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Abstract. The hydrodynamic interactions between particles in the vicinity of a wall in creep-
ing flow are calculated with the boundary elements method. The mesh refinement technique
proposed here is adapting to large local stress gradients. It is appropriate to describe hydro-
dynamic interactions in complex geometries and in particular in lubrication regions. Results
are validated against classical results for a sphere and wall. As examples of application, flow
trajectories are presented for various configurations involving one or several spheres and prolate
spheroids either held fixed in a shear flow or moving in a fluid at rest in the vicinity of a plane
wall.
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1 Introduction

The problem of solid particles in the flow of a viscous fluid along a solid plane wall is considered
here. The Reynolds number is assumed to be low and the creeping flow equations to apply.
The flow field is obtained with the classical boundary element method (see e.g. [6]). There has
been various ways to mesh particles for this problem (see e.g. [7]). Here, interactions between
particles and the wall at the scale of particles are refined by using a novel adaptative mesh
technique based on the intensity of the local surface stress.

The solution for several translating and rotating particles in a shear flow along a wall is
obtained as the sum of elementary problems: (i) each particle in turn is either translating or
rotating and the other particles are fixed in a fluid at rest; (ii) all particles are fixed in an ambient
shear flow. Our peculiar adaptative mesh technique is well adapted to take into account the
multiple hydrodynamic interactions in these complex geometries.

The boundary element method integral equation is recalled in section 2. Our adaptative
mesh then is presented in section 3. Finally results are presented in section 5.
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2 Boundary element method integral equation

The classical integral formulation (2.1) provides a duality relationship between the fluid velocity
v at a point x and the stress q at a point y on the spheres surface S:

v ( x ) =

∫
S

G ( x , y ) q ( y ) dSy x ∈ S (2.1)

The problem consists in finding the stress when the fluid velocity is prescribed on surfaces. The
fluid velocity then is obtained at any point x in the fluid domain using the same formula (2.1).
The force and torque on each sphere are obtained from the calculated stresses on that sphere.
Since solid particles are considered here, the kernel only consists of a single layer potential which
appears as the Green function G . That is, the double layer potential vanishes ([9]).

The no-slip on the plane wall is accounted for by using the Green function G calculated by
[1] for a Stokeslet in the vicinity of a wall, as was done e.g. by [8].

Eq.(2.1) is discretized by constructing Nt triangles on each of the Np particles and applying
the boundary condition for the fluid velocity at the center of each triangle. Since the velocity has
three components, this provides thus a linear system of 3× np ×Nt equations for the unknown
stresses. Thus, the three components of the stress may be obtained at the center of each triangle.
The way to construct the triangles is explained in the next section.

3 Adaptative mesh depending on local stress

At the first level of refinement, the particles surfaces are first meshed starting with an octahedron,
as in [6].

The next refinement levels consist classically in dividing each triangle into four elementary

triangles. Thus at the rth refinement level, there are Nt = 8× 4r triangles on each particle. A
drawback is that the size of the algebraic system to be solved may then become unnecessary
large and its condition number may also increase.

A local refinement technique is therefore proposed here. Starting from a given refinement
level, the sequence for refining the mesh consists first in calculating the stresses on each trian-
gular element. Triangles then are distributed in classes depending on the value of the stress.
Triangles then are renumbered depending on their class of stress, as schematically shown in Fig.
1.
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Figure 1 Values of the stress in the various classes, versus the triangle number (after
renumbering).

From this ordering, areas with the highest gradient of surface stresses are selected as regions
where triangles have to be divided into four elementary triangles. Typically, the three largest
values of δ are selected (see Fig. 1) and the triangles of the corresponding classes are refined.
This process may be repeated to decrease the values of the δ’s.

This scheme may be repeated, starting from the preceding level of refinement, as many times
as necessary to a achieve a prescribed tolerance.

As an example, the mesh refinement due to wall effect is presented for a single sphere located
at various distances from a wall in Fig. 2. When the sphere is closer to the wall, the stresses are
larger because of lubrication and therefore the mesh is refined accordingly.

(A) (B) (C) (D)

Figure 2 Mesh refinement of a sphere in the region of high stresses, for dimensionless
gaps of 0.001 (A), 0.006 (B), 0.02 (C), 0.1 (D).

Results for the drag force obtained with a standard mesh at levels 2, 3 and an adaptative
mesh starting from level 2 are compared with the exact results of [10] in Fig. 3. The force
is here normalized by the Stokes drag force on a sphere translating with the same velocity in
unbounded fluid. It is plotted versus the dimensionless gap L − 1, where L denotes the sphere
center to wall distance normalized by the sphere radius. The advantage of our adaptative mesh
is made clear here, since our solution is closer to the exact formula for small gaps L − 1, a
situation when lubrication results in large stress gradients.
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Figure 3 Normalized drag force f tzz on a sphere settling towards a plane versus the
dimensionless gap L − 1. The exact solution of [10] (a) is compared with the BEM
solution using: (b) an uniform mesh at level 2; (c) an uniform mesh at level 3; (d) an
adaptative mesh starting from the uniform mesh at level 2.

