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Abstract. Under new representation, the number of RNA secondary structures has been
further studied with the technique of generating function. And according to [7], we get
the combinatorial expression of S*(n, k), then S*(n) is computed. Finally, we give another

simple explicit formulas on S*(n) and S™(n, k).

1. INTRODUCTION

RNA, DNA and protein are the basic composition composed of lives in
the earth [5]. RNA is an important molecule that performs a wide range of
functions in biological systems. RNA has recently become the center of much
attention because of its catalytic properties [1], leading to an increased interest
in obtaining structural information.

RNA molecules are typically described at three different levels: first, the
primary structure of RNA is a single strand made of the ribonucleotides ade-
nine, cytosine, guanine and uracil. The secondary level by indicating the
bonds between pairs of nucleotides. These three levels give the topology of
the molecule, and its geometric shape [3].

RNA can fold back on itself. The pairing rules for its sequences in RNA
alphabet is A pairs with U and G pairs with C. In addition, frequently G is
thought to pair with U and G-U base pairs called wobble base pairs. In this pa-
per, we ignore G-U pairs. The two-dimensional self-pairing is called secondary
structure. Here, we are only concerned with the enumeration problem of RNA
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secondary structures. Previous results on the number of different secondary
structures of RNA molecules are due to M. S. Waterman with their coworkers
6,7, 8,11, 12] and C. D. Svrtan, et [2]. Particularly important work reported
by I.L. Hofacker, P. Schuster, P.F. Stadler is the recursion for the number of
secondary structures with limited length loop [4]. E. A. R@Land discussed
the enumeration about the secondary structures with Pseudoknots [3].

In this paper, we consider the secondary structures without Pseudoknots.
According to a new representation, we compute the total number of RNA
secondary structure of a given length S*(n), and the explicit expression of
S*(n) from the generating function is obtained. Then we give an asymptotic
analysis about S*(n). Finally, And according to [7], we get the combinatorial
expression of S*(n, k), then S*(n) is computed.

2. THE BASIC DEFINITION

Definition 2.1 ([9] Definition 3.1). Let R = rira-- -1y, 7 € {A, U}tor{G,C},i =
1,2,---,n be the RNA sequence. The secondary structure is a vertex-labelled
graph on n vertices with an adjacency matrizc A = (ry;) fulfilling : (1) 7541 =
L1<i<n—1; (2) Ifrix =1,k #i—1,i+1, v; pairs with ry; (3) For each i
there is at most a single k # i—1,i4+1 such that v, =15 (4) If rij =rp; =1
and i < k < j, theni <l <j.

We will call an edge (i,7), |i — j| # 1 a bond (or a base pair). A vertex i
connected only to i — 1 and i + 1 will be called unpaired. A vertex i is said
to be interior to the base pair (k,l) if k < i < l. If, in addition, there is no
base pair (p,q) such that k < p < i < q <, we will say that i is immediately
interior to the base pair (k,l).

Definition 2.2 ([4] Definition 2.2 ). A stack consists of subsequent base pairs
(p—k,q+k),(p—k+1,q+k—1),--- ,(p,q) such that neither (p—k—1,q+k+1)
nor (p+1,q—1) is a base pair. k+ 1 is the length of the stack. (p—k,q+ k)
s the terminal base pair of the stack.

Definition 2.3 ([4] Definition 2.2). A bonding loop consists of a terminal
base pair and unpaired vertices. The number of unpaired vertices is the length
of the bonding loop.

Definition 2.4 ([4] Definition 2.4). A stack [(p,q), - (p + k,q — k)] is called
terminal if p— 1 =0 orq+1=n+1 or if the two vertices p— 1 and ¢+ 1
are not interior to any base pair. The sub-structure enclosed by the terminal
base pair (p,q) of a terminal stack will be called a component of secondary
structure. We will say that a structure on n vertices has a terminal base pair
if (1,n) is a base pair.

