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New Generalized Method to Construct New
Non-travelling Waves Solutions and Travelling
Waves Solutions of K-D Equations

YU-JIE REN, M. S. EL NASCHIE &
HONG-QING ZHANG

With the aid of computerized symbolic computation, we obtain new types of general solution
of a first-order nonlinear ordinary differential equation with six degree and devise a new
generalized method and its algorithm, which can be used to construct more new exact
solutions of general nonlinear differential equations. The (2+1)-dimensional K-D equation
is chosen to illustrate our algorithm such that more families of new exact solutions are
obtained, which contain non- travelling waves solutions and travelling waves solutions.
This algorithm can also be applied to other nonlinear differential equations.

1. INTRODUCTION

In recent years, the nonlinear partial differential equations (NPDEs) are widely used to
describe many important phenomena and dynamic processes in physics, mechanics,
chemistry, biology, etc. Many methods were developed for finding the exact solutions of
NPDEs, such as generalized F-expansion method [1], inverse scattering method [2], Bäcklund
transformation [3], Darboux transformation [4, 5], Hirota bilinear method [6],
algebrogeometric method [7], tanh-function method [8], the sin-cosine method [9], algebraic
method [10 -13], and so on.

In this paper, with the aid of the symbolic computation system-Maple, we obtain new
types of general solution of a first-order nonlinear ordinary differential equation with six
degree by considering some special cases. At the same time, we develop a new generalized
method by means of the solutions of this equation and more general transformations than
exiting [10 -13], which exceeds the applicability of the existing algebraic method in obtaining
a series of exact solutions of NPDEs. The obtained solutions may include non- travelling
waves solutions and travelling waves solutions. The algorithm, the solutions of this equation,
and its applications are demonstrated later.
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Our paper is organized as follows. In the following Section 2, we give new types of
general solution of a firstorder nonlinear ordinary differential equation with six degree. In
Section 3, we summarize the new generalized method. In Section 4, we apply the generalized
method to construct new non-travelling waves solutions of the (2+1)-dimensional
Konopelchenko-Dubrovsky (K-D) equation in[14] and bring out many solutions. In Section
5, we apply the generalized method to construct new travelling waves solutions of the
(2+1)-dimensional K-D equation. Conclusions will be presented in finally.

2. SOME TYPES OF GENERAL SOLUTION OF A FIRST-ORDER NONLINEAR
ORDINARY DIFFERENTIAL EQUATION WITH SIX DEGREE

In this section, with the aid of the symbolic computation system-Maple, we will give some
types of general solution of a first-order nonlinear ordinary differential equation with six
degree. We introduce the following ODE
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where � = 1. By considering the different values of c0, c1, c2, c3, c4, c5 and c6, we find that
Eq. (2.1) admits many kinds of general solutions which are listed as follows.

Case 1. If c0 = c1 = c3 = c5 = 0, 4 c2c6 – c4
2 = 0, Eq.(2.1) possesses:

the general solutions of hyperbolic type when c2 > 0,
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the general solutions of triangular type when c2 < 0,
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where i1, 1,� � � � �  and C1 is an arbitrary constant.

Case 2. If c0 = c1 = c3 = c5 = 0, 4 c2c6 – c4
2 > 0, Eq. (2.1) possesses:

the general solutions of hyperbolic type
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where  = 1 and C1 is an arbitrary constant.

the general solutions of triangular type
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where i f c C2 11, 1, ( ) ( ),� � � � � � � � � �  here C1 is an arbitrary constant.

Case 3. If c0 = c1 = c3 = c5 = 0, 4 c2c6 – c4 < 0, Eq.(2.1) possesses:

the general solutions of hyperbolic type
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where i1, 1,� � � � �  and C1 is an arbitrary constant.
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where  = 1 and f c C2 1( ) 2 ( ),� � � � �  here C1 is an arbitrary constant.

Remark 2 When c5 = c6 = 0, Eq.(2.1) admits the solutions provided in[10 -13]. We do
not list the solutions here in order to avoid unnecessary repetition.
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3. SUMMARY OF THE GENERALIZED METHOD

In this section, we outline the main steps of our method which is called generalized
method.The key idea of our method is to take full advantage of Eq.(2.1) and its solutions to
seek more types of new solutions of a wide class of NPDEs in mathematical physics, which
simply proceeds as follows:

Step 1. For a given NPDEs, with some physical fields ui(t, x1, x2, · · · , xm), (i = 1, 2, · ·
· , n) in m+1 independent variables t, x1, x2, · · · , xm,

m mj n t n t x n x tt n tt tx n txF u u u u u u u u u u
1 11 1, , 1, , , 1, , 1, ,( , , , , , , , , , , , ) 0,� � � � � � � � � � � � � � � � � � � (3.1)

where j = 1, 2, · · · , n. By using the more general transformation

ui(t, x1, x2, · · · , xm) = Ui ( ),  =  (x2, x3, · · · , xm, t) x1 + (x2, x3, · · · , xm, t), (3.2)

where (x2, x3, · · · , xm, t)  0 and (x2, x3, · · · , xm, t) are functions to be determined later.For
example, when n = 2, we may take = (x2, t) x1 + (x2, t), here (x2, t) and (x2, t) are
undetermined functions.Then Eqs.(3.1) is reduced to nonlinear differential equations

j n n nG U U U U U U1 1 1( , , , , ) 0,� � � � � � � � � � � � �� � � (3.3)

where Gj(j = 1, 2, · · · , n) are all polynomials of Ui(i = 1, 2, · · · , n), ,  and their derivatives.
If Gk of them is not a polynomial of Ui(i = 1, 2, · · · , n), ,  and their derivatives,then we
may use new variable vi( )(i = 1, 2, · · · , n) which makes Gk become a polynomial of vi( ),

 and their derivatives. Otherwise the following transformation will fail to seek solutions
of Eqs.(3.1).

