || (i = 1, . . . , n)

for all t  0. Letting c  1, we have zi(t) ||  || (i = 1, . . . , n) for all t  0. Then, it follows
that

| x (t)| ||  || e–�t, (i = 1, . . . , n)

for all t  0. The proof is completed.

The above theorems provide some conditions to guarantee the exponential stability of
the free fuzzy systems of (4) subject to any uncertain continuous bounded delays.

4. FUZZY FEEDBACK STABILIZATION OF DELAYED FUZZY SYSTEMS

In this section, we will study how to design a state feedback fuzzy controller to feedback
control the stability of the fuzzy control system with uncertain delays
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r

s s s s s
s

x t h t x t A f x t B f x t t C u t
1

( ) ( ( ))[ ( ) ( ( )) ( ( ( ))) ( )]
�

� � � � � � � ���  (10)

for t  0.

We consider the following fuzzy control law for the delayed fuzzy system (10). For
each l = 1, . . . , r, we have

Regulator Rule l: IF 1(t) is M1l AND . . . AND p(t) is Mpl THEN

u(t) = –Kl f (x(t))

where each � �l
l ijK k�  is a m × n matrix.

The overall state feedback fuzzy controller can be inferred as

�

�

�
� �

�

�

�

r

l l
l

r

l
l

w t K f x t

u t

w t

1

1

( ( )) ( ( ))

( )

( ( ))

r

l l
l

h t K f x t
1

( ( )) ( ( )).
�

� � �� (11)

Using the above fuzzy feedback controller, from (10), we get the closed loop delayed
fuzzy system

r

s l s s l
s l

x t h t h t x t A C K f x t
, 1

( ) ( ( )) ( ( ))[ ( ) ( ) ( ( ))
�

� � � � � ���

s sB f x t t( ( ( )))]� � � (12)

for t  0.

If there exist matrices Kl(l = 1, . . . , r) such that the closed loop fuzzy system (12) is
globally exponentially stable, then we say that the delayed fuzzy control system (10) can be
fuzzy feedback globally exponentially stabilized by the fuzzy controller (11).

Obviously, the aim of the design of fuzzy feedback controller is to select the desired
matrices Kl(l = 1, . . . , r) such that (12) is globally exponentially stable. In last Section, we
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have got some conditions of global exponential stability for free fuzzy systems. Since the
closed loop delayed fuzzy system (12) can be looked as a free fuzzy system, we can directly
use the results in last section to derive global exponential stability to (12) and then get
criteria for the design of the feedback controller. Similar to the analysis of the last section,
we have the following theorems which will provide some criteria for the selection of the
matrices of Kl(l = 1, . . . , r).

Theorem 3 If there exists a diagonal matrix D > 0 and some constants s > 0(s = 1, . .
. , r) such that

Ts
s s l s s

s

D D A C K DB D B D D1 1
( ) 0

2 2
��

� � � � � �
� (13)

or the LMI’s

s

s

s s l s

T
s

D D A C K D DB
s

B D D

1
2

2

( )
0,( 1, . . . , )

�

�

� �� � � �
� � � �
� ��� �

for s, l = 1, . . . , r. Then the fuzzy system (10) can be globally exponentially stabilized by the

fuzzy controller (11) subject to any s bt C s r0( ) ( 1, . . . , )� � � .

Corollary 3 If

T
s s s s lB B I A C Kmax ( ) ) ( ) 0( � � � � �

for s, l = 1, . . . , r, where I is the n × n identity matrix. Then the fuzzy system (10) can be
globally exponentially stabilized by the fuzzy controller (11) subject to any

s bt C s r0( ) ( 1, . . . , ).� � �

Theorem 4 Suppose that

m n m
s s l s s l s
ii ip pi ij ip pj ij ij

p j p

c k a c k ba
1 1 1

(1 ) | | 01
� � �

� �
� � � � � � �� �

� �� �
� � � � �

for all i = 1, . . . , n and s, l = 1, . . . , r, where

ij

i j

i j

1,

0,

��
� � �

��
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then, the fuzzy system (10) can be globally exponentially stabilized by the fuzzy controller

(11) subject to any s bt C s r0( ) ( 1, . . . , ).� � �

Since

� � �

� �
� � � � � �� �

� �
� � �

r r r

s l s l
s l s l

h t h t h t h t
, 1 1 1

( ( ) ( ( )) ( ( )) ( ( )) 1

the proofs of the above theorems can be derived by some slight modifications to the proofs
of the theorems in last section. The details are omitted.

By solving the inequalities in the above theorems, the controllers can be obtained directly .

5. SIMULATIONS

In this section, we employ some examples to illustrate the above theory. Let us consider the
following nonlinear system with delay

� �x t x t f x t x t

f x t t f x t t x t

x t x t f x t f x t f x t x t

f x t t x t

f x t t x t

2
1 1 1 2

2
1 2 2

2
2 2 2 1 2 2

2
1 2

2
2 2

( ) ( ) ( ( )) . 1 sin ( )

( ( ( ))) ( ( ( ))) . sin ( )

( ) ( ) ( ( )) ( ( ( )) ( ( )).cos ( )

( ( ( ))).cos ( )

( ( ( ))).sin ( )

� � � � �
�
� � � � � � ��� � � � � ��
� � � ��
� � � ���

�

�

(14)

for all t  0.

Define some matrices

A B1 1
2 0 1 1

,
0 1 0 1

�� � � �
� �� � � ��� � � �

�� � � �
� �� � � ��� � � �

A B2 2
1 0 1 0

,
0 2 1 0

and some functions
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M11(x2(t)) = sin2 x2(t), M22(x2(t)) = cos2 x2(t).

We can interpret M11(x2(t)) and M22(x2(t)) as membership functions of some fuzzy sets
M11 and M22, respectively. Using these fuzzy sets, the above nonlinear system (14) can be
presented by the following TS fuzzy model

Plant Rule 1: IF x2(t) is M11 THEN

x t x t A f x t B f x t t1 1( ) ( ) ( ( )) ( ( ( ))).� � � � � �� (15)

Plant Rule 2: IF x2(t) is M22 THEN

x t x t A f x t B f x t t2 2( ) ( ) ( ( )) ( ( ( ))).� � � � � �� (16)

Using the Theorem 2, it is easy to check that the nonlinear system (14) is globally

exponentially stable subject to any bt C0( ) .� �  The delay  (t) could be any bounded

continuous function, say, sin2(t), cos2(t), 1/(1 + |t|) (not differentiable), etc. Stability
conditions for systems with uncertain delays are quite interesting, since in practical
applications it is actually not easy to know the delays exactly.

Figure 2 shows the global exponential stability of the nonlinear system (14) with  (t) = 1.

Fig. 2. GES of (14)with  (t) = 1
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Figure 3 and Figure 4 show the global exponential stability of the local systems (15)
and (16) with  (t) = 1.

Fig. 3. GES of (15)with  (t) = 1

6. CONCLUSIONS

In this paper, the global exponential stability analysis for a class of fuzzy systems with time
delays has been studied. First, we have discussed stabilization for delayed fuzzy control
systems and some global exponential stability conditions for free delayed fuzzy systems
have been proposed. Then we have given
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some criteria for feedback fuzzy controller design. Finally, an example has been used to
illustrate the results. We believe that all of the results obtained in this paper can be extended
to the fuzzy systems with multiple time delays or with time-varying delay only by changing
another Lyapunov function.
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