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Abstract. In this paper, following [W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points
for mappings satisfying cyclical contractive conditions, Fixed Point Theory. 4 (2003) 79-89], we
give a fixed point result for cyclic weak @-contractions on partial metric space. A Maia type
fixed point theorem for cyclic weak ¢-contractions is also given.
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1 Introduction

Matthews [5] introduced the notion of a partial metric space as a part of the study of denota-
tional semantics of data for networks, showing that the contraction mapping principle can be
generalized to the partial metric context for applications in program verification. In [1, 3, 7, 9, 10]
we have some generalizations of the result of Matthews. In this paper, we give a fixed point
result for cyclic weak @-contractions on partial metric space. A Maia type fixed point theorem
for cyclic weak ¢-contractions is also given. Our results generalize some interesting results of
[4].

2 Preliminaries

First, we recall some definitions and some properties of partial metric spaces that can be found
in [5, 7,9, 10]. A partial metric on a nonempty set X is a function p : X x X — [0, 400][ such
that for all x,y, 2z € X:
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A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X. It is clear that, if p(x,y) = 0, then from (p;) and (p2) it follows that x = y. But if z =y,
p(z,y) may not be 0. A basic example of a partial metric space is the pair (][0, +oo[, p), where

p(z,y) = max{z,y} for all z,y € [0, +00|.


www.journalshub.com
mailto:dibari@math.unipa.it
mailto:vetro@math.unipa.it

C. Di Bari and P. Vetro 5

Each partial metric p on X generates a Ty topology 7, on X which has as a base the family
of open p-balls {By(z,¢) : x € X,e > 0}, where

By(z,e) ={y € X : p(z,y) < p(z,x) + €}
for all z € X and € > 0.

Definition 2.1. Let (X, p) be a partial metric space.
(i) A sequence {z,} in (X, p) converges to a point = € X if and only if p(z,z) = lirf p(z, xy).
n—-+0o0

(ii) A sequence {z,} in (X, p) is called a Cauchy sequence if there exists (and is finite) lm  p(zp, Tm).

n,m——+o0o
(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {z,} in X
converges, with respect to 7,, to a point z € X such that p(z,z) = lin%r P(Tn, Trm).
n,m——+00

(iv) A sequence {x,} in (X, p) is called 0-Cauchy if lim+ p(zn, zm) = 0. We say that (X, p)
n,m——+00

is 0-complete if every 0-Cauchy sequence in X converges, with respect to 7,, to a point z € X
such that p(z,z) = 0.

On the other hand, the partial metric space (Q N [0, +oo[, p), where Q denotes the set of
rational numbers and the partial metric p is given by p(z,y) = max{z,y}, provides an example
of a 0-complete partial metric space which is not complete.

It is easy to see that every closed subset of a complete partial metric space is complete.

Lemma 2.2. Let (X, p) be a partial metric space and {z,} C X. Ifx, — v € X and p(x,z) =0,
then lim p(xy,,z) =p(x,z) for all z € X.

n—-+0o00

Proof. By the triangle inequality
p(z,2) — p(Tn, x) < p(an, 2) < p(x, 2) + p(zn, x).
Letting n — 400, we obtain that p(z,,z) — p(z, 2). O
Define p(z, A) = inf{p(z,a) : a € A}. Then a € A < p(a, A) = p(a,a), where A denotes the
closure of A.
3 Fixed point results for cyclic mappings

Let X be a nonempty set, m a positive integer and 7' : X — X a mapping. By definition a finite

family Ay, ..., Ay, of nonempty subsets of X is a cyclic representation of X with respect to T if
(i) Uit 45 = X;
(ii) T(A1) C Ay, T(Ag) C As, ..., T(An) C Ar.
Let (X,p) be a partial metric space, m a positive integer, A,..., Ay, closed nonempty

subsets of X and Y = U;nzl Aj. A mapping T': Y — Y is a cyclic weak yp-contraction if
(i) Aq,..., Ay is a cyclic representation of Y with respect to T';

(ii) there exists a nondecreasing function ¢ : [0, +o0o[— [0, +oo[, with ¢(¢) > 0 for ¢ > 0 and
©(0) = 0, such that

p(Tz,Ty) < p(z,y) — ¢(p(z,y)) (3.1)

forallz € Ajandy € Aj1q, j=1,...,m, where 4,11 = A;.
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Example 3.1. Let X = [0,4+o00[ and p : X x X — R defined by p(z,y) = max{z,y}, then
(X,p) is a partial metric space. Let Aj = Ay = --- = A, = [0,2] and Y = [J;.; A;. Define

T:Y =Y byTe = forallz € Y and ¢ : [0, +00[— [0, +oc[ such that p(t) = 1% It is
easy to show that 7' is a cyclic weak ¢-contraction.

Denote with ® the family of nondecreasing function ¢ : [0, +oco[— [0, 400 continuous at
0, such that ¢(0) = 0 and ¢(t) > 0 for each ¢ > 0. Let T': X — X a mapping and set
Fiz(T)={r e X : 2 =Txzx}.