Step 2. We introduce a new variable  ( ) which is a solution of the following ODE

r
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Then the derivatives with respect to the variable  become the derivatives with respect to
the variable .

Step 3. By using the new variable , we expand the solution of Eqs.(3.1) in the forms:

� �
ip

k k
i i i k i k

k

u a X a X X b X X,0 , ,
1

( ) ( ) ( ( )) ( ) ( ( )) .�

�

� � � � � � �� (3.5)

where X = (t, x1, x2, · · · , xm), = (X), ai,0(X), ai,k(X), bi,k(X)(i = 1, 2, · · · , n; k = 1, 2, · · · , pi)
are all differentiable functions of X to be determined later.
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Step 4. In order to determine pi (i = 1, 2, · · · , n) and r, we may substitute (3.4) into (3.3)
and balance the highest derivative term with the nonlinear terms in Eqs. (3.3) by using the
derivatives with respect to the variable , we can obtain a relation for pi and r, from which
the different possible values of pi and r can be obtained.These values lead to the series
expansions of the solutions for Eqs.(3.1).

Step 5. Substituting (3.5) into the given Eqs.(3.1) and collecting coefficients of

polynomials of k, –k, and i k r j
j jc1 ( ),�
�� � � � �  with the aid of Maple, then setting each

coefficient to zero, we will get a system of overdetermined partial differential equations
with respect to (X), (X), ai,0(X), ai,k(X), bi,k(X)(i = 1, 2, · · · , n; k = 1, 2, · · · , pi) and cj(j =
1, 2, · · · , r).

Step 6. Solving the over-determined partial differential equations with Maple, then
we can determine (X), (X), ai,0(X), ai,k(X), bi,k(X)(i = 1, 2, · · · , n; k = 1, 2, · · · , pi) and
cj(j = 1, 2, · · · , r).

Step 7. From the constants cj(j = 0, 1, ..., r) obtained in Step 6 to Eq.(3.4), and then we
can obtain all the possible solutions.

Remark 3.1 When c5 = c6 = 0 and bi,k  = 0, Eq.(2.1) and ansatz (3.5) just become one
used in our previous method [10-12]. However, if c5  0 or c6  0, we may obtain the
solutions that cannot be found by using the  methods [10-12]. It should be pointed out that
there is no any method to find all solutions of NPDEs. But our method can be used to find
more solutions of NPDEs.

Remark 3.2 By the description above, we can find that our method is more general
than the method in [10- 13]. We have improved the method [10-13] in five aspects: First,
we extend the ODE with four degree(1.5) into the ODE with six degree(2.1) and get its new
general solutions. Second, we change the solution of Eqs.(3.1) into more general solution
(3.5) and get more types of new rational solutions and irrational solutions. Third, we replace
the traveling wave transformation (1.2) in [10-13] by the more general transformation (3.2).
Fourth, what we suppose the coefficients of the ansätz (3.2) and (3.5) are undetermined
functions, but the coefficients of the transformation (1.4) in [10] are all constants. Fifth, we
present a more general algebra method than the method given [10-13] which is called the
generalized method to find more types of exact solutions of nonlinear differential equations
based upon the solutions of the ODE (2.1). This can get more general solutions of the
NPDEs than those by the method in [10-13].
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4. THE APPLICATION OF OUR METHOD AND NEW
NON- TRAVELLING WAVES SOLUTIONS OF
THE (2+1)-DIMENSIONAL K-D EQUATIONS

In this section, we will make use of new generalized method and symbolic computation to
find new non-travelling waves solutions of the (2+1)-dimensional K-D equations in [14],
the solutions we find are those which we have never seen before within our knowledge.

The (2+1)-dimensional K-D equations in [14] read:

x
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y

u u uu u u v u v

u v
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���
(4.1)

we firstly take the following general transformation

u(t, x, y) = u( ), v(t, x, y) = v( ),  = p(x) + q(y, t),

where p(x) and q(y, t) are functions to be determined later.

By using the new variable  = ( ) which is a solution of the following ODE
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we expand the solution of Eqs.(4.1) in the forms:

� �
n

i i
i i

i

u a X a X X b X X0
1

( ) ( ) ( ( )) ( ) ( ( )) .�

�

� � � � � � �� (4.3a)
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where X = (t, x, y), a0(X), ai(X), b0(X), bi(X), dj(X), ej(X)(i = 1, 2, · · · , n; j = 1, 2, · · · ,m) are
all differentiable functions of X to be determined later.

