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ABSTRACT

In this paper, we propose a new methodology to predict burglary rates in a particular
neighborhood using the Random Forest algorithm. Data sets of criminal records,
transportation, and neighborhoods were employed and appropriate features were
extracted and used in the classification problem. The criminal data set included geo-
spatial locations (expressed in terms of longitude and latitude) of all the reported
crimes in the city of Bogota along with the date of crime. The transportation data set
included geo-location of each subway station and temporal measures of the number of
passengers entering and exiting from the stations, and the neighborhood data included
geographic division of different neighborhoods, number of houses, households,
population, and house values. OnStreetMap data, consisting of the geo-spatial locations
of different kinds of amenities (such as schools, police stations, and banks/ATMs)
were also utilized along with the three aforementioned data sets. The Random Forest
algorithm was tested with different models/feature sets to predict burglary rates. Our
best performing proposed model obtained an accuracy up to 73.15% when predicting
whether a specific area in the city will be prone to burglary or not.

Keywords: Predictive analytics, Machine Learning, Data mining, Crime prediction,
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INTRODUCTION

Existing studies have also explored the relationships

Burglary is a social problem affecting the quality of life
and the economic development of a society. Recent
research has shown that burglary tends to be correlated
with slower economic growth at both the national level
and the local level; for example in cities (Cullen & Levitt,
1999) and metropolitan areas (Mehlum, Moene, &
Torvik, 2005). Burglary related information has always
attracted the attention of criminal law and sociology
researchers. These scholars have focused on studying
the behavioral evolution of burglaries and its relations
with specific characteristics of the neighborhoods.
Factors such as neighborhood features, social networks,
and poverty issues have been related to burglary.

between burglary and socio-economic variables such
as education (Ehrlich, 1975), ethnicity (Braithwaite,
1989), income level (Patterson, 1991), and
unemployment (Freeman, 1999). Other scholars have
focused on providing the evidence of significant
concentrations of burglary at micro levels of geography
with the geographical features (P. L. Brantingham &
Brantingham, 1999; Weisburd & Green, 1994). It has
been noted that crime events are correlated with the
public transit system. Various studies have profiled
transportation crime, occurring mostly in large cities
such as New York (Clarke, Belanger, & Eastman, 1996),
Chicago (Block & Davis, 1996), and Washington D.C.
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(La Vigne, 1996). These cities with high population
densities are more susceptible to crime. The majority
of these crime events consist of less serious incivilities
such as burglary and theft. Brantingham et al. (P. J.
Brantingham, Brantingham, & Wong, 1991) made the
hypothesis that public transit tends to provide
opportunities for crime, since it potentially moves high-
risk people around the city. One research group (Phillips
& Sandler, 2015) has tested the hypothesis of whether
public transit can spread crime in cities by using a
strategy based on temporary closures of rail stations
for maintenance in the Washington D.C. rail transit
system. When closing one rail station, crime reduces
by 5% at other stations on the same train line. This
study demonstrates that crime is not random and it is
worthwhile to study the relationships between public
transit and crime. Another study has been conducted
to determine the impact that rail transit has on crime,
utilizing neighborhood crime data in Atlanta, Georgia
(Millman, 2015). Using a random-effects estimator, the
results indicated that neighborhoods in close proximity
to rail stations experienced higher crime rates than
neighborhoods that were further away from rail stations.
Also, neighborhoods that are closer to rail stations with
higher housing values experience higher crime rates.
Recently, a number of authors (Letouze, Meier, & Vinck,
2013; Morozov, 2014; Toole, Eagle, & Plotkin, 2011;
Wang, Rudin, Wagner, & Sevieri, 2013; Ferrara, De Meo,
Catanese, & Fiumara, 2014; Traunmueller, Quattrone,
& Capra, 2014; Song, Qu, Blumm, & Barabasi, 2010;
Krumme, Llorente, Cebrian, Moro, et al., 2013; Singh,
Murthy, & Gonsalves, 2010; Biau, 2012; Powers, 2011;
Provost & Fawecett, 2013; Mohler, Short, Brantingham,
Schoenberg, & Tita, 2012; Tarling & Morris, 2010;
Caplan, & Kennedy, 2010; Bock, 2012) have taken
advantage of the deluge of data collected in cities to
verify these hypothesis based upon actual data
(Jayaweera, Sajeewa, Liyanage, Wijewardane, Perera,
& Wijayasiri, 2015). Bus and subway stations equipped
with cameras, X-ray scanners, and automated gates
allow for recording the flow of passengers going to and
leaving from different areas of the city. Mining these
very detailed geographic and temporal data points about
the population of a city could help understand the
relation between the flow of passengers and the
occurrence of burglaries, and predict where burglaries
are most likely to happen. These data-driven predictive
models could then enable police departments to deploy
preventative forces in the newly identified high crime
intensity spots in the city. However, transportation
burglary is still an understudied research topic in urban
areas. In this paper, we use the Random Forest
algorithm (Ho, 1995) and select a number of features,