Lemma 3.2. Let (X,p) be a partial metric space, m a positive integer, Ai,..., A closed
nonempty subsets of X and Y = U;nzl A If T Y =Y is a cyclic weak p-contraction, then

Proof. Only properties (ii) and (iv) are nontrivial. First, we prove (ii). Let z,y € A; and define
tn = p(T"x, T™*1y), since T is a cyclic weak -contraction, we have

tng1 < tn — o(tn) < tp, for all n € N. (3.2)

Thus the sequence {t,} is nonincreasing and hence there exists o > 0 such that ¢, — a. We
show that &« = 0. Assume « > 0, then there exists ny such that ¢; < np(a) for all n > ng. Now,
by the monotonicity of ¢ for all n > ng, we have

tnt1 <t — p(a) <tpo1 —2¢(a) < -+ <t —np(a)

which is a contradiction and so o« = 0.
Property (iv) follows from

p(Z, Z) = p(T’Z7TZ) < p(Z, Z) - QD(p(Z, Z))
which is possible only if p(z, z) = 0. O

Lemma 3.3. Let (X,p) be a partial metric space, m a positive integer, Ay,..., Ay closed
nonempty subsets of X and Y = U;nzl Aj. If T Y =Y is a cyclic weak p-contraction, given
zo € Aj (j =1,...,m), then for every ¢ > 0 there exists ne such that p(T™xg, T™ M ay) < e
for all s >n > n..

Proof. Suppose the contrary. Then there exists € > 0 such that for each k > 1, there exist
Sk > ng > k so that

(T a0, T™™H 1) > ¢ and p(T™ Vg, T gg) < e
From

p(Tmskxo, TmnkJrll,o)
p(TmskiL‘o, Tm(sk_l)l‘o) + p(Tm(sk_l).To, Tmnk+1$0)
p(TmSk$0, Tm(sk_1)$0) + e,

3

ININ TN

by Lemma 3.2, it follows that limg_, oo p(T™ zg, T lzg) = €.
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Since, by Lemma 3.2, p(T" x40 g T +D+H 3:0) < p(TmskH g T 4250 we have

p(Tmsk o, Tmnk+1.flf[))

< p(T™* ), Tm(s’f+1):c0) +p(Tm(Sk+1)x0, Tm(”k+1)+1x0) + p(Tm(nk‘f'l)"rle’ Tmnk-i-lxo)
(T 1, Tm(5k+1)x0) +p(Tmsk+1:U0, Tmnk+2x0) + p(Tm(”k-i-l)-&-le, Tmnk-i-lxo)

< p(T™k g, Tm(s’““)xo) + p(T™k x, Tm”k+1:cg) —(e) + p(Tm("’“H)Ha:O, Tm”k+1xo).

IN

Letting & — +o00, by Lemma 3.2, we obtain
e <e—y(e),
which is a contradiction. Consequently, for every € > 0 there exists n. such that
p(T™xg, T ag) < e
for all s >n > n.. O

Lemma 3.4. Let (X,p) be a partial metric space, m a positive integer, Aq,..., Ay closed
nonempty subsets of X, Y = U;"Zl Ajand T :Y =Y a cyclic weak p-contraction. Assuming
that there exist a sequence {yn} CY such that p(yn,Tyn) — 0 as n — +oo and z € Fizx(T),
then yn, — z, as n — +o0o. Moreover, T has at most one fixed point.

Proof. Assume that the sequence {y,} doesn’t converge to z, then limsup,,_, | . p(yn,2) = a > 0.
Let N = {n: p(yn, Tyn) < ¢(5) and p(yn,z) > §}. For alln € N, we have

PWns 2) < PYns Tyn) + p(Tyn, T2) — p(TYn, Tyn)
(0%
< P(Yns 2),

which is a contradiction and so the sequence {y,} converges to z. Lemma 3.2 ensures that there
exist sequences {y,} C Y such that p(y,,Ty,) — 0 as n — +00. We show that T has at most
one fixed point. Assume the contrary and let w € Fiz(T). From

p(z,w) < p(2,yn) + P(Yn, 0) — p(Yn; Yn)
< p(z,yn) + p(Yn, w),

letting n — +o00, since p(z, yn), P(Yn, w) — 0, we get p(z,w) < 0 and so z = w. O
The following theorem of fixed point in a partial metric space is our main results.