Substituting (4.3) into (4.1) along with (4.2) and balance the highest derivative term
with the nonlinear terms in Eqs.(4.1) by using the derivatives with respect to the variable ,
we can determine the parameter n = 2 and m = 2 in (4.3) and lead to:

u = a0(y, t) + a1(y, t) ( (X)) + a2(y, t) 2( (X)) + a3(y, t) –1( (X)) + a4(y, t) –2( (X))

v = b0(y, t) + b1(y, t) ( (X)) + b2(y, t) 2( (X)) + b3(y, t) –1( (X)) + b4(y, t) –2( (X)).
(4.4)
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By substituting (4.4) into the given Eqs.(4.1) along with (4.2) and collecting coefficients

of polynomials of k and r j
j jc1 ( ),�
�� � � �  with the aid of Maple, then setting each

coefficient to zero, we will get a system of over-determined partial differential equations
with respect to a0(X), a1(X), a2(X), b0(X), b1(X), b2(X)), c2, c4, c6, p(y, t) and q(y, t) as follows:
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(4.5)

because the over-determined partial differential equations are so many, just part of them are
shown here for convenience. Solving the over-determined partial differential equations with
Maple, then we have the following solutions.
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�

� � � � � � � �
C y c

F t c C c c C c F t c C c
c

2 2
2 2 2 22 1 4

1 6 1 6 2 1 4 1 6 1 4 3 / 2
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16� C c c1 6 448� � � F t196 ( )�
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6 1 2, ,  are arbitrary functions of t, and C1,C2,C3 are arbitrary constants.

Case 2
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d
q F t p C a F t b F t y F t

dt4 1 0 1 0 1 2( ), , ( ), 1/ 3 ( ) ( ),� �� � � � �� �
� �

(4.7)

b2 = F3 (t), a2 = 0, a4 = 0, a1 = 0, a3 = 0, b4 = 0, b1 = 0, b3 = 0,

where F1, F2, F3, F4 are arbitrary functions of t, and C1 is arbitrary constant.

Case 3

� �� � � � �� �
� �

d F t
q F t p C b F t b y F t

dt5 1 3 2 0 3
_ 1( )

( ), , ( ), 1/ 3 ( ),  (4.8)

a0 = F1 (t), b2 = F4 (t), a2 = 0, a4 = 0, a1 = 0, a3 = 0, b4 = 0, b1 = 0,

where F1, F2, F3, F4 are arbitrary functions of t, and C1 is arbitrary constant.

Case 4

� �� � � � �� �
� �

dF t
q F t b F t b y F t b F t

dt
1

7 3 3 0 4 1 5
( )

( ), ( ), 1 /3 ( ), ( ) (4.9)

b2 = F6 (t), b4 = F2 (t), p = C1, a0 = F1 (t), a2 = 0, a4 = 0, a1 = 0, a3 = 0,

where F1, F2, F3, F4, F5, F7 are arbitrary functions of t, and C1 is arbitrary constant.

Case 5

� �� � � � � � �� �
� �

dF t
q F t p C b y F t a F t a a
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1
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(4.10)

b1 = F4 (t), b3 = F2 (t), b2 = F5 (t), a1 = 0, a3 = 0, b4 = 0,

where F1, F2, F3, F4, F5, F6 are arbitrary functions of t, and C1 is arbitrary constant.

Case 6
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dt c ydF t

a F t a b y F t b F t
dt c
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(4.11)
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F t cdF t dF t
b y F t b y F t a

dt dt c
2 61 2

0 5 2 7 1
4

( )( ) ( )
/3 ( ), / 3 ( ), ,� � � �� � � �� � � �
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a3 = F3 (t), b4 = –1/2  ( F2 (t))
2, q = C2 , a2 = F2 (t), p = C1,

where F1, F2, F4, F5, F6, F7 are arbitrary functions of t, and C2 is arbitrary constant.

Because the solutions are so many, just part of them are shown here for convenience.
So we get the general forms of solutions of equations (4.1):
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� � � � � �

� � � � � � �
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(4.12)

where q(y, t), ai, bi(i = 0, 1, 2, 3, 4) and p(x) satisfy (4.6) - (4.11) respectively.

Type 1. When c0 = c1 = c3 = c5 = 0, 4 c2c6 – c4
2 = 0, corresponding (4.2), we can get the

general solutions of real number type when c2 > 0,

� �� �
� �

c c p x q y t C
p x q y t

c c c p x q y t C

2 2

4 4 2

2 1 tanh ( ( ) ( , ) )
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� � �
� � �

� � � ��
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and the general solutions of complex number type when c2 < 0,

c i c p x q y t C
p x q y t

c c i c p x q y t C
2 2

4 4 2

2 (1 tan( ( ( ) ( , ) )))
( ( ) ( , ) ,

1 (1 )tan( ( ( ) ( , ) ))

� � � �
� � �

� � � � ��
�  (4.14)

where  =  1, i 1,� �  and C is an arbitrary constant.

Substituting (4.13) and (4.14) into (4.12) respectively, we get the irrational solutions
and rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

For example, when we select q (y, t), ai (y, t), bi (y, t), (i = 0, 1, 2, 3, 4) and p(x) satisfy
Case 1, we can easily get the following irrational solutions of combined hyperbolic type or
triangular type solutions of Eqs. (4.1):
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� �
� �

� �

C x

c

dF ty
dt

C C c c F t c C x
c c

u t x y F t C C q

v t x y F t

C q

1

6

1

2 2
1 1 4 6 1 6 1

6 6

2

1,2 1 1 24

( )
1,2 23

2
( 8 4 ( ) )

24 4

( , , ) ( ) ,

( , , ) ( )

,

�

� � � � � �
�

� � �� � � � �� � �
� ��

� � ��
�
� � �� � � �� �� � ��

�

�

(4.15)

where 
C F t c c

q f dt C C y F t c
c

2 23 2 2
21 2 6 6

3 1 1 65 / 2
6

( 48 ( ) 192 )
1/ 4 ( 2 ( ) ) ,

64

�� � � � �� � �
� � � � � � � � ��

�
�

�

  here

�� � � � � � � � � � � �C y c

c
F t c C c c C c F t c C c C c c F t c F F

2 2
1 4

3 / 2
6

2 2 2 2 22
1 6 1 6 2 1 4 1 6 1 4 1 6 4 1 6 1 216

24( ( )) 4 24 ( ) 3 , , 48 96 ( ) , ,
�

are arbitrary functions of t, and C1,C2 are arbitrary constants.