such as passenger count, location of subway stations
and amenities, burglary events, real-estate values, and
demographic features derived from available data sets
to predict burglary rates in a particular neighborhood
of Bogota. The main contributions of this paper are:

1. Testing the Random Forest algorithm with
different models/feature sets to predict burglary
rates.

2. Utilizing various data sets to extract features
and build the models.

3. Discussions of the theoretical and practical
applications of our approach.

The paper is structured as follows: In the Data
section, we delineate the data sets utilized for our
experiments. The Methods section describes the
methodology employed for our experiments and in
particular, the development of a Random Forest
algorithm. The Results section presents how well the
algorithm predicts burglaries in Bogota districts. This
is followed by a discussion of our analysis and a
conclusion.

DATA

Data Pop provided us with a number of data sets with
information about crime records and transportation
activity in the City of Bogota for a period of time ranging
from 2007 to 2012.

Daily
every 15 sec

crime records

~
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Figure 1: The figure shows the data sets that we used and their
time granularity. Since the records in each data set have different
time stamps, we created a mapping across the different data sets.

We describe in detail the data sets (from different
sources) utilized in our study. The first data set contains
crime records taken by the police of Bogota. Most crime
records have a time stamp and a geo-spatial location.
The crime records include crime cases from January
2007 to March 2013. The specific data attributes include
crime ID, date of crime, geography (longitude, latitude,
and address where the crime took place), and the crime
type (homicide, burglary, vehicle lifting, shoplifting,
theft of trade, personal injuries, etc.). We assessed the
distribution of crime types and observed that burglary
had the highest number of crime events. We also
aggregated the total number of burglaries by each
neighborhooed.

An example of a criminal case record with the
corresponding data attributes are summarized in Table
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Attribute Data

Crime ID 0000001

Date 06/04/11

Crime Type |Burglary

Latitude -74.118

Longitude |4.615

City Bogota

Address KR 41C CL 3B 37

Figure 2: An example of a criminal case record based on the crime
record data set.

2. The second data set contains transportation
information, and records the passenger counts in
different subway stations in the city every 15 seconds.
The data set also consists of longitude and latitude
coordinates of each subway station. (Note that the
temporal granularity of each data set is different and a
method to map one data set onto the other is
necessary). The third data set utilized was the
neighborhood data, which consisted of geographic
information for the city of Bogota. The actual shape of
the neighborhood was provided along with the surface
areas of spatial structure. The shape of the
neighborhood can be presented on the map and can
be referenced by a unique ID. For each of the
neighborhoods in Bogota, information about the
number of houses, households, and population were
provided.

Figure 4 represents the geo-spatial location of each
subway station across the Bogota neighborhoods and
the monthly passenger flow from 2007 through 2013.
There are a total of 46,898 neighborhoods.

Information Type Data

Bogota Neighborhood |Total number of honse
Total number of
Total Population

Real Estate Value House vaiues

Figure 3: Basic statistics of the different neighborhoods in Bogota
were used in our crime prediction study.

To complement the information contained in the
data sets provided, we created a data set about the real
estate value of different neighborhoods in the city. The
data was extracted from fincaraiz.com.co. The real
estate data set was created at the time of this study, i.e.
fall of 2015, and was merged with the Bogota
neighborhood data set. The neighborhood data is
summarized in Table 3.
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Monthly Transportation Series | 2007 - 2013

Figure 4: A map of the spatial and temporal structure of the
transportation data. The time-series plot shows an increase of
passengers entering and exiting the subway station over time from
2007 to 2013. This can indicate an increase in the likelihood of
burglary events.

The OnStreetMap dataset consisted of geo-locations
of different kinds of amenities. For each amenity, the
data provided the amenity name, type, and geographic
location of the amenity. Figure 5 represents the geo-
spatial location of each amenity (such as schools, police
stations, and banks/ATMs). The amenities were
extracted from the OnStreetMap data and allocated to
each neighborhood centroid with the distances
calculated between them (see below).

