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Abstract: Financial time series exhibit different stylized facts, namely, asymmetry and nonlinearity, which 
require a particular specification to capture market volatility behavior. This paper suggests backpropagation 
neural networks (BPNN) to improve the S&P 500 returns volatility forecast. The estimated volatility based 
on the Markov-Switching asymmetric GJR-GARCH (MS GJR-GARCH) model and the VIX index (i.e., 
Volatility index) series are used respectively as input and output of our artificial neural networks model. 
The empirical results reveal that the proposed combination has succeeded in enhancing the forecast ability 
by mastering the exhibited volatility clustering (GARCH), asymmetry (GJR-GARCH), and nonlinearity 
(BPNN) effects. In addition, the use of the MS GJR-GARCH model only may lead to the worst results, 
especially in crisis periods. 
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1. Introduction 
 

Volatility forecasting has been a special issue regarding financial time series in general and, more precisely, 
for the hedging and pricing financial derivatives such as the options. Since the constant volatility model of 
Black & Scholes, several trails to model volatility are well documented. In particular, the Generalized Auto-
Regression Conditional Heteroskedasticity (GARCH) proposed by Bollerslev (1986) as the most popular 
econometric model, as indicated by its name, it was extended from the ARCH model of Engel (1982). The 
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financial time series is characterized by different stylized facts, mainly persistence in conditional variance 
process, asymmetry, and nonlinearity, making volatility forecasting more difficult. From the business 
perspective, the bad news (negative shocks) affect the conditional variance more than the good news 
(positive shocks). Glosten-Jagannathan-Runkle (1993) suggested a new specification (GJR-GARCH) to 
capture the asymmetry effect presenting in the conditional variance process. 

Hamilton & Susmel (1994) and Lamoureux & Lastrapes (1993) found that the GARCH class models may 
lead to poor volatility forecasts. High estimated persistence can be controlled by allowing the conditional 
variance process to be flexible with small/ large shock in returns. Hamilton (1989) was introduced the 
Markov-switching GARCH (MS GARCH) that can adapt quickly to many variation levels. However, MS 
GARCH models may easily lead to the path-dependence issue. Bauwens et al. (2014) recommend using the 
Bayesian approach/Markov Chain Mont Carlo (MCMC) to estimate the MS GARCH models better. Ardia 
et al. (2018) propose a large-scale study in which they compare different MS GARCH specifications. They 
suggest using the R package (MSGARCH) to implement the MS GARCH models and the Bayesian 
estimation approach. 

The artificial neural networks (ANN) is a promising tool to deal with nonlinearity; it can assimilate the 
relationships between returns and variance process. Different studies used ANN to forecast the financial 
time series. Donaldson & Kamstra (1997) suggested the use of neural networks GARCH model (NN-
GARCH) in order to capture volatility in stock returns. Hamid & Iqbal (2004) used the neural networks 
(NN) to predict the volatility of S&P 500 index futures prices. They concluded that NN outperform the 
implied volatility. While, Beldiric i& Ersin (2009) combined NN with GARCH class models to forecast the 
volatility series of the Istanbul stock exchange (ISE). Lahmiri (2012) used a combination between NN and 
the asymmetric GARCH (EGARCH) model in a way the NN inputs are the estimated volatility and the 
trading volume. His results revealed that trading volume improved the forecast accuracy successfully. 
Finally, Song et al. (2018) compared five NN models in predicting stock price series, and they showed the 
superiority of the Back-propagation NN (BPNN) model. 

In this study, we believe that the volatility index (VIX) is more significant to simulate the actual volatility of 
the S&P 500 index, comparing with traditional volatility measures (i.e., Parkinson, Garman Klass,...). 

The main goal of this paper is to evaluate the ability of NN in enhancing the forecasts of Markov switching 
GJR-GARCH in one hand, and to investigate on the NN architecture to select the number of recurrent 
connections on the other hand. 

The remainder of this paper is presented as follow: describe data and estimate the volatility series in section 
2, while section 3 briefly introduces artificial neural networks techniques. The empirical results will be 
discussed in section 4. Finally, section 5 summarizes the obtained results.  