Substituting (4.13) and (4.14) into (4.15) respectively, we get the rational solutions of
combined hyperbolic type of Eqs.(4.1).

� �

C x

c

C x

c

C x

c

C

c c q C

c c c q c

C C c c F t cdF ty
dt c

c c q C

c c c

u t x y F t C

v t x y F t

1
2 2 4 6

1
4 4 2 4 6

2 2
1 1 4 6 1 61

6

1
2 2 4 6

1
4 4 2

2 (1 tanh( ( ))

1,2 1 1
1 (1 ) tanh( ( ))

( 8 4 ( ) )( )
1,2 23 4

2 (1 tanh( ( ))

1 (1 ) tanh( (

( , , ) ( ) ,

( , , ) ( )

�

�

�

�

� � �

� � � �

� � � � �
�

� � �

� � �

� �
� � � �

� �
� �

� � �

�

�

�

�

�

x

c
q C

c
4 6

2
))

, 0,
� �

�
�
�
��
�
�

� ��
�� �� � �� � �� �

(4.16)

and rational solutions of combined triangular type of Eqs.(4.1):

� �

C x

c

C x

c

C x

c

c i c q C

c c i c q c

C C c c F t cdF ty
dt c

c i c q C

c c i c

u t x y F t C

v t x y F t

1
2 2 4 6

1
4 4 2 4 6

2 2
1 1 4 6 1 61

6

1
2 2 4 6

4 4 2

2 (1 tan( ( ))

3,4 1 1
1 (1 ) tan( ( ))

( 8 4 ( ) )( )
3,4 23 4

2 (1 tan( ( ))

1 (1 ) tan( (

( , , ) ( ) ,

( , , ) ( )

�

�

�

� � � �

� � � � �

� � � � �
�

� � � �

� � �

� �
� � � �

� �
� �

� � �

�

�

�

�

�

C x

c
q C

c
1

4 6

2
))

, 0,� � �

�
�
�
��
�
�

� ��
�� �� � �� � �� �

(4.17)
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where C is a arbitrary constant.

Type 2. When c0 = c1 = c3 = c5 = 0, 4c2c6 – c4 > 0, corresponding (4.2), we can get the
general solutions of real number type when c2 > 0,

� �� �
� �� � � �� �
� � � � �

� � � �
� � � � �

c c c c c c C

c c c C c c C

2
2 4 4 2 6 2

2
2

2 6 2 4 2

2 4 sinh 2 ( )
( ) ,

4 sinh 2 ( ) cosh 2 ( )
(4.18)

and the general solutions of complex number type when c2 < 0,

� �� � � � � �
� � � �

� � � � � � �

c c i c c c c C

c c C c c c C

2
2 4 4 2 6 2

22 2
6 2 2 4 2

2 4 sin(2 ( ))
( ) ,

4 sin(2 ( ))) (cos(2 ( )))
(4.19)

where p y t x q y t i( , ) ( , ), 1, 1,� � � � � � � �  and C is an arbitrary constant.

Substituting (4.18) and (4.19) into (4.12) respectively, we get the irrational solutions
and rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

For example,when we select q (y, t), ai (y, t), bi (y, t), (i = 0, 1, 2, 3, 4) and p(y, t) satisfy
Case 1, we can easily get the following irrational solutions of combined hyperbolic type or
triangular type of Eqs.(4.1): we get the rational solutions of combined hyperbolic type of
Eqs.(4.1).

� �

C x

c

C x C x

c c

c c c c c c q C

c c c q C c c q C

CdF ty
dt

u t x y F t C

v t x y F t

2 1
2 4 4 2 6 2 4 6

2 2
21 1

2 6 2 4 24 46 6

11

2 4 sinh 2

5,6 1 1
4 sinh 2 cosh 2

( )
5,6 23

( , , ) ( ) ,

( , , ) ( )

�

� �

� �� �� �� � � � �� �� �� �
� �� �� �

� � � �� � � �� � � �� � � � �� � � �� � � �� � � �
� � � �� � � �� � � �

� �
� �

� � � �
� �
� �

� � �

�

� �

� �

C x

c

C x C x

c c

C c c F t c

c

c c c c c c q C

c c c q C c c q C

c

2 2
1 4 6 1 6

6

2 1
2 4 4 2 6 2 4 6

2 2
21 1

2 6 2 4 24 46 6

8 4 ( )

4

2 4 sinh 2

2
4 sinh 2 cosh 2

, 0,

�

� �

� � � � �

�

� �� �� �� � � � �� �� �� �
� �� �� �

� � � �� � � �� � � �� � � � �� � � �� � � �� � � �
� � � �� � � �� � � �

�
�
�
�
�
��
�
�

� ��
� ��

�� ��
� ��
� ���

�

� �

(4.20)
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and rational solutions of combined triangular type of Eqs.(4.1):