In order to link all data sets provided from different
sources, we mapped all spatial data sets to a Bogota
neighborhood centroid. The centroid was calculated
using the Bogota neighborhood data set. For example,
we mapped each burglary event location (longitude
and latitude coordinates) to the nearest neighborhood
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Figure 5: A map of the geo-spatial location of different kinds of
amenities, such as schools, police stations, banks/ATMs, in specific
areas of the city. The geo-spatial relationships between each
amenity and neighborhood centroid assisted with the prediction
of the burglary rate in a specific area of the city.
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centroid it belonged to by a measure of distance. For
subways stations, we mapped each subway station
location to the nearest neighborhood centroid it
belonged to by a measure of distance. Similarly, we
repeated the process for the amenity locations.

We further detected relationships between each
amenity and neighborhood centroid in terms of crime
prediction. A neighborhood that was highly
commercialized experienced a higher level of burglary
rates. The most challenging part of our study was to
clean and map the data from different sources in order
to build the models for predicting crime. To yield the
best prediction accuracy, we introduce a modeling
strategy using the Random Forest algorithm in the next
section.

METHOD

We considered the problem of burglary classification
as a binary problem. For each neighborhood of the
city, we classified whether it will show a high or low
level of burglary by performing a feature transformation.
This feature transformation was achieved by splitting
the burglary rate into two classes: a low burglary rate
(class 0) and a high burglary rate (class 1). The
threshold was set to the median burglary rate. The
number of burglaries less than or equal to the median
is assigned a class 0 and the number of burglaries
greater than the median is assigned a class 1. Figure 6
is a heat map that visualizes the number of burglaries
in different areas of the neighborhoods in Bogota. The
highest number of burglaries is in Center Chapinero
and the Northeast area respectively. Center Chapinero,
located in downtown Bogota, has the highest real estate
value in the city followed by the Northeast area. The
West and South regions of the city have a low
concentration of burglaries and are constant over time.
Crime increased over time in the Northwest region from
2007 to 2012. Burglaries are more likely to happen in
high population density areas like Center Chapinero,
while residential areas with low population density
experience less crime. We randomly split all data into
training (80% of data) and testing (20% of data) sets.
The models were built on 80 % of the training data set
and then used for predicting the dependent variable
on the 20% testing data set. We trained the Random
Forest algorithm with different models created on the
training data set following a 5-fold cross validation
strategy. We tested the different models created using
the allocated testing data set for prediction of burglary
rates. The purpose of this practice is to evaluate how
the model will perform with new data.

As shown by Bogomolov et al. (Bogomolov et al.,
2014), the Random Forest algorithm constructs many
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Figure 6: The heat map represents the number of burglaries in the
city of Bogota from 2007 to 2012. The darker the area, the higher
the number of burglaries during the year. The area that had the
highest concentration of burglaries is Center Chapinero (central
east part of the map), which is located in downtown Bogota.

classification decision trees and has several advantages
over other classification algorithms. The Random Forest
algorithm can produce a highly accurate classifier with
a high speed learning process, and can handle many
input variables without deleting any of them. It develops
many decision trees based on random selection of data
and random selection of variables. It provides the class
of the dependent variable based on many trees. We
also considered using a Support Vector Machine (SVM)
algorithm (Meyer & Wien, 2015), which is often used
for binary classification and developed by Cortes and
Vapnik. The algorithm can be used for both linear and
nonlinear classification and regression. For linear
classification, a SVM constructs an optimal separating
hyperplane between two different classes by
maximizing the margin between the classes’ closest
points. The points lying on the boundaries are called
support vectors. For non-linear classification, a kernel
technique is performed when the data points are not
linearly separable. We chose the Random Forest
algorithm to construct our models for predicting crime,
since it has several advantages compared to the Support
Vector Machine algorithm.

We trained the Random Forest algorithm based on
different models, which included a selection of features
from the criminal case records, neighborhood,
transportation, and OnStreetMap data sets. The
calculated features included demographic, temporal
measures, and geographical relationships. The output
of the different models would be the binary
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classification of the dependent variable, indicating
whether a specific area in the city will be prone to
burglary or not.

We defined the model based on the neighborhood
data set as the baseline classifier. The neighborhood-
based model included basic features, such as number
of houses, number of households, population, and the
price per square meter for a house. The neighborhood-
based model is commonly used for prediction and is
the most basic predictive model used in our method.

