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Parameter Identification of Chaos System Based on
Unknown Parameter Observer

SHAOMING WANG, XIAOXIN LIAO
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Parameter identification of chaos system is an important problem in the field of chaos
control and synchronization. In this paper, the method of parameter identification based
on unknown parameter observer is studied in detail. The key to observer design is to choose
an appropriate gain function and construct an auxiliary function. The right side of the
differential equation of chaos system is divided into the linear part and nonlinear part. The
techniques to construct observer are discussed respectively under different cases, i.e., the
diagonal element, non-diagonal element of coefficient matrix of the linear part in chaos
system’s differential equation, and the coefficient of a certain nonlinear term are unknown
parameters respectively. Some general approaches to choosing an appropriate gain function
and constructing an auxiliary function are proposed and the design methods of observer
are provided under corresponding cases. Illustrative observers are designed for two chaotic
systems. Simulations results demonstrate the effectiveness and feasibility of the designed
observers.

1. INTRODUCTION

Since Lorenz found the first canonical chaotic attractor in 1963 [1], chaos control attracts
more and more attention [2] and many different techniques have been proposed, including
OGY method [3], linear state space feedback [4], differential geometric approach [5],
sampled-date feedback method [6], inverse optimal control [7], and adaptive control [8].
Especially, after the pioneering work of Pecora and Carrol in 1990 [9], synchronization of
chaotic systems has attracted much attention due to its potential application in secure
communication, chemical and biological systems, information science, biotic science and
so on [2]. Great efforts have been devoted to achieving chaos synchronization in the last
few years and a wide variety of approaches have been proposed, such as linear and nonlinear
feedback synchronization methods [10, 11], time delay feedback synchronization approaches
[12], adaptive synchronization methods [13], impulsive synchronization methods [14] and
so on.
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In the fields of chaos control and synchronization, how to achieve the uncertain
parameters of chaotic system is an important problem. In recent years, a number of different
techniques have been proposed to estimate parameters of chaotic system, including
synchronization method based on the theory of Lyapunove function [15, 16], Bayesian
approach [17], least square method [18], random optimization method [19], among many
others [20, 21].

Guan et al. [22] introduced the method based on unknown parameter observer to estimate
the parameter of the third equation in Lorenz system. Wu et al. [23] used this method to
identify the parameter of the second equation in Lü system. This approach is very convenient
in practical application because it uses the state vector of chaos system directly and avoids
some complex theories in other methods. However, only a special case was discussed and
no general methods to choose gain function and design auxiliary function was given in
[22, 23]. In general cases, there are two difficult problems: one is how to choose an
appropriate gain function; another is how to construct an auxiliary function that can eliminate
the derivative of the state variable in the preliminary observer. In this paper, some observers
are designed to identify the unknown parameters of chaos systems in usual cases, and the
general methods to choose the gain function and design the auxiliary function are proposed.

The layout of the paper is as follows: the problem is formulated in Section 2. Section 3,
4 and 5 are devoted to identify the uncertain parameters of chaos systems and discuss the
design of the unknown parameter observer in some different cases. Some examples and
numerical simulations are given to demonstrate the effectiveness and feasibility of the
designed observers in Section 6. Section 7 is the conclusions.

2. PROBLEM FORMULATION

Consider chaos system

x Ax F x( ),� ��  (1)

where x  Rn is a state vector, A  [aij ]n×n is the coefficient matrix of the linear part in
system (1), F(x) = [ fi (x)]n×1 is the nonlinear part of system (1).

As some unknown parameter in A and F(x), our objective is to design observers to
identify these unknown parameters.

3. IDENTIFICATION OF THE UNKNOWN PARAMETER aii

In this section, we discuss how to design an observer to identify the unknown parameter aii

of the system (1).
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Lemma: If x  R is the state vector of a chaos system, and f (x)  [Rn  R] is chaotic,

then the system y k f x y k y| ( ) | ( 0, )� � � �R�  is asymptotically stable.

Proof: From the differential equation of the system, we get 
t k f x dty y e 0 | ( )|

0 .� ��  Since f

(x) is chaotic, f (x) don’t converge zero when t  . According to Barbalat theorem,

k f x dt
0

| ( ) |
�

���  correspondingly, y( )  0, i.e., the system y k f x y| ( ) |� ��  is

asymptotically stable. This completes the proof.