� �

C x

c

C x C x

c c

c c i c c c c q C

c c q C c c c q C

dF ty
dt

u t x y F t C

v t x y F t

2 1
2 4 4 2 6 2 4 6

2 2
21 1

6 2 2 4 24 46 6

1

2 4 sin 2

7,8 1 1
4 sin 2 cos 2

( )
7,8 23

( , , ) ( ) ,

( , , ) ( )

�

� �

� �� �� �� � � � � �� �� �� �
� �� �� �

� � � �� � � �� � � �� � � � � � � �� � � �� � � �� � � �
� � � �� � � �� � � �

� �
� �

� � � �
� �
� �

� � �

�

� �

� �

C x

c

C x C x

c c

C C c c F t c

c

c c i c c c c q C

c c q C c c c q C

c

2 2
1 1 4 6 1 6

6

2 1
2 4 4 2 6 2 4 6

2 2
21 1

6 2 2 4 24 46 6

8 4 ( )

4

2 4 sin 2

2
4 sin 2 cos 2

, 0,

�

� �

� � � � �

�

� �� �� �� � � � � �� �� �� �
� �� �� �

� � � �� � � �� � � �� � � � � � � �� � � �� � � �� � � �
� � � �� � � �� � � �

�
�
�
�
�
��
�
�

� ��
� ��

�� ��
� ��
� ���

�

� �

(4.21)

where 
C F t c c

q dt C C y F t c
c

2 23 2 2
21 2 6 6

3 1 1 65 / 2
6

( 48 ( ) 192 )
1/ 4 ( 2 ( ) ) ,

64

�� � � � �� � �
� � � � � � � � � ��

�
�

�

here  C y c

c
F t c C c c C c F t c C c C c c F t c F F

2 2
1 4

3 / 2
6

2 2 2 2 22
1 6 1 6 2 1 4 1 6 1 4 1 6 4 1 6 1, 216

24( ( )) 4 24 ( ) 3 , , 48 96 ( ) ,�� � � � � � � � � � � �
�

are arbitrary functions of t, and C1,C2,C are arbitrary constants.

Type 3. When c0 = c1 = c3 = c5 = 0, 4 c2c6 – c4
2 < 0, corresponding (4.2),we can get two

the general solutions of hyperbolic type

� �� �
� � � �

c c i c c c c C
c

c c c C c c C

2
2 4 4 2 6 2 1

2222 2
2 6 2 1 4 2 1

2 4 sinh 2 ( )
( ) , 0,

4 sinh 2 ( ) cosh 2 ( )

� � � �
� � � � �

� � � � �
(4.22)

and the general solutions of triangular type

� �� �
� � � �

c c c c c c C
c

c c c C c c C

2
2 4 4 2 6 2

2222 2
2 6 2 4 2

2 4 sin 2 ( )
( ) , 0,

4 sin 2 ( ) cos 2 ( )

� � � � � �
� � � � �

� � � � � � �
(4.23)
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where i F t x q y t11, 1, ( ) ( , ),� � � � � � � �  and C is an arbitrary constant.

Substituting (4.22) and (4.23) into (4.12) respectively, we get the irrational solutions
and rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

For example, when we select q (y, t), ai (y, t), bi (y, t), (i = 0, 1, 2, 3, 4) and p(y, t) satisfy
Case 1, we can easily get the following irrational solutions of combined hyperbolic type or
triangular type of Eqs.(4.1):

� �

C x

c

C x C x

c c

c c i c c c c q C

c c c q C c c q C

C C c cdF ty
dt

u t x y F t C

v t x y F t

2 1
2 4 4 2 6 2 4 6

22 21 1
2 6 2 4 24 46 6

2
1 1 41

2 4 sinh 2

9,10 1 1
4 sinh 2 cosh 2

8( )
9,10 23

( , , ) ( ) ,

( , , ) ( )

�

� �

� �� �� �� � � �� �� �� �
� �� �� �

� � � �� � � �� � � � �� � � �� � � �
� � � �� � � �

� � �

� �
� �� � � �� �
� �

� � �

�

� �

� �

C x

c

C x C x

c c

F t c

c

c c i c c c c q C

c c c q C c c q C
c

2
6 1 6

6

2 1
2 4 4 2 6 2 4 6

22 21 1
2 6 2 4 24 46 6

4 ( )

4

2 4 sinh 2

2
4 sinh 2 cosh 2

, 0,

�

� �

� �

�

� �� �� �� � � �� �� �� �
� �� �� �

� � � �� � � �� � � � �� � � �� � � �
� � � �� � � �

�
�
�
�
�
�
�
�

� ��
� �� �� �� � �� � ��

�

� �

(4.24)

and rational solutions of combined triangular type of Eqs.(4.1):

� �

C x

c

C x C x

c c

c c c c c c q C

c c c q C c c q C

C C cdF ty
dt

u t x y F t C

v t x y F t

2 1
2 4 4 2 6 2 4 6

22 21 1
2 6 2 4 24 46 6

2
1 1 41

2 4 sin 2

11,12 1 1
4 sin 2 cos 2

8( )
11,12 23

( , , ) ( ) ,

( , , ) ( )