Theorem 3.5. Let (X, p) be a partial metric space, m a positive integer, A1, ..., Ay, 0-complete
nonempty subsets of X and Y = U;”zl Aj. If T : Y = Y is a cyclic weak @-contraction with
p € @, then T has a unique fixed point z € ﬂ;nzl A

Proof. Letxzg €Y = U;”Zl Ajande > 0. Let {z,} be the Picard iteration defined by x, = T'x,,—1
for all n. By Lemmas 3.2 and 3.3, there exists n. such that

p(JUmn—&-laSUmn) < and p(meaxmn-i-l) <

DO ™
o ™

for all s > n > n.. This implies

p(xm& $mn) S p(xmsa xmn+1) + p($mn+1> xmn) - p(xmn+1a xmn+1)
< p(l‘ms, xmn+1) + p(l'anrla :L'mn) <e€
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for all s > n > n.. Consequently, limg 5,400 P(Tms, Tmn) = 0 and hence {z,,} is a 0-Cauchy
sequence. Now, also, {x,} is a 0-Cauchy sequence, by Lemma 3.2. Since Y is O-complete there
exists z € Y such that p(z,,2) — p(z,2) = 0. Also, Zpypny; — 2z for j =0,1,...,5 — 1. This
implies that z € ﬂznzl Aj, since each A; is 0-complete. We show that z = T'z. From

p(Z,TZ) (Z,l‘n+1) +p(TmeZ) _p(xn—i-lwrn—f—l)

<p
S p(Z, xn-‘rl) + p(mna Z) - SO(p(l’n, Z))

and limy, 4+ @(p(xn, 2)) = 0, letting n — 400, we get p(z,Tz) < 0. This implies that z = Tz
and hence z is a fixed point of 7. The uniqueness of the fixed point is obvious. O

Theorem 3.6. Let (X, p) be a partial metric space, m a positive integer, Ay, ..., Ay, 0-complete
nonempty subsets of X, Y = U;nzl Aj and T :'Y — Y a cyclic weak @-contraction, with
p € ®. Assuming that there exists a sequence {yn} C Y such that p(yn,y) — p(y,y) = 0 and
P(Yn+1,Tyn) — 0 as n — +o0, then for all x € Y we have that limy,_, o p(yn, T"x) = 0.

Proof. By Theorem 3.5, T' has a unique fixed point z such that p(z,z) = 0. Now, by Lemma
2.2, limp 400 P(Yn,2) = ply,2). If y # z, then p(y,z) > 0 and thus there is 7 such that
p(Yn, 2) > p(y, 2)/2 for all n > 7.

From

P(Yn+t1,2) < DYn+1, Tyn) + 0(TYn, Tz) — p(Tyn, Tyn)

p\y, =z
S p(yn-i-la Tyn) +P(yn7 Z) - 90((2))7
for all n > m, letting n — 400 we deduce that

p(y,2)
2

p(y7 Z) < p(y> Z) - 90( )7

which is possible only if p(y, z) = 0, that is if y = z. For all z € Y, by Lemmas 3.2 and 3.4, we
have
P(Un+1, T"x) < p(Ynt1,2) + p(z,T"x) — 0, as n — +o0.

O]

Now, if we choose the function ¢ : [0, +oo[— [0, +o0[ such that ¢(t) = (1 — k)t for all ¢,
where k €]0, 1[, from Theorem 3.5, we obtain the following corollary.

Corollary 3.7. ([4], Theorem 1.3). Let Ay,..., Ay, be a finite family of nonempty closed subsets
of a complete metric space (X,d), and suppose T : | J"| A; — U;~, Ai satisfies the following
conditions:

(1) T(Al) C Ao, T(AQ) C A3, ceey T(Am) C A

(ii) there exists k €]0,1[ such that d(Tz, Ty) < kd(z,y) for allxz € A,y € Aiyq for1 <i<m,
where Ami1 = Aj.

Then T has a unique fized point.

Denote with ¥ the family of functions v : [0, +-0c0[— [0, +00[ such that the function
¢ : [0,4+00[— [0,400[ defined by ¢(t) =t — ¢ (t) belongs to ®. From Theorem 3.5, we obtain
the following result of Boyd-Wong type [2].

Corollary 3.8. Let Aq,..., Ay be a finite family of nonempty closed subsets of a complete
metric space (X, d), and suppose T : | J;~, Ai — U;~, Ai satisfies the following conditions:

8
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(i) T(Al) C AQ, T(AQ) C Ag, ceey T(Am) C A1

(ii) there exists i € U such that d(Tx,Ty) < Y(d(z,y)) forallz € A,y € Airq forl <i<m,
where Ami1 = Aj.

Then T has a unique fized point.

Maia type result regarding cyclic weak @-contractions with ¢ € ® is given in the following
theorem.

Theorem 3.9. Let X be a nonempty set, p and p two partial metrics on X, m a positive integer,
Air,..., Ay closed nonempty subsets of (X,p), Y =L, Aj and T:Y — Y. Assuming that

(i) A1,...,An is a cyclic representation of Y with respect to T';
(i) p(a, > < pla,y), for any z,y € Y;
(iii) (Y,p) is a O-complete partial metric space;
(iv) T ( p) — (Y, p) is continuous;
(v) T:(Y,p) — (Y,p) is a cyclic weak @-contraction with ¢ € ®.

Then T has a unique fixed point.
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