Theorem 1: Assume system (1) satisfies the conditions as follows: a) aii is the unique
unknown parameter in the i-th equation of system (1), b) aii is a constant. If the state vector
x of system (1) can be obtained, then we can design an observer to identify the unknown
parameter.

Proof: Since parameter aii is a constant, we have

iia 0.��  (2)

Because the unknown parameter aii can act as a state variable, system (1) can be augmented
by Eq. (2). According to the i-th equation of system (1), we have

n

ii i i ij j i
j j i

a x x a x f x
1,

( ).
� �

� � ��� (3)

Then we design the observer as follows

n

ii i i ii i i ij j i
j j i

a L x x a L x x a x f x
1,

ˆ ˆ( ) ( )[ ( )],
� �

� � � � ��� �  (4)

where L(xi) is a gain function. Let

ii iie t a aˆ( ) ,� � (5)

then according to Eqs. (2), (3) and (4), we obtain

ii i ie t a a L x x e tˆ( ) ( ) ( ).� � � ��� � (6)

If we choose such a gain function L(xi) that makes the system i ie t L x x e t( ) ( ) ( ) 0� ��

asymptotical stable for all xi, then iia tˆ ( )  converges to aii when t  .
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In the practical situation, xi is hard to be observed and the observer (4) is not applicable
directly. Hence, we introduce an auxiliary variable

i ii ip a xˆ ( ),� �� (7)

where (xi) is a design auxiliary function that satifies

i
i

i

d x
L x

dx

( )
( ).

�
� � (8)

According to Eqs. (7), (4) and (8), we have

  i ii ip a xˆ ( )� ��� ��

n
i

i i ii i i ij j i i
ij j i

d x
L x x a L x x a x f x x

dx1,

( )ˆ( ) ( )[ ( )]
� �

�
� � � � � ��� �

n

i i i i i i ij j i
j j i

L x x p L x x x a x f x
1,

( ) ( )[ ( ) ( )]
� �

� � � � � �� (9)

The next work is to choose an appropriate L(xi) or (xi) that makes system (6)
asymptotical stable for all xi . In the following, we will discuss it under different cases
respectively.

3.1 xi > 0 (or xi < 0) for all Time

For simplicity, we discuss only the case of xi > 0. In this case, there are a few choices for us.
Two simple choices are as follows

a. We choose

L(xi) = k (k > 0) (10)

According to the lemma, the error system i i ie t L x x e t kx e t( ) ( ) ( ) ( )� � � ��  is exponentially

asymptotical stability for all xi, and ii iia aˆ �  aii when t  .

From Eq. (8), we have (xi) = –kxi. Thus, the observer is designed

n
i i i i j j i ij j i

ii i i

p kx p k x k a x f x

a p kx

2 2
1, ( ) ,

ˆ

� �
� � �� � � � � �� � ��

� ���

�
(11)
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b. We choose

i
i

k
L x k

x
( ) ( 0),� � (12)

then,the system i ie t L x x e t ke t( ) ( ) ( ) ( )� � � ��  is exponentially asymptotical stable. From Eq.

(8), we have (xi) = –k ln xi. Thus, the observer is designed as follows

i

nk
i i i j j i ij j ix

ii i i

p kp k x a x f x

a p k x

2
1,ln ( ) ,

ˆ ln .

� �
� � �� � � � � �� � ��

� ���

�
(13)

Theoretically, all forms like n
i iL x kx( ) �  are feasible in this case.

3.2 The set [xi | xi(t) = 0, t  R+] is a Denumerable Set

In this case, the sign of xi is alternative. According to the lemma, we can choose

m
i iL x kx k m2 1( ) ,( 0, 1,2, . . .)�� � �  that makes m

i i ix e t kx e te t L x 2) ( ) ( )( ) ( � �� �� , (k > 0, m

= 1,2, . . . )  asymptotical stability. The simplest choice is L(xi) = kxi. Here, i ix kx21
2( )� � �

and the observer is designed as

n
i i i i i j j i ij j i

ii i i

p kx p k x kx a x f x

a p kx

2 2 41
1,2

21
2

( ) ,

ˆ .