10



Enumeration problem of RNA secondary structures under new representation

Definition 2.5 ([4]Definition 2.2). A external vertex is an unpaired vertex
which dose not belong to a loop. A collection of adjacent external vertices is
called an external element. If it contains the vertexr 1 or n it is a free end,
otherwise it is called joint.

Definition 2.6 ([4]). A internal vertex is an unpaired vertex which is interior
to a base pair.

P OIS,

(a) (b) (c) (d) (e)
Fig.1 the elements of RNA Secondary Structures.

We consider the difference of the paired bases, A—U and G — C. Generally,
we ignore the paired bases G —U. The notation (a) is a hairpin; the end of (b)
is called tail; (c) is a stack; (d) is a convex loop; (e) is called a interior loop.

Now, considered the sequence r = r17ar3, the total possible secondary struc-
tures is 12 kinds. It is shown in Fig.2.

PN

Fig.2 Twelve kinds secondary structures on [3]

3. THE RECURSION FORMULAS
Lemma 3.1 ([9]). Let ordered set [n] = {1,2,--- ,n} and S*(n) be the total
number of RNA secondary structures on [n], then S*(n) satisfies the recurrence

relation:

n—1
S*(n+1)=2[S"(n) + > _S*(k—1)S*(n— k)], n>1
k=1
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with the boundary values S*(0) = 1,5%(1) = 2
Theorem 3.2. Let (x) = Y, S*(n)x", then it fulfills the functional equation
n>0

222 (x)? — [1 — 2z + 22%)p(z) +1 = 0.
In [9], let m =1 in recurrence (2), we can get the desired result.
Theorem 3.3. The explicit expression of S*(n) is
§*(n) = Z (3)n+2-30, 20, (—1)

| | — — ! ’
Jorsoren o (v1)Y(v2)!(n + 2 — 4v; — 3v2)!
v1,v22>0

where (x)y =xz(z —1)---(x —k+1) foranyx € C and k € N, (z)p = 1.

n+1—4v1 —2v9 22n+276'01 —3vg

To prove this theorem let the generating function of S*(n) be y(z) =
Ym0 5% (n)2™. According to Theorem 2, we get the algebraic function sat-
isfied by y(x), that is, 222y% — (1 — 2z +222)y+1 = 0. By the initial condition,
we can deduce that
C1-204227 1

4 3 1
y(x) 102 - 4—$2(1 + 4z* — 8z° — 4x)2
Computing the above function equation, we get multinomial identity
1 — 2z + 2z? z
y(x) - 4%2 - Z (’1)1 vy N+ 22— 4111 — 3112
4v14+3v2<n+2
v1,v2>0

(_ 1>n+1—4v1 —2v9 22n+2—6vl —3va | .,En

Hence, by virtue of the above identity , we obtain the coefficient of x",
which is just the explicit value of S*(n). That is,

(l)n+2—3v1—2v2 :
sm- > U
| | _ _ |
Jor o2 (v1)!(v2)!(n + 2 — 4v; — 3v9)!
v1,v22>0

(_ 1)n+1—4v1 —2vg | 22n+2—6v1 —3vg

Lemma 3.4 ([8]). Let y(x) =),y ana™ be the ordinary generating function
of the sequence a, which is known to have the property a, > 0. let y satisfy
the functional equation F(x,y) =0, and let r > 0, s > ay be the unique real
solutions of the system F(r,s) =0, Fy(r,s) =0. Then

rE,(r, s) 3
Qp ~ || ———————n"2r
" 27 Fyy(r, s)

e 1

I+ (=v2r ﬁ)rn*%r*”.

Th 3.5. 5" ~
eorem (n) 12
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In the present case, by Theorem 3.2, we can let
F(z,y) = 20y () — (1 — 22 + 22%)y(x) + 1,
and we have the following relations
2r%s? — (1 —2r +2r*)s+1=0,
4r25—(1—27’+2r2) =0, r#0,

then s = ——. Hence, according to Lemma 4, we get

Ver'
Fy(r,s) = drs® — drs + 2, Fyy(r, s) = 4r°.
Then the desired result is obtained.
S . is the set of secondary structures on n vertices that have exactly k base

pairs and the bonding loop with limited length 1. In [9], let m = 1 in Theorem
5.1.1, we can get the following result.