2. Data and volatility estimation 

2.1. Markov switching GJR-GARCH model 
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One of the most valuable stylized facts presenting in financial markets is the asymmetry effect, explained by 
the fact that negative returns affect the conditional variance process more than positive returns. From the 
business perspective, bad news significantly impacts future fluctuations compared with good news. For this 

purpose, Glosten et al. (1993) suggested new specifications (i.e., GJR-GARCH) that can respond 
differently to the past negative and positive shocks. In this paper, we consider only one lag in both return 
innovations and variance. Therefore, the GJR-GARCH(1,1) model is defined as follow: 

𝑟𝑡 = 𝜖𝑡𝖵𝑡
1/2
  ; 𝜖𝑡 ∼

𝑖𝑖𝑑
𝑓(0,1) ,                                                        (1) 

𝖵𝑡 = 𝛼0 + (𝛼+𝛾𝟏(r𝑡−1 <  0))𝑟𝑡−1
2 + 𝛽𝖵𝑡−1 ,                                         (2) 

where 𝟏(r𝑡−1 <  0)=1 if 𝑟𝑡−1 < 0 and 0 otherwise. 𝑟𝑡𝑎𝑛𝑑 𝖵𝑡represent the log-return of a financial asset 
and the conditional variance at time 𝑡, respectively. (𝜖𝑡) is a sequence of iid random variables with zero 
mean and unit variance.𝑓(𝑡) is a conditional distribution that needs to be specified. The stationary and the 

positivity conditions for the GJR-GARCH is assured when 𝛼 + 𝛽 +
𝛾

2
< 1 and 𝛼0 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0 and 

𝛼 + 𝛾 ≥ 0, respectively. 
An interesting idea is to let the mentioned above parameters switch across different regimes modeling by a 
Markov process 𝑠𝑡 ∈ {1,2, . . } (see Haas, 2004). Following Ardia et al. (2018), the Markov switching 
GARCH (MS GARCH) model can be defined as: 

𝑟𝑡|(𝑠𝑡 = 𝑘, 𝒯𝑡−1) ∼ 𝑓(0, 𝖵𝑡
(𝑘), 𝛷(𝑘)),                                                       (3)  

where 𝖵𝑡
(𝑘) denotes the conditional variance within regime 𝑘. 𝒯𝑡−1 grouping the available information 

accumulated at time 𝑡 − 1 governed by {𝑟𝑡−1, 𝑟𝑡−2, . . . } and 𝛷(𝑘) represents additional parameters within a 
regime 𝑘. So far, the asymmetric MS GJR-GARCH(1,1) can be defined as follow: 

𝖵𝑡
(𝑘)

= 𝛼0
(𝑘) + (𝛼(𝑘)+𝛾(𝑘)𝟏(r𝑡−1 <  0))𝑟𝑡−1

2 + 𝛽(𝑘)𝖵𝑡−1,                (4) 

where 𝛾(𝑘) is the control parameter of asymmetry in the conditional variance process across different 

regimes and 𝛼(𝑘) captures the ARCH effect within regime 𝑘. 
In this work, we consider different skewed conditional distribution choices to capture the fat-tailed 
distribution of S&P 500 returns that exhibit a large kurtosis or skewness (see Fernández & Steel, 1998 and 
Trottier & Ardia, 2016). 

2.2 Data description 

The data set used in this study consists of the daily adjusted closing price of the S&P 500 and VIX indices 
obtained from the Yahoo finance platform for the period from January 3, 2000, to October 10, 2019 (about 
4975 observations) covering different historical shocks mainly, the attack of September 11, 2001, the 
Enron-scandal between July and November 2002, the Subprime crisis 2008 and the 2011 European 
financial crisis. The daily log-returns (𝑟𝑡) of S&P 500 is calculated using the first logarithmic 
differentiation; 𝑟𝑡 = 100 × (log(𝑃𝑡) − log(𝑃𝑡−1)), where 𝑃𝑡 is the adjusted closing price at day 𝑡. 
The VIX index goal (called also fear index) is to reflect and simulate the applied volatility of S&P 500 index 
options. On March 26, 2004, the trading and speculations in the futures on the VIX started on CBOE (i.e., 



Markov Switching Asymmetric GARCH Model and Artificial Neural Networks: Enhancing the volatility 
forecasting for S&P 500 Index 