� �
� � �� � � � � �� � �
�

� ���

�

(14)

From the above deduction, we can see that the observer of the unknown parameter aii

only relies on the i-th equation and is independent of others in chaos system (1). So, as long
as aii is the unique unknown parameter in the i-th equation of chaos system (1), it can be
identified by means of above observer. If all aii , (i = 1,2, . . . n) are unknown and the rest
parameters are certain, then the observers of aii , (i = 1,2, . . . n) can be designed to identify
them at the same time. The proof of the theorem is completed.

4. IDENTIFICATION OF THE UNKNOWN PARAMETER AIK

In this section, we discuss how to design an observer to identify the unknown parameter aik

of the system (1) in two different cases.
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4.1 aik is the Unique Unknown Parameter in the i-th Equation of Chaos System (1)

Theorem 2: Assume that system (1) satisfies the conditions as follows: a) the i-th equation
has no unknown parameter except aik and aik is a constant, b) all parameters of the k-th
equation of (1) are certain or only akk is unknown. If the state vector of system (1) can be
obtained, then we can design an observer to identify the unknown parameter aik.

Proof: As aik is a constant, we get

ika 0.�� (15)

Because the unknown parameter aik can act as a state variable, system (1) can be
augmented by Eq. (15). According to the i-th equation of system (1), we have

n

ik k i ij j i
j j k

a x x a x f x
1,

( ).
� �

� � ��� (16)

Then we design the observer as follows

n

ik k k ik k i ij j i
j j k

a L x x a L x x a x f x
1,

ˆ ˆ( ) ( )[ ( )]
� �

� � � � ��� � (17)

where L(xk) is a gain function. Let

ik ike t a aˆ( ) ,� � (18)

then according to Eqs. (16), (17) and (18), we obtain

ik ik k ke t a a L x x e tˆ( ) ( ) ( ).� � � ��� � (19)

If we choose an appropriate gain function L(xk) that makes the error system

k ke t L x x e t( ) ( ) ( ) 0� ��  asymptotically stable for all xk, then ika tˆ ( )  converges to aik when t

 .

In the practical situation, ix�  is hard to be observed and the observer (17) is not applicable

directly. Hence, we introduce an auxiliary variable

ik ik i kp a x xˆ ( , ),� � � (20)

where (xi, xk) is a design auxiliary function that satisfies
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i k
k

i

x x
L x

x

( , )
( ).

��
� �

� (21)

According to Eqs. (20), (17) and (21), we get

ik ik i kp a x xˆ ( , )� ��� ��

n

k k ik k i ij j i
j j k

L x x a L x x a x f x
1,

ˆ( ) ( )[ ( )]
� �

� � � � ���

i k i k
i k

i k

x x x x
x x

x x

( , ) ( , )�� ��
� �

� �
� �

n

k k ik k k i k ij j i
j j k

L x x p L x x x x a x f x
1,

( ) ( )[ ( , ) ( )]
� �

� � � � � ��

i k
k

k

x x
x

x

( , )��
�

�
� (22)

Based on the condition b), kx� can be obtained from the k-th equation of system (1), i.e.,

n
k j kj j kx a x f x1 ( ).�� � ��

Remark: IF akk is unknown, it can be identified using the method in Section 3.

So, Eq. (22) becomes

n

ik k k ik k k i k ij j i
j j k

p L x x p L x x x x a x f x
1,

( ) ( )[ ( , ) ( )]
� �

� � � � � ���

n
i k

kj j k
k j

x x
a x f x

x 1

( , )
[ ( )].
�

��
� �

� � (23)

According to the lemma, we can choose m
k kL x kx k m2 1( ) ( 0, 1,2, . . .)�� � �  and

m
i k k ix x kx x2 1( , ) �� � �  that make the error system (19) asymptotically stable. Thus, the

observer consisted of (23) and (20) is applicable to identify the unknown parameter aik. If
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the sign of xk is alternative, the simplest choice is L(xk) = kxk and (xi, xk) = –kxixk. If xk  0
(or xk  0) for all time, the ordinary choice is L(xk) = k (or –k)(k > 0) and (xi, xk) = –kxi (or
kxi). This completes the proof.