�

� �

� �� �� �� � � � � �� �� �� �
� �� �� �

� � � �� � � �� � � � � � �� � � �� � � �
� � � �� � � �

� �

� �
� �� � � �
� �
� �

� � �

�

� �

� �

C x

c

C x C x

c c

c F t c

c

c c c c c c q C

c c c q C c c q C
c

2
6 1 6

6

2 1
2 4 4 2 6 2 4 6

22 21 1
2 6 2 4 24 46 6

4 ( )

4

2 4 sin 2

2
4 sin 2 cos 2

, 0,

�

� �

� � �

�

� �� �� �� � � � � �� �� �� �
� �� �� �

� � � �� � � �� � � � � � �� � � �� � � �
� � � �� � � �

�
�
�
�
�
�
�
�

� ��
� �� �� �� � �� � ��

�

� �

(4.25)

where 
C F t c c

q dt C C y F t c
c

2 23 2 2
21 2 6 6

3 1 1 65 / 2
6

( 48 ( ) 192 )
1/ 4 ( 2 ( ) ) ,

64

�� � � � �� � �
� � � � � � � � � ��

�
�

�
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here   C y c

c
F t c C c c C c F t c C c C c c F t c F F

2 2
1 4

3 / 2
6

2 2 2 2 22
1 6 1 6 2 1 4 1 6 1 4 1 6 4 1 6 1 216

24( ( )) 4 24 ( ) 3 , , 48 96 ( ) ,�� � � � � � � � � � � �
�

are arbitrary functions of t, and C1,C2,C are arbitrary constants.

Remark 4.1 We may further generalize (4.3) as follows:

n i i
i i i

i

m j j
j j j

i

u a X a X p y t x q y t a X p y t x q y t

a X R Q p y t x q y t

v b X b X p y t x q y t b X p y t x q y t

b X R Q p y t x q y t

0 1 1, 2,

1 / 2
3,

0 1 1, 2,

1 / 2
3,

( ) ( ( ) ( ( , ) ( , )) ( ) ( ( , ) ( , ))

( )( ( ( , ) ( , ))) )

( ) ( ( ) ( ( , ) ( , )) ( ) ( ( , ) ( , ))

( )( ( ( , ) ( , )) ).

�
�

�
�

� � � � � � � �

� � � �

� � � � � � � �

� � � �

�
�
��
�
�
�
��

(4.26)

where R,Q are constants, X = (t, x, y), p(x), q(y, t), a0(X), b0(X), ak,i(X)(k = 0, 1, 2, 3, i = 1, 2,
· · · , n) and bk,j(X)(k = 0, 1, 2, 3, j = 1, 2, · · · , n) are all differentiable functions to be
determined later.we can get many new explicit solutions of Eqs.(4.1). And we will further
consider this ansätz in another paper.

Remark 4.2 Soliton-like solution is a very important solution in the soliton theory.
Among the Soliton-like solutions, the arbitrary functions implies that these solutions have
rich local structures. So it is very necessary to study the Soliton-like of NPDEs. If we take
the solution of Eqs.(4.1) to be of the form

n

i i
i

f h y t p y t x q y t
1

( , ) exp( ( ( , ) ( , )))
�

� � � ��

where h(y, t), pi(y, t), qi(y, t), (i = 1, 2, · · · , n) are differentiable functions to be determined.
So we may get many useful soliton-like solution of Eqs.(4.1). This may need to further
study.

5. THE APPLICATION OF OUR METHOD AND NEW TRAVELLING
WAVES SOLUTIONS OF THE (2+1)-DIMENSIONAL K-D EQUATIONS

In this section, we will make use of new generalized method and symbolic computation to
find new travelling waves solutions of the (2+1)-dimensional K-D equations in [14], the
solutions we find are those which we have never seen before within our knowledge.

we firstly take the following travelling waves transformation

u(t, x, y) = u( ), v(t, x, y) = v( ),  = px – qy + rt + l, (5.1)

85



where p, q, r and l) are all constants to be determined later.

By using the new variable  ( ) which is a solution of ODE(4.2). We expand the
solution of Eqs.(4.1) in the forms:

n
i i

i i
i

u a a b0
1

( ( ) ( ))�

�

� � � � � � �� (5.2a)

m
j j

j j
j

v b d e0
1

( ( ) ( )).�

�

� � � � � � �� (5.2b)

where a0, ai, b0, bi, dj, ej(i = 1, 2, · · · , n; j = 1, 2, · · · ,m) are all constants to be determined
later.

Substituting (5.2) into (4.1) along with (4.2) and balance the highest derivative term
with the nonlinear terms in Eqs.(4.1) by using the derivatives with respect to the variable ,
we can determine the parameter n = 2 and m = 2 in (5.2) and lead to:

u = a0 + a1 ( ) + a2
2( ) + a3

–1( ) + a4
–2( )

v = b0 + b1 ( ) + b2
2( ) + b3

–1( ) + b4
–2( ). (5.3)

By substituting (5.3) into the given Eqs.(4.1) along with (4.2) and collecting coefficients

of polynomials of k and r j
j jc1 ( ),�
�� � � �  with the aid of Maple, then setting each

coefficient to zero, we will get a system of over-determined partial differential equations
with respect to a0, a1, a2, b0, b1, b2, c2, c4, c6, p, q, r and l as follows:

24 pa4
2c2 – 12 pa4b4c2 – 12 2pa0a4

2c2 – 12 2pa3
2a4c2 – 6 2pa4

3c4, 6
2pa2

3c6 – 96a2p
3c6

2 = 0,
(5.4)

because the over-determined partial differential equations are so many, just part of them
are shown here for convenience. Solving the over-determined partial differential equations
with Maple, then we have the following solutions.