We recorded spatial relationships for burglary
classification by using geographical features including
nearest distance between each neighborhood centroid
to an amenity type (such as subway station, school,
police station, bank, or ATM). We defined this approach
to be the geographic-based model.

We used all features from the transportation data
set, which included spatial and calculated temporal
measures. We created a model trained with the subset
of these temporal measures that included the mean,
median, and standard deviation of yearly, quarterly,
monthly, and weekly passenger flow of the subway
stations. We defined this approach and called it the
standard deviation-based model.

Each tree in the Random Forest classifier is
constructed by using the following algorithm:

1. Let the number of training cases be N, and the

number of variables be M.

2. Let m be the number of input variables to be
used to determine the decision at a node of the
tree, where m must be less than M.

3. Select a training set for this tree by choosing N
times with replacement from all N available
training cases by taking a bootstrap sample.
Use the rest of the cases to estimate the error
of the tree by predicting their classes.

4. For each node in the tree, randomly select m
variables on which to base the decision at that
node. Calculate the best split based on these m
variables in the training set.

5. Each tree is fully grown and not pruned.

Equation 1 and 2 represent the classification
decision tree impurity measures in the Random Forest
algorithm. Equation 1 defines impurity, which is
measured by entropy. Entropy is a probability based
measure used to calculate the amount of uncertainty.

i(A) = —Z P(c,)log, P(c;) (1)

where P(.) is the fraction of samples at node A
that arein class viaj = 1,2,...,N. Gini index is measured
by

i(A)= —Z P(c,) P(c;) =%{1 - z pZ(Cj):| (2)
#] ]

Equation 2 is another way to define impurity and
is a more general measure used in classification decision
trees. The performance metrics that were used to
evaluate the different models were accuracy, F1, and
the area under the ROC curve (AUC). The metrics are
used to measure the model’s test prediction accuracy
level. The performance metrics will be discussed in
the results section of this paper.

RESULTS

In this section we report the experimental results
obtained by the Random Forest algorithm. The
performance metrics that were used to evaluate the
different models’ crime prediction performance were
area under the ROC curve (AUC), accuracy, and F1.
Area under the receiver operating characteristic (ROC)
curve provides an insight to the predictive ability of
the model. The receiver operating characteristic curve
is a plot of 1-specificity against sensitivity. The false
positive rate represents the x-axis and the true positive
rate represents the y-axis. The steeper the slope of the
curve, the higher the true positive rate. This will yield
a higher AUC measure closer to one. An AUC measure
of 0.5 indicates the model predicts at random.

We first used all features based on the neighborhood
data set. These features consisted of number of houses,
households, geographic division, and home price per
squared meter. We defined this model to be the
neighborhood-based approach, determined as the
baseline classifier. To create the spatial relationships
for burglary classification, we used geographical
features such as nearest distance between each
neighborhood centroid to a subway station, school,
police station, and bank/ATM. We determined this
model as a geographic based approach since the features
are generated all from spatial relationships.

In order to understand the value added by the
transportation data set, we compared the prediction
performance of the Random Forest algorithm using all
features with three different models trained with

1. Only the subset of features derived from the
temporal relationships using the mean output
of passenger flow (i.e. mean of yearly, quarterly,
monthly, and weekly based output).

2. Only the subset of features derived from
the temporal relationships using the
median output of passenger flow (i.e. median
of yearly, quarterly, monthly and weekly-based
output).
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3. Only the subset of features derived from the
temporal relationships using the standard
deviation output of passenger flow (i.e.
standard deviation of yearly, quarterly,
monthly, and weekly based output).

We define the three models as mean, median, and
standard deviation based approaches, respectively.
However, we only reported the standard deviation-
based model in the performance results table, since it
yielded the highest AUC performance measure.

The performance results on the crime prediction
accuracy of the different models created with the
training data set are reported in Table 7. The standard
deviation-based model yielded the highest accuracy of
73.15%, when predicting burglary rates.

Predicti ve |Accuracy |CI Fi % |AUC

Model %

neighbor  167.94 (0.6563, 0.7019)|70.20 10.7273

seqoranhic 17201 (0 7069 0.7504)174 56 107291

geographic [72.91 (0.7069, 0.7504)|74.56 10.7291
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Figure 7: A summary of the performance results for each of the
different predictive models. The performance metrics that were
utilized to evaluate the models were accuracy, the Confidence
Interval (CI) at 95%, F1, and the AUC score (i.e. Area Under ROC
Curve).