200 
 

Chicago Board Options Exchange), considering as input the market price of the "Call" and "Put" options on 
S&P 500 index. VIX can be interpreted as the expected volatility over the next 30 days. Mathematically, 
VIX can be expressed as: 

                                      VIX2 =
2𝑒𝑟𝜏

𝜏
(∫

ℙ(𝐾)

𝐾2

𝑃∗

0

𝑑𝐾 +∫
ℂ(𝐾)

𝐾2

∞

𝑃∗
𝑑𝐾) ,                                      (5) 

where 𝑟 is the risk-free rate, 𝜏 represents the average days on one month (30 days) and 𝑃∗ denotes the 30-
day forward price on S&P 500. ℂ(𝐾) and ℙ(𝐾) are the "Call" and "Put" prices respectively on a strike 𝐾 
and 30 days to maturity. 
Figure 1(top) shows the evolution of the S&P 500 index in parallel with the VIX index across history. The 
negative correlation between the two processes becomes more significant during market crashes. We also 
present in Figure 1(bottom) the evolution of S&P 500 log-returns where we could clearly observe the 
presence of several clusters (periods) characterized by high/low level of changes in log-returns, this 
fluctuation can be interpreted as the volatility of the S&P 500 index. 
Hence, it will be more beneficial to consider the change in levels (regimes) of the volatility governed by the 
change on the S&P 500 log-returns. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Historical evolution of S&P 500 index, VIX index and S&P 500 log returns. 

Table 1 reports the descriptive statistics for the VIX daily adjusted closing price and the daily S&P 500 log-
returns. The mean and the median are close to zero for the S&P 500 log-returns, while the standard 
deviation is around one. The skewness coefficient is negative and differs from zero, reporting that the 
distribution is tail spread to the left. The S&P 500 log-returns exhibit as well a large excess kurtosis 
indicating how the tails are fat. The non-normality is noticed by comparing skewness and kurtosis 
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coefficients with the normal distribution's corresponding values. Jarque-Bera test confirmed the non-normality 
hypothesis (p-value < 5%). 

Before we apply GARCH specifications, it is mandatory to verify specific hypotheses that will allow us to 
convince using such a Heteroskedastic model. Firstly, the volatility clustering can be checked directly from the 
evolution of the S&P 500 log-returns (Figure 1). Secondly, we test the nonlinearity, which can be interpreted by 
the presence of ARCH effect. Lagrange-Multiplier (LM) test with 𝑞 = 12, number of lags, demonstrates the 
presence of ARCH effect under the null hypothesis of "No ARCH effect". 

Table 1. Descriptive statistics for the daily S&P 500 log-returns and VIX Index 

 

 

 

 

 

 

 

 

2.3. Volatility estimating and performing 

In this section, we aim to estimate and extract the stock market volatility of the S&P 500 index using the MS 
GJR-GARCH(1,1) model, which has already been previously defined, where we consider the whole history of 
data starting from January 3, 2000, until October 10, 2019. We remove the auto-regressive effect in the data by 
filtering with AR(1), then estimate our models based on the residuals to ensure that (𝑟𝑡) are serially 
uncorrelated. 
Therefore, we fit (𝐾 × 3 = 9) MS GJR-GARCH(1,1) models (results not reported in this paper), we consider up 
to three regimes 𝐾 = 1,2,3 where 𝐾 is the number of regimes in the conditional variance process, and three 
different skewed distributions (skewed normal, skewed student's-t and skewed generalized error distribution, see 
Fernández & Steel, 1998) are assumed as well. 
It is straightforward to use the R-package MSGARCH (Ardia et al. 2017) to estimate our models where we use 
the Bayesian approach/Markov Chain Monte Carlo simulation based on the adaptive random-Walk-Metropolis-
Hastings algorithm (see Vihola, 2012). Berg et al. (2004) and Ardia (2008) have shown many advantages of the 
Deviance Information Criterion (DIC) provided by the Bayesian estimation MCMC (see Spiegelhalter et al., 
2002) concerning the selection of the most appropriate model. Positivity and stationary of the conditional 
variance are guaranteed within the estimation phase. 
As a result, we noticed that the most appropriate model is the MS GJR-GARCH(1,1) with two-regimes and 
skewed GED distribution, which can provide a better trade-off in terms of fitting quality and specification 
complexity. 