4.2 Parameters 
mik ik ik iia a a a

1 2
| | | | | | | |� � � � � � �  are Unknown and the Others are

Certain in i-th Equation of System (1)

Theorem 3:Assume that system (1) satisfies the conditions as follows: a) the i-th equation

have unknown parameters 
mik ik ik iia a a a a

1 2
| | | | | | | |� � � � � � � �  constant, and the others

are certain; b) all parameters of the kl-th (l = 1, 2, . . . , m) equation are certain or only 
l lk ka

are unknown. If the state vector of system (1) can be obtained, then we can design an
observer to identify the unknown parameter.

Proof: Similar to Section 3, according to the assume, we have

iia 0.�� (24)

From the i-th equation of system (1), we get

l

n

ii i i ij j i
j j i k

a x y x a x f x
1, ,

( ) ( ),
� �

� � � ��� (25)

where y is the algebraic sum of k k kmx x x
1 2
, ,. . .. ,  Then we design the observer as follows

l

n

ii i i ii i i ij j i
j j i k

a L x y x y a L x y x a x f x
1, ,

ˆ ˆ( , )( ) ( , )[ ( )]
� �

� � � � � ��� � (26)

where L(xi , y) is a gain function. Let ii iie t a aˆ( ) ,� �  and we have

ii ii i ie t a a L x y x y e tˆ( ) ( , )( ) ( ).� � � � ��� � (27)

If we choose an appropriate gain function L(xi , y) that makes the error system (27)

asymptotically stable for all 
mi k k kx x x x

1 2
, , ,. . . ,  then iia tˆ ( )  converges to aii when t  .

However, ix�  is hard to be observed in the practical situation, and the observer (26) is not

applicable directly. To eliminate ix� , we introduce an auxiliary variable
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i ii ip a x yˆ ( , ),� � � (28)

where (xi , y) is a design auxiliary function that satisfies

i
i

i

x y
L x y

x

( , )
( , ).

��
� �

� (29)

From Eqs. (28), (29) and (26), we get

   i ii ip a x yˆ ( , )� ����

l

n

i i ii i i ij j i
j j i k

L x y x y a L x y x a x f x
1, ,

ˆ( , )( ) ( , )[ ( )]
� �

� � � � � ���

l

l

m
i i

i k
i kl

x y x y
x x

x x1

( , ) ( , )

�

�� ��
� �

� ��� �

l

n

i i i i i i ij j i
j j i k

L x y x y p L x y x y x y a x f x
1, ,

( , )( ) ( , )[( ) ( , ) ( )]
� �

� � � � � � � ��

l

l

m
i

k
kl

x y
x

x1

( , )
.

�

��
�

�� � (30)

Based on the condition b), 
lkx�  can be obtained from the kl-th equation of system (1),

i.e., 
l l l

n
k j k j j kx a x f x1 ( ).�� � ��

Remark: IF 
l lk ka  is unknown, it can be identified using the method in Section 3.

So, Eq. (30) becomes

  
l

n

i i i i i i i ij j i
j j i k

p L x y x y p L x y x y x y a x f x
1, ,

( , )( ) ( , )[( ) ( , ) ( )]
� �

� � � � � � � ���

l l

l

m n
i

k j j k
kl j

x y
a x f x

x1 1

( , )
[ ( )].

� �

��
� �

�� � (31)

61



According to the lemma, if we choose L(xi , y) = k(xi + y)2l–1(k > 0, l = 1, 2, . . .) and

l
i ilx y k x y 21

2( , ) ( ) ,� � � �  then the error system (27) is asymptotical stable. The observer

consisted of (31) and (28) is applicable to identify the unknown parameters 
mik ik ika a a

1 2
, , . . . ,

and aii. The proof of the theorem is completed.

5. IDENTIFICATION OF THE UNKNOWN PARAMETER IN
NONLINEAR PART

If there is unique unknown parameter bi in the nonlinear part of the i-th equation of system
(1), the i-th equation can be expressed as

n

i ij j i i i
j

x a x b f x f x
1 2

1

( ) ( ),
�

� � ��� (32)

where jn n
i j ij

f x x f x
1 21
( ) , ( )

�
��  is the rest nonlinear part.