Case 1

p c a a aa
p p c c a a b c b a

p

2 2 2
4 0 2 2

22
4 22

2 2 2 2 1 6 2 12 2
, , , 0, 1/16 , , 0,� �� � �

�
�

� � � � � � � ��

�
(5.5)

p a b p c p c a a p c a a a a a a a p c

a
c c r

2 2 2 2 2 2 23 4 2 2 2 4 2 2 2 2
2 0 4 4 0 2 4 2 0 2 0 2 2 2 2

22
2

( 6 96 48 96 3 12 24 8 )
4 4 2

, ,� � � � � � � � � � � � � � � �

�
� �
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p c a a a p
a b q b l l b b a a a

a

2 2 2
4 0 2 2

3 4 3 0 0 0 0 4
2

( 4 2 )
0, 0, , 0, , , , 0,

� �� � �
� � � � � � � �

�
�

where p, l, c2, c4, a0 and b0 are arbitrary constants.

Case 2

c2 = c2, a1 = 0, a4 = 0, a3 = 0, l = l, b0 = b0, a0 = a0, b2 = b2, b4 = b4, r = r, (5.6)

c4 = c4, c6 = c6, b1 = b1, b3 = b3, p = 0, q = 0, a2 = 0

where r, l, c2, c4, c6, a0, b0, b1, b1, b3 and b4 are arbitrary constants.

Case 3

p = p, c2 = c2, a4 = 0, a3 = 0, b4 = 0, b3 = 0, l = l, b0 = b0, a0 = a0, a2 = 0, a1 = a1,

a p a aa
c b q b c

p

2 2 22
0 1 01

4 2 1 62 2

( 2 ) ( 2 )
1/ 4 , 0, , , 0,

� � � � � ��
� � � � �

� ��

p a a p c b
r

24 2 2 2 2 2 3
0 0 2 0

2

(3 12 24 2 6 )

2

� � � � � � � � � �
�

�
�

, (5.7)

where p, l, c2, c4, a0, , a1 and b0 are arbitrary constants.

just part of them are shown here for convenience.

So we get the general forms of solutions of equations (4.1):

u a a px qy rt l a px qy rt l a px qy rt l

a px qy rt l

v b a px qy rt l b px qy rt l b px qy rt l

b px qy rt l

2 1
0 1 2 3

2
4

2 1
0 1 2 3

2
4

( ) ( ) ( )

( )

( ) ( ) ( )

( ),

�

�

�

�

� � � � � � � � � � � � � � � � �
�

� � � � ��
�
� � � � � � � � � � � � � � � ��

�
� � � � ��

(5.8)

where q(y, t), ai, bi(i = 0, 1, 2, 3, 4) and p(x) satisfy (5.5) - (5.7) respectively.

Type 1. When c0 = c1 = c3 = c5 = 0, 4c2c6– c4
2 = 0, corresponding (4.2), we can get two

the general solutions of real number type when c2 > 0,

� �� �
� �

c c px qy rt l
px qy rt l

c c c px qy rt l

2 2

4 4 2

2 1 tanh ( )
( ) ,

1 (1 ) tanh ( )

� � � �
� � � � �

� � � � ��
� (5.9)
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and the general solutions of complex number type when c2 < 0,

� �� �
� �

c i c px qy rt l
px qy rt l

c c i c px qy rt l

2 2

4 4 2

2 1 tan ( )
( ) ,

1 (1 ) tan ( )

� � � � �
� � � � �

� � � � � ��
� (5.10)

where i1, 1,� � � � �  and C is an arbitrary constant.

Substituting (5.9) and (5.10) into (5.8) respectively, we get the irrational solutions and
rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

For example,when we select c2, c4, c6, p, q, r, ai, bi, (i = 0, 1, 2, 3, 4) and l satisfy Case
1, we can easily get the following irrational solutions of combined hyperbolic type or
triangular type solutions of Eqs. (4.1):

� �
� �

�� � �
�

�� � � �
�

� � �� � � � � �� � �
� � �
�
� � �� � � � � � � � � � �� �� � ��

p c a a a py
a

p c a a a py
a

u a a px r t l

v b p c a a a px r t l

2 2 2
4 0 2 2

2

2 2 2
4 0 2 2

2

2
(4 2 )

13,14 0 2 1

2
(4 2 )2 2 2 1

13,14 0 4 0 2 2 1(4 2 ) ,

�

�
�

(5.11)

where 
p a b p c p c a a p c a a a a a a a p c

a
r

2 2 2 2 2 2 23 4 4 2 2 2 2 2 4 2 2 2 2 2
2 0 4 4 0 2 4 2 0 2 0 2 2 2 2

22
2

( 6 96 48 96 3 12 24 8 )
1

� � � � � � � � � � � � � � � �

�
� � � � �

,

here where p, l, c2, c4, a0 and b0 are arbitrary constants.