Table 2 reports the parameters for the selected GJR skewed GED model; (𝛼0
(𝑘)
, 𝛼(𝑘), 𝛾(𝑘), 𝛽(𝑘)) for 𝑘 =

  S&P500 Log-return VIX Index 

Mean (%)  0.0139  19.5575 
Median (%)  0.0533  17.420 
Std.Dev (%)  1.1955  8.4922 
Skewness -0.2247  2.1633 
Kurtosis 8.54521  7.4716 
Minimum (%) -9.4695  9.1400 
Maximum (%)  10.9572  80.860 
JB-Statistic  15194.92  15465.66 
JB p-value  < 0.01 < 0.01 
LM (12) 1420.4 4690.5 
LM p-value < 0.01 < 0.01 



Markov Switching Asymmetric GARCH Model and Artificial Neural Networks: Enhancing the volatility 
forecasting for S&P 500 Index 

202 
 

1,2. The skewed GED distribution has 𝜂(𝑘) as tail parameter and asymmetry parameter 𝜉(𝑘). In addition, 
the persistence probability within regime (𝑠𝑡 = 𝑘) is 𝑝𝑘𝑘 = Pr[𝑠𝑡 = 𝑘|𝑠𝑡−1 = 𝑘] where we noticed high 
persistence within the second regime (𝑝22 = 1− 𝑝21 = 0.9971). We also report the regime's 𝑘 persistence 

volatility (i.e., 𝑉𝑝𝑒𝑟
(𝑘)

= 𝛼(𝑘) + 𝛽(𝑘) +
𝛾(𝑘)

2
), we highlighted significant persistence within the second regime 

(𝑉𝑝𝑒𝑟
(2)
≃ 0.98 < 1) compared to the first regime (𝑉𝑝𝑒𝑟

(1)
≃ 0.85 < 1). The estimation results are obtained 

using the posterior sample of 20,000 draws. 

Table 2. Parameter estimates for MS GJR-GARCH skewed GED 

                

Regime k=1 Mean Std.Dev MCSE Regime k=2 Mean Std.Dev MCSE 

𝛼0
(1) 0.0547 0.0382 0.0002 𝛼0

(2) 0.0230 0.0120 0.0001 

𝛼(1) 0.0158 0.0393 0.0002 𝛼(2) 0.0036 0.0094 0.0000 

𝛾(1) 0.2014 0.1283 0.0006 𝛾(2) 0.2048 0.0732 0.0004 

𝛽(1) 0.7286 0.1627 0.0008 𝛽(2) 0.8749 0.0480 0.0002 

𝜂(1) 1.0918 0.3402 0.0017 𝜂(2) 1.4729 0.1373 0.0007 

𝜉(1) 0.9199 0.0725 0.0004 𝜉(2) 0.8658 0.0370 0.0002 

𝑝11 0.9852 0.0141 0.0001 𝑝21 0.0029 0.0054 0.0000 

𝑉𝑝𝑒𝑟
(1) 0.8451 - - 𝑉𝑝𝑒𝑟

(2) 0.9809 - - 

 

We now turn to the performance analysis for the selected model, where we refer to Figure 2 to evaluate the 
prediction accuracy across the whole sample covering different peaks. The results clearly show the flexibility 
in capturing the market volatility within the normal/calm periods. Therefore, during the periods with high 
volatility (Subprime 2008, for instance), our model overestimates the market volatility.  
To summarize, the selected specification shown high performance in capturing the asymmetry in the log-
returns. Despite that, the model's weakness can be explained by the presence of the nonlinearity effect. So, 
how to capture the latter effect in our time series? 

 

 

 

 

 

 

Figure 2. Markov switching GJR-GARCH(1,1) predictions 

 



Abdellah Tahiri, Brahim Benaid, Hassane Bouzahir, Naushad Ali Mamode Khan 
 

203 
 

3. Neural networks and backpropagation algorithm 

A neural network is a machine learning method that can be considered as a non-parametric statistical 
approach aiming to find the best mapping between the inputs and the corresponding outputs. Generally, 
NN contains three categories of layers; one input layer, one or more hidden layers, and one output layer. 
One layer may contain a few or plenty of neurons, While the number of hidden neurons is not an arbitrary 
choice. Figure 3 presents an example of NN with three layers. 