Theorem 4: Assume that system (1) satisfies the conditions as follows: a) bi is the
unique unknown parameter of the i-th equation and constant, b) all parameters of the j-th
(j  i, nj  0) equation in system (1) are certain or only ajj is unknown. If the state vector
of system (1) can be obtained, then we can design an observer to identify the unknown
parameter bi .

Proof: Because bi is a constant, we have

ib 0.�� (33)

From Eq. (32), we get n
i i i j ij j ib f x x a x f x

1 21( ) [ ( )],.�� � � ��  Then the observer is designed

as

n

i i i i i i ij j i
j

b L f x f x b L f x x a x f x
1 1 1 2

1

ˆ ˆ[ ( )] ( )] [ ( )][ ( )] ,
�

� � � � ��� �  (34)

where iL f x
1

[ ( )]  is the gain function. Let i ie t b bˆ( ) ,� �  and we have

i ie t L f x f x e t
1 1

( ) [ ( )] ( ) ( )� �� . (35)
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If we choose an appropriate gain function iL f x
1

[ ( )]  that makes the error system (35)

asymptotically stable for all x, then ib tˆ ( )  converges to bi when t  . However, ix�  is hard

to be observed in the practical situation, and the observer (34) is not applicable directly. To

eliminate ix� , we introduce an auxiliary variable

i ip b xˆ ( ),� �� (36)

where (x) is an auxiliary function that satisfies

i
i

x
L f x

x 1

( )
[ ( )].

��
� �

� (37)

From Eqs. (36), (34) and (37), we can get

  i ip b xˆ ( )� ���

i i i iL f x f x b L f x
1 1 1

ˆ[ ( )] ( ) [ ( )]� � �

n n

ij j i j
jj j

x
x a x f x x

x21
1 1

( )
[ ( )]

� �

��
� � � �

�� �� �

n

i i i i i ij j i
j

L f x f x p L f x f x x a x f x
1 1 1 1 2

1

[ ( )] ( ) [ ( )][ ( ) ( ) ( )]
�

� � � � � ��

n

j
jj j i

x
x

x1,

( )
.

� �

��
�

�� � (38)

According to the condition b), jx j i( )��  can be obtained from the j-th equation of

system (1), i.e., n
j k jk k jx a x f x1 ( ) .�� � ��

Remark: IF ajj is unknown, it can be identified by means of the method in Section 3.

So, Eq. (38) becomes

n

i i i i i i ij j i
j

p L f x f x p L f x f x x a x f x
1 1 1 1 2

1

[ ( )] ( ) [ ( )][ ( ) ( ) ( )]
�

� � � � � ���
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n n

jk k j
jj j i k

x
a x f x

x1, 1

( )
[ ( )] .

� � �

��
� �

�� � (39)

Based on the lemma, we can choose m
i iL f x f x m
1 1

2 1[ ( )] [ ( )] ( 1,2, . . . )�� �  that makes

the error system i ix f x e te t L f
1 1
( )] ( ) ( ) 0( ) [ ���  asymptotically stable for all x, and we can

get ji

i

n mn m n
j j i jin mx x x

(2 1)(2 1) 11
1,(2 1) 1( )

�� �
� �� �� � � from Eq. (36). Especially, if if x

1
( ) 0�  or

if x
1
( ) 0�  for all time, we can choose iL f x k

1
[ ( )] �  (or –k)(k > 0), consequently, (x) = –

kxi (or kxi). Thus, the observer consisted of (39) and (36) is applicable to identify the unknown
parameters bi . This completes the proof.

6. SIMULATIONS

In this section, some examples and numerical simulations are presented to demonstrate and
verify the performance of the observer. In all simulations, the differential equations are
solved through using ode45 in Matlab 7.04.

Examples 1: Parameter identification of Lorenz system

Lorenz system is described as

x a x x

x bx x x x

x x x cx

1 2 1

2 1 2 1 3

3 1 2 3

( )

.

� ��
� � � ��
� � ��

�

�

�

When a = 10, b = 28, c 8
3 ,�  Lorenz system is chaotic.

a. The parameter c is uncertain and the rests are known.

Using the method in Section 3, the observer is designed as follows

p kx p k x kx x x

c p kx

2 2 21
3 3 1 2 32

21
32

,

ˆ .