Substituting (5.9) and (5.10) into (5.11) respectively, we get the rational solutions of
combined hyperbolic type of Eqs.(4.1)when c2 > 0,

�� � �
�

�� � �
�

� �� �� �
� � � �� �� �� �� �� �� �� �� �

� �� �
� �� � � � �� �� �� �� �� �

�
�� � �
�

� �
� �

� � � �
� �
� �

� �

�

p c a a a py
a

p c a a a py
a

c c px r t l

c c c px r t l

c c
p c a a a

u a a

v b

2 2 2(4 2 )4 0 2 2
2 2 12

2 2 2(4 24 0 2 2)
4 4 2 12

22 2 2
4 0 2 2

2 1 tanh

13,14 0 2
1 (1 ) tanh

2 1 tanh
(4 2 )

13,14 0

�

�

�

�� � �
�

�� � �
�

� �� �� �
� � �� �� �� �� �� �� �� �� �

� �� �
� � � � �� �� �� �� �� �

�
�
�
�
�
�
�
�
�
��

�

p c a a a py
a

p c a a a py
a

px r t l

c c c px r t l

2 2 2( 4 2 )4 0 2 2
2 12

2 2 2( 4 2 )4 0 2 2
4 4 2 12

1 (1 ) tanh

,

�

�

(5.12)

88



and rational solutions of combined triangular type of Eqs.(4.1) when c2 < 0,

�� � �
�

�� � �
�

� �� �� �
� � � � �� �� �� �� �� �� �� �� �

� �� �
� � � � � �� �� �� �� �� �

�
�� � �
�

� �
� �

� � � �
� �
� �

� �

�

p c a a a py
a

p c a a a py
a

c i c px r t l

c c i c px r t l

c i
p c a a a

u a a

v b

2 2 2( 4 2 )4 0 2 2
2 2 12

2 2 2( 4 2 )4 0 2 2
4 4 2 12

22 2 2
4 0 2 2

2 1 tan

15,16 0 2
1 (1 ) tan

2 1 tan
(4 2 )

15,16 0

,

�

�

�

�� � �
�

�� � �
�

� �� �� �
� � � �� �� �� �� �� �� �� �� �
� �� �

� � � � � �� �� �� �� �� �

�
�
�
��
�
�
�
�
��

�

p c a a a py
a

p c a a a py
a

c px r t l

c c i c px r t l

2 2 2( 4 2 )4 0 2 2
2 12

2 2 2( 4 2 )4 0 2 2
4 4 2 12

1 (1 ) tan

,

�

�

(5.13)

Type 2. When c0 = c1 = c3 = c5 = 0, 4c2c6– c4
2 > 0, corresponding (4.2), we can get two

the general solutions of real number type when c2 > 0,

� �c c c c c c px qy rt l
px qy rt l

c c c px qy rt l c c c px qy rt l

2
2 4 4 2 6 2

22 2
2 6 2 2 4 2

2 4 sinh(2 ( ))
( ) ,

4 (sinh(2 ( ))) (cosh(2 ( )))

� � � � � �
� � � � �

� � � � � � �
�

(5.14)

and the general solutions of complex number type when c2 < 0,

� �c c i c c c c px qy rt l
px qy rt l

c c px qy rt l c c c px qy rt l

2
2 4 4 2 6 2

22 2
6 2 2 4 2

2 4 sin(2 ( ))
( ) ,

4 (sin(2 ( ))) (cos(2 ( )))

� � � � � � �
� � � � �

� � � � � � � � � �
�

(5.15)

Substituting (5.14) and (5.15) into (5.8) respectively, we get the irrational solutions
and rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

Type 3. When c0 = c1 = c3 = c5 = 0, 4c2c6 – c4
2 < 0, corresponding (4.2), we can get two

the general solutions of hyperbolic type when c2 > 0,

� �c c i c c c c px qy rt l
px qy rt l

c c c px qy rt l c c px qy rt l

2
2 4 4 2 6 2

22 2
2 6 2 4 2

2 4 sinh(2 ( ))
( ) ,

4 sinh (2 ( )) cosh (2 ( ))

� � � � �
� � � � �

� � � � � � � �
�

(5.16)
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and the general solutions of triangular type when c2 < 0,

� �� � � � � � �
� � � � �

� � � � � � � � �

c c c c c c px qy rt l
px qy rt l

c c c px qy rt l c c px qy rt l

2
2 4 4 2 6 2

22 2 2
2 6 2 4 2

2 4 sin(2 ( ))
( ) .

4 sin (2 ( )) cos (2 ( )))
�

(5.17)

Substituting (5.16) and (5.17) into (5.8) respectively, we get the irrational solutions and
rational solutions of combined hyperbolic type or triangular type solutions of Eqs.(4.1).

Remark 5.1 When c5 = c6 = 0, and c2, c4, p, q, r, l, ai, bi, (i = 0, 1, 2, 3, 4) satisfy Case 1
and 2, we can easily get the solutions provided in [10-13]. We do not list the solutions here
in order to avoid unnecessary repetition.

Remark 5.2 When c6, c2, c4, p, q, r, l, ai, bi, (i = 0, 1, 2, 3, 4) satisfy Case 3, we can
easily get the solutions provided in[10-13].

6. CONCLUSION AND DISCUSSION

In summary, by giving some types of general solution of a first-order nonlinear ordinary
differential equation with six degree and presenting a new generalized method to find more
exact solutions of NPDEs, we obtain many types of solutions of (2+1)-dimensional K-D
equations. These solutions not only contain those solutions given in [10-13], but also include
non- travelling waves solutions, etc. The solutions obtained may be of important significance
for the explanation of some practical physical problems. Although the computation is very
complicated, we make use of the powerful symbolic computation system - Maple which
makes the process simple. The transformation is also used to solve many other NPDEs. In
addition, we only consider some special cases of (2.1). For other cases,we need to further
consider.
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