 

 

 

 

 

 

 

Figure 3. Neural network structure with three layers 

However, several empirical studies have revealed NN's capability in forecasting the volatility of different 
financial assets, mainly, stock returns (Zekić-Sušac&Kliček, B., 2002) and exchange rate (Dunis& Williams., 
2002). 
In this work, to train our NN model, we aim to use the most known algorithm, namely the 
backpropagation algorithm (also known as gradient descent) introduced by Rumelhart et al. (1986); the 
procedure computes the gradient of the cost function with respect to the weights. 
Suppose we have 𝐿 layers, 𝑙 = 1 indicates the first layer (input layer), 𝑙 = 𝐿 corresponds to the output layer, 
and finally 1 < 𝑙 < 𝐿 corresponding to the hidden layers. In Figure 3, 𝐿 = 3, 𝑙 = 2 represents the hidden 
layer. 

Hence, let us use 𝜔𝑖𝑗
(𝑙) to denote the weights for the connection between the 𝑗th neuron in the (𝑙 − 1)th 

layer and the 𝑖th in the 𝑙th layer. The activation of the 𝑖th neuron in the 𝑙th layer can be expressed as : 

𝐴𝑖
(𝑙)
= 𝜙 (∑ 𝜔𝑖𝑗

(𝑙)
𝑗 𝐴𝑗

(𝑙−1) + 𝑏𝑖
(𝑙)) ,  (6) 

where 𝑏𝑖
(𝑙) denotes the bias of the 𝑖th neuron in the 𝑙th layer and 𝜙 is called an activation function that 

gives the nonlinearity to the NN. The widely used activation function is the logistic function (also called 
sigmoid): 

𝜙(𝑧) = (1 + e−𝑧)−1,                                                     (7) 

In this case, the Equation (6) can be rewritten as follow: 

𝐴𝑖
(𝑙)
= [1 + e−(

∑ 𝜔𝑖𝑗
(𝑙)

𝑗 +𝑏𝑖
(𝑙)
)]−1 , (8) 
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In the training phase, the algorithm takes a set of input-output pairs (𝑋𝑖 , 𝑌𝑖), for each pair (𝑋𝑖 , 𝑌𝑖), the loss 

of the model is the cost or the distance between the predicted output 𝑌𝑖
^  and the targeted value 𝑌𝑖 . Overall, 

for a given point 𝑖, the cost function can be presented as: 

                                                                 C𝑖 ≡ 𝜓(𝑌𝑖 , 𝑌𝑖
^)

≡ 𝜓(𝑌𝑖 , 𝐴𝑖
(𝐿)
),
                                                           (9) 

The algorithm aims to minimize the global cost function 𝐶 by updating the weights 𝜔𝑖𝑗
(𝑙) according to the 

following expressions: 

{
 
 

 
 𝜔𝑖𝑗

(𝑙)
= 𝜔𝑖𝑗

(𝑙)
− 𝜂

𝜕𝐶

𝜕𝜔𝑖𝑗
(𝑙)

𝑏𝑖
(𝑙)
= 𝑏𝑖

(𝑙)
− 𝜂

𝜕𝐶

𝜕𝑏𝑖
(𝑙)

, 

where 𝜂 is a predefined constant (in this study) called the learning rate supposed to be small. 
𝜕𝐶

𝜕𝜔
𝑖𝑗
(𝑙)  and  

𝜕𝐶

𝜕𝑏
𝑖
(𝑙) measure the cost function sensitivity to small changes of weights and bias, respectively. By the end of 

the algorithm training phase, we are expecting final vector of weights 𝜔 and bias 𝑏 to predict 𝑌̂. 

4. Empirical results analysis 

For the purpose of this work, we consider the data set composed of the estimated volatility series for the 
S&P 500 using the MS GJR-GARCH model with skewed GED distribution (see section 2) and the 
historical (actual) values of the VIX index. The sample is divided into a training set (70%) where we train 
our BPNN, and the remaining (30%) are used as a test set to evaluate the models. 