� � � � ��
�
� ���

�

Fig.1 (a) shows its simulation result.

Because x3 > 0 for all time in Lorenz system, the observer can also be designed as
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p kx p k x kx x

c p kx

2 2
3 3 1 2

3

,

ˆ .

� � � � ��
�
� ���

�

Fig. 1 (b) shows its simulation result.

b. The parameter b is unknown and the rests are certain.

Adopting the method in Section 4.1, we can get the observe as follows

� � � � � � � ��
�

� ���

�p kx p k x x kx x x x kx a x x

b p kx x

2 2 3
1 1 2 1 2 1 3 2 2 1

1 2

( ) [ ( )]
ˆ .

Fig.1 (c) shows its simulation result.

c. The parameter a is uncertain and the rests are known.

Using the technique in Section 4.2, the observer is constructed as

p k x x p k x x x x x kx bx x x x

a p k x x x

2 2 2 21
2 1 2 1 1 2 1 1 1 2 1 32

21
1 2 12

( ) ( ) ( ) ( ),

ˆ ( ).

� � � � � � � � � � ��
�

� � ���

�

Fig. 1 (d) shows its simulation result.

Fig.1 show the simulated results of parameters identification of Lorenz system. The
initial conditions are [x1(0), x2(0), x3(0), p(0)] = [10, 10, 10, 2] and the gain coefficient k =
0.2 in all cases.

Fig.1(a)
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Fig. 1(b)

Fig. 1(c)

Fig. 1(d)
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Fig. 2(a)

Fig. 2(b)

Examples 2: Identification of a new chaos system [24].

The system is described as

x a x x

x bx dx x

x cx hx

1 2 1

2 1 1 3

2
3 3 1

( )

.

� � �
�

� ��
� � ��

�

�

�

When a = 10, b = 40, d = 1, c = 2.5, h = 4, the system is chaotic.
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a. The parameter d is unknown and the rests are certain.

Adopting the approach in section 5, we can obtain the observer as

p kx x p kbx x k x x x

kx x a x x kx x cx hx

d p kx x x

2 2 2 2 3 3
1 3 1 3 1 3 2

2
2 3 2 1 1 2 3 1

1 2 3

[ ( )] ( ),
ˆ .

� � � � �
��� � � � ��
�

� ���

�

Fig. 2 (a) presents its simulation result.

b. The parameter h is unknown and the rests are certain. According to section 5, the
observer is designed as

p kx p k x x kcx

h p kx

2 2 2
1 1 3 3

3
ˆ .

� � � � ��
�

� ���

�

Fig.2 (b) shows its simulation result.

Fig. 2 show the simulated results of parameters identification of the new chaos system.
The initial conditions are [x1(0), x2(0), x3(0), p(0)] = [5, 5, 5, 5] in all cases and (a) k = 0.01;
(b) k = 0.2.

Obviously, the numerical simulations show that the above mentioned observers are
effective and feasible.

7. CONCLUSIONS

From Section 3, 4 and 5, we can see that the key to design the unknown parameter observer
is to choose an appropriate gain function, which makes the error system Eqs. (6), (19), (27)
and (35) asymptotically stable, and construct an auxiliary function that can eliminate the
derivative of the state variable in the observers (4), (17), (26) and (34). Summing up these
cases in Sections 3, 4, and 5, we can get a general method to choose the gain function and
construct the auxiliary function in usual case. Assume the i-th equation of a chaos system is

described as i i i ix b f x f x
1 2
( ) ( ),� ��  where bi is the unknown parameter to be identified, if x

1
( )

is the linear or nonlinear function of the state vector x of the chaos system, if x
2
( )  is the rest

part. The gain function can usually be chosen as m
i iL L f x f x m
1 1

2 1[ ( )] [ ( )] ( 1,2, .. . ),�� � �
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and the auxiliary function (x) satisfies 
i

x
x L( ) .��
� � �  Especially, if if x

1
( ) 0�  or if x

1
( ) 0�

for all time, the gain function can be simply chosen as L = k(or – k) (k > 0), correspondingly,
 = –kxi(or kxi). The simulations in Section 6 show the techniques are effective and feasible.
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