Comparing the different models that were built,
the neighborhood-based model yielded the lowest
accuracy of 67.94% . The model was determined as the
baseline classifier. The features that were used in this
model included basic statistics like number of houses,
number of households, population, and the price per
square meter for a house. The geographic-based model
yielded an accuracy of 72.91%, which is a better
performing model than the baseline classifier. The
standard deviation-based model yielded an increase in
accuracy of 5.21 % when compared with the baseline
classifier (73.15% vs. 67.94% accuracy). Figure 8 is a
graphical representation of the area under the receiver
operating characteristic curve. It visualizes the crime
prediction accuracy of the standard deviation-based
model compared to the neighborhood-based model,
which was determined as the baseline classifier. The
standard deviation-based model represents the curve
line and the baseline classifier represents the diagonal
straight line. The standard deviation-based model
yielded an area under the ROC curve of 0.7315, which
is better at predicting crime in certain areas of the city
compared to the baseline classifier. The greater the area

under the curve (closer to 1.0), the better the predictive
ability of the model.

DISCUSSION

The results reported in the previous section indicate
that the utilization of transportation data improved the
level of accuracy when it came to predicting bur- glary
rates in a particular neighborhood. The transportation
data contains the geo-location (expressed in terms of
longitude and latitude) of each subway station and the
temporal measures of number of passengers entering
and exiting from the subway stations.
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Figure 8: The graphical representation is a ROC curve plot, which
illustrates the area under the receiver operating characteristic curve.
The area under the curve for the best model is 0.7315, which is
represented by a curve line. As shown in the figure, the steeper
the slope, the higher the true positive rate.

By extracting human behavioral features from the
transportation data set, the prediction accuracy of the
models did improve when compared to the baseline
classifier. The Bogota neighborhood data set contains
information only about the number of houses and
households and the population of the neighborhood
for a given year.

The features extracted from geographical
relationships between each amenity (such as schools,
police stations, and banks/ATMs) and the neighborhood
surrounding improved the model prediction accuracy
significantly as well. This could provide an insight when
for allocating police officers to high burglary geographic
spaces. Geographical features in combination with
temporal features are the best features to have as input
in a model in order to predict burglary rates in a particular
neighborhood, since a place with high population of
passengers entering and exiting subway stations would
have a variety of travelers visiting the place either on a
yearly, quarterly, monthly, or weekly basis.

We have outlined and tested different predictive
models to automatically classify at a 73.15% level of
accuracy, whether a specific area in the city will be
prone to burglary or not. The proposed approach could
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have clear practical implications by informing police
departments and city governments on how and where
to invest their efforts and on how to react to burglary
events with quicker response times. From a proactive
perspective, the ability to predict the safety of a
geographical area may provide information on
explanatory variables that can be used to identify
underlying causes of these burglary occurrence areas
and therefore enable police officers to intervene in
specific neighborhoods. The distinctive characteristic
of our approach relies on the usage of features
computed from transportation activity data combined
with geographic and demographic information.
Previous research efforts in criminology have tackled
similar problems using background historical
knowledge about crime events in specific areas, criminal
profiling, and wide description of areas using
socioeconomic and demo- graphic indicators. Our study
provides evidence that aggregated data extracted from
the transportation data set consists of relevant
information to describe a geographical area in order to
predict its burglary level. In particular, the features
extracted from the transportation data set are dynamic
and related to human activities.

Our study had several limitations due to the
constraints of the data sets utilized. We only had access
to the Bogota neighborhood data set for a given year,
thus we cannot capture the demographic features over
time. In addition, the transportation data set provides
very limited information about the age and gender of
travelers, which we could not utilize in our study.

CONCLUSION

We have proposed a new methodology to predict
burglary rates in a particular neighborhood using the
Random Forest algorithm. We have proposed a model
that predicts the burglary rate at a 73.15% level of
accuracy based on human behavioral features derived
from transportation data in combination with geo-
graphic information. We have shown that our approach
significantly improved prediction accuracy when
compared with using traditional statistical data about
a neighborhood. Moreover, we have provided insights
about the most predictive features, which are extracted
from spatial and temporal data. We believe that our
findings open the door to exciting avenues of research
in computational approaches to deal with a well-known
social problem such as burglary.
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