4.1. In-sample analysis 

We first consider an in-sample analysis, where we train different BPNN architectures with three layers, in 
the period from January 7, 2000, to October 24, 2013, about 3,470 records. 
The number of neurons in the input layer was a topic of a particular study. While the number of the output 
neurons is fixed at one, there is no magic formula to determine the hidden layer's optimal number. In fact, 
some rules-of-thumb are available for selecting the number of the hidden neurons ℎ for a NN with three 

layers. Master (1993) proposed a geometric pyramid rule: ℎ = √𝑙 × 𝑛 , with 𝑛 and 𝑙 are respectively the 
number of the input and output neurons. 
We use (𝖵𝑡)1≤𝑡≤3,470 to denote the estimated volatility at time 𝑡. We consider different NN architectures 

with different number of input neurons in order to select the optimal number of input neurons 𝑛∗, 

presented by the prior estimated volatility series. We set 𝑋𝑡
(𝑇)

= (𝖵𝑡 , 𝖵𝑡−1, . . . , 𝖵𝑡−𝑇), where 𝑇 represents 
the previous period to be used to predict the 𝑌𝑡 = VIX𝑡 . For instance, 𝑇 = 2 means we use (𝖵𝑡 , 𝖵𝑡−1, 𝖵𝑡−2) 
to predict the value of VIX index at time 𝑡 (i.e., VIX𝑡). 
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In this paper, we aim to select the optimal number of the input neurons where 0 ≤ 𝑇 ≤ 4, by checking 
each model's performance (a model is given by a specified value of 𝑇), that lead to compare five NN 

structures. Hence, we consider (𝑋𝑡
(𝑇)
, 𝑌𝑡) pair as one sample. 

In order to help our algorithm to learn fast and correctly, some techniques for scaling the numerical data 
are available, namely, the min-max normalization. We apply the Equation (10) on the estimated volatility 
series (𝖵𝑡) to normalize data in the interval [0,1]; 

𝖵 𝑡
′ =

𝖵𝑡−Min(𝖵𝑡)

Max(𝖵𝑡)−Min(𝖵𝑡)
   ,                                                                      (10) 

where 𝖵𝑡
′  and 𝖵𝑡 are the normalized and the original data, respectively. The VIX series is normalized as well 

using the Equation (10). The normalized data will be fed to our BPNN algorithm. 
An interesting parameter to be specified is the learning rate 𝜂 which is used to update the weights until the 
error is normalized. The learning rate should be chosen carefully from the interval [0,1]. After several tests, 
we set 𝜂 = 0.01 to speed up the computations and to avoid the quick convergence to local minima. The 
implementation results are obtained using the BP algorithm in R-software (neuralnet package). 
At a certain level, the information contained in the volatility series is assumed to be effective within one 
week (five working days). Then, the NN with five input neurons is more expected to predict the VIX series 
better. Figure 4 shows the NN structure for 𝑇 = 4. 

 

 

 

 

 

 

Figure 4. BPNN structure with 𝑇 = 4. 

4.2. Out-of-sample analysis 

We turn now to the out-of-sample analysis, where we evaluate our models' ability to forecast the VIX index 
for the period from October 25, 2013, until October 10, 2019, covering 1,500 trading days. 
The most appropriate model should provide better forecasting accuracy. In other words, the model with the 
smallest distance (i.e., error) between the actual value and the predicted value should be chosen. The error 
in a given model is controlled by referring to the most frequently used metrics, namely, the Mean Squared 
Error (MSE) and the Mean Absolute Error (MAE). The metrics are expressed as follow: 

                                                             MSE =
1

𝑁
∑ (𝑁
𝑡=1 𝑌𝑡 − 𝑌𝑡

^)2,    (11) 

                                                             MAE =
1

𝑁
∑ |𝑁
𝑡=1 𝑌𝑡 − 𝑌𝑡

^ |,                                             (12) 
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where 𝑌𝑡  and 𝑌𝑡
^  are respectively, the actual value and the predicted value of the VIX index at time 𝑡, and 𝑁 

is the out-of-sample size. 
The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) can be considered 
as well to evaluate the goodness of fit of models. They are not intended for identifying the correct model. 
Nevertheless, AIC and BIC can be used to compare different models to identify the most appropriate one. 
Table 3 reports the accuracy metrics (MSE, MAE) and the information criteria (AIC, BIC) for different NN 
architectures. In addition, we also report the change (%) in the metrics to present the enhancing forecasts 
that the combination between the MS GJR-GARCH(1,1) and the NN reached. 

Table 3. Comparison results of the two specifications. 