Theorem 3.6. Let S*(n, k) = |Sy k|, then
n—2k—1
S*(n, k) =2[8*(n— 1,k) + S (n— 2,k = 1)+ > > §*(j — 1,4)
=2 i=0

n—1

S n—j—1k—1-4)], n>4, 0<k<| .

with the boundary values S*(n,0) =2", n>1, S*(0,k) =0, k> 0.

Theorem 3.7. The generating function of S*(n, k) is denoted by ¢(x,vy), then
it satisfied the following recurrence:

1
d(x,y) = 122y

From Theorem 3.6, we get

ow,y) =) Y S (n.k)a"y*

[1— 22 — 222y — /(1 — 2z — 222y)2 — 1623y).

n=0 k=0
3 oo 0o 00
= Z Z S*(n, k)z"y* + Z Z S*(n, k)a"y*
n=0 k=0 n=4 k=0
=22+ (22)% + (22)° + 226 + 22%y¢ — 2x(2x + (21)?) + 22%y¢?
=2z + 2z¢ + 222y + 222y P>

From which we get the following identity,
222y¢? — [1 — 2z — 222y|p + 2z = 0.

By the initial condition, we can get the desired result.
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Theorem 3.8.
S'nky= Y (2nR(—2)nhmRe

2u1 +va<n—2k
vo+2v3<k
v1,v2,v32>0

1
2
(vl n—2k —2v1 —v9 k — vy — 203 vy v3>
According to Theorem 3.7, ¢(z,y) can be written in the form

1— 2z — 222y 1
472y 4x2y

¢(a:,y) =

We only need decompose the part

(1 — 22 — 22%y)* — 16x3y]%,

9(ey) = =g [0 = 20— 20%9)° —162%y)1.

By virtue of multinomial identity, we have

9(x,y)

1 1
i 2 (o 2y ) A ) ) (8 )
Y vvsvgoqgus \U1 V2 U3 V4 U5

1
— 2 2n—k—1 _9 n—k—2mfﬂq—%5—1$n—2 k—1
Z (Uln—2v1—v4—2kkz—v4—2v5v4v5> (=2) y

V10405

1
= Y 2(eprhEneie < 2 )xnyk.
201 Fva<n—2k v1 n— 2k —2v1 —v2 k—v2 — 203 v3 V3

vo+2v3<k
v1,v2,032>0

The coefficient of 2™y* in the above recurrence is the expected result.

L2z

Theorem 3.9. S*(n) = S*(n, k).

k=0

It is much easier to compute S*(n, k) than S*(n). In [7], Waterman had
been constructed a bijection between ®,, ;. to one set of tree denoted by I, 1.
Let s*(n, k) = |®, x| and t(n,k) = |I',, x|. Now we give another simple explicit
formula on S*(n) and S*(n, k).

Lemma 3.10 ([7] Proposition 2.1). For all n,k > 1, there exists a bijection
¢ Pryp—2 k-1 = Inpg

In [7], the explicit expression about s*(n, k) is given according to Lemma
3.10. It is shown as the following Lemma.
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Lemma 3.11 ([7] Theorem 2.2.). The number of secondary structures over a
sequence of length n having exactly k pairs is given by

“o =5 () ()

In this paper, we consider the difference between A — G base pairs and
G — U base pairs. By the construction of the I';, 1, we can dye two colors in
each branch of the tree. Then we get the combinatoric expression of S*(n, k).

Theorem 3.12.
1/m—k\/n—-k-1
* :2n—k7 .
S (n. k) k<k+1>< k-1 )

The proof is omitted.

forn, k> 0.

|25 ]
Corollary 3.13. S*(n) = i 2n_k%(2;]1€) (ngfIl)
k=0

By virtue of Theorem 3.9. and Theorem 3.12., we can easily get the result.
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