            

    MSE MAE AIC BIC 

T=0 

MS GJR-GARCH 0,0048 0,0518 - - 

MS GJR-GARCH NN 0,0028 0,0390 27,7586 73,3382 

Change (%) -42,4% -24,7% - - 

T=1 

MS GJR-GARCH 0,0048 0,0518 - - 

MS GJR-GARCH NN 0,0027 0,0386 31,3935 89,9958 
Change (%) -43,9% -25,5% - - 

T=2 

MS GJR-GARCH 0,0048 0,0518 - - 

MS GJR-GARCH NN 0,0027 0,0384 35,1793 106,8044 
Change (%) -44,8% -25,9% - - 

T=3 

MS GJR-GARCH 0,0048 0,0518 - - 

MS GJR-GARCH NN 0,0026 0,0380 38,9593 123,6072 
Change (%) -45,7% -26,7% - - 

T=4 

MS GJR-GARCH 0,0048 0,0518 - - 

MS GJR-GARCH NN 0,0026 0,0379 42,8083 140,4790 

Change (%) -46,3% -26,9% - - 

 

The results in Table 3 reveal that the more we increase the number of input neurons (previous periods), the 
more the prediction's accuracy increases. This result can be explained by the fact that introducing much 
historical information into our BPNN model increases the prediction accuracy. In parallel, AIC and BIC 
values show that the model complexity penalizes the goodness of fit quality; the number of parameters (i.e., 
weights) increases. 
For instance, in term of MSE and MAE, the best model is the one with five neurons (MSE= 0.0026, 
MAE= 0.0379), it reduced the MSE (MAE) by almost 46% (27%) compared to the standard MS GJR-
GARCH(1,1) with skewed GED distribution. On the other hand, the model with only one input neuron is 
chosen by AIC (≃ 27.76) and by BIC (≃ 73.38). Hence, the need to find the balance between the metrics 
(MSE, MAE) and the information criteria (AIC, BIC). 
Overall, Table 3, shows that, the combination of MS GJR-GARCH(1,1) and NN clearly outperforms the 
standard MS GJR-GARCH(1,1), whatever the number of the input neurons. It shows as well the ability in 
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enhancing the forecasting performance of MS GJR-GARCH(1,1) by at least 42% (from the MSE 
perspective). 
In this work, we recommend to use the NN architecture with five neurons, since we are motivated to 
dominate the weekly information in the volatility series. We refer to Figure 5 for an intuitive presentation 
of the selected architecture quality and prediction accuracy, to forecast the VIX index using the standard 
MS GJR-GARCH(1,1) and the combined specification of MS GJR-GARCH(1,1) and NN with five input 
neurons. 

 

 

 

 

 

 

 

 

Figure 5. Forecasts of VIX index series. 

 

 

 

 

 

 

 

 

Figure 6. Models performance during the 2008 global financial crisis period. 

 

It is also more helpful to validate the selected model from the stress test point of view. Figure 6, shows by 
evidence the ability of the MS GJR-GARCH(1,1) with NN to predict the VIX index during the 2008 global 
financial crisis. 
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5. Conclusion 

Forecasting volatility has been a critical topic for both researchers and practitioners in the financial 
community. In this work, we investigated improving volatility prediction by introducing artificial neural 
networks. This paper can be divided into twofold; the first part consists of estimating the S&P 500 returns 
volatility using the Markov switching GJR-GACRH(1,1) to account for the asymmetry in the 
positives/negatives shocks and considering the skewed GED distribution to capture the heavy-tail. The 
extracted volatility series was then fed to the BPNN algorithm to simulate forecasts to capture the 
nonlinearity between the conditional variance and the past innovations in the second part. The actual 
values of the VIX index was considered as the output of our neural network models. 
The results show clearly that the combination of the MS GJR-GARCH(1,1) and the BPNN for volatility 
forecasting is highly recommended. The selected specification's ability to describe better the market 
behavior, especially within high volatility periods, is confirmed as well.  

The paper also has a significant contribution by investing a considerable effort in highlighting the 
importance of selecting the most efficient neural network architecture as a non-parametric approach to be 
combined with the Markov switching GARCH models. In addition, studying sophisticated neural networks 
training algorithms would be dedicated to the improvement of the actual results in future research. 
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