4 Validation

The technique is further validated by considering asymmetrical flows for a sphere close to a wall.
Our BEM results are compared with the exact results obtained by [11] using the bispherical
coordinates technique (BIS). The notation here is like in that paper. Let a be the sphere radius.
Consider a rectangular system (x, y, z), the wall being at z = 0.

For a sphere translating with velocity Ux along the wall (say along x) in a fluid at rest, the
drag force F tx is along x and there is also a torque along y:

F tx = −6πaµf txxUx

Cty = 8πa2µ ctyxUx

The superscript (t) denotes translation. In the friction factors f , c, the first subscript denotes
the direction of the force or torque and the second subscript denotes the direction of the motion.
The results for the friction factors are displayed in Figs. 4. The abscissa L − 1 in these figures
denotes the dimensionless gap between the sphere and the wall, L = `/a being the distance
between the sphere center and wall.
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Figure 4 Normalized drag (left) and torque (right) on a sphere translating along a wall
versus the dimensionless gap Z − 1 between the sphere and the wall. Our results using
BEM and exact results using BIS.

A sphere rotating along y with a velocity Ωy is submitted to a torque along y and also to a
force along x:

Cry = −8πa3µ cryyΩy

F rx = 6πa2µf rxyΩy

The superscript (r) denotes rotation. The results for the friction factors are in Figs. 5.
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Figure 5 Same as in Fig.4 but for a sphere rotating along an axis parallel to the wall.
Consider then a sphere held fixed in a shear flow with velocity

v∞ = κz e 1 (4.1)

where κ is the shear rate and e 1 is the unit vector along x. There are a force and a torque on
the sphere:

F κx = 6πaµfκxxκ`

Cκy = 4πa3µcκyxκ
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The superscript (κ) denotes the shear flow. Results for the friction factors are in Fig. 6.

10
−2

10
−1

10
0

10
1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
(BIS)
(BEM)

10
−2

10
−1

10
0

10
1

0.94

0.95

0.96

0.97

0.98

0.99

1

(BIS)
(BEM)

Figure 6 Same as in Fig. 4 but for a sphere held fixed in a shear flow along a wall.

5 Results

This technique is well adapted to treat any number of particles and complex geometries.

5.1 Fluid trajectories around spherical particles

Some typical examples are presented for the fluid trajectories around spherical particles. Two
equal spheres are considered in Fig. 7 and 8 and three equal spheres in Fig. 9 and 10.

In Fig. 7, two equal spheres are fixed in a shear flow defined in Eq. (4.1). In configuration
(A) the line of centers is parallel to the wall; spheres are centered at positions (normalized with
their radius) (0,−3, 3) and (0, 3, 3). In configuration (B), it is normal to the wall, spheres being
centered at (0, 0, 3) and (0, 0, 6).
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Figure 7 Fluid trajectories around two equal spherical particles fixed in a shear flow
parallel to the wall.
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Figure 8 Fluid trajectories around two equal spherical particles moving with equal
velocities in the direction normal to the wall.

In Fig. 8, two equal spheres are moving normal to the wall with equal velocities in a fluid
at rest. In configuration (A) spheres are centered at positions (normalized with their radius)
(0,−1.5, 3) and (0, 1.5, 3). In configuration (B), they are centered at (0, 0, 3) and (0, 0, 6). For
these flow fields, it is observed that the Stokeslets inside the particle create large recirculating
regions.
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Figure 9 Fluid trajectories around three particles fixed in a shear flow. The centers of
the spheres are: (A) aligned parallel to the wall; (B) aligned normal to the wall; (C) on
a the summits of a triangle. The coordinates of sphere centers are given in the text.

Fig. 9 shows the fluid trajectories around three spherical particles fixed in a shear flow
defined in Eq. (4.1). The spheres centers are located in the (x, z) plane. In configuration (A)
the line of centers is parallel to the wall, the centers being at (0,−3, 3), (0, 0, 3), (0, 3, 3), in
configuration (B), it is normal to the wall the centers being at (0, 0, 3), (0, 0, 6), (0, 3, 9) and
in configuration (C) spheres are centered at the summits of a triangle, the centers being at
(0,−1.5, 3), (0, 0, 3(1 +

√
3/2)), (0, 1.5, 3)

Fig. 10 shows fluid trajectories around three spherical particles moving normally to a wall
with the same velocity. The configurations are the same as in Fig. 9.
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Figure 10 Fluid trajectories around three spherical particles moving normally to a wall
with identical velocities. Same configurations as in Fig. 9.

For all these cases, values of the normalized forces acting on the spheres were calculated and
are available from the authors on request.

5.2 A prolate spheroid in a shear flow near a wall

Consider a prolate spheroid held fixed in a shear flow defined in Eq. (4.1), the wall being as
above at z = 0.

The case of a spheroid far from the wall is considered first. The particle symmetry axis is
located in the plane of the shear flow (the (x, z) plane), and is along the x = z line. Our results
for the components of the drag along the x and z axes are presented in table 5.2 for various
values of the ratio a/c of the semi-minor to the semi-major axes. They are compared with the
results of [12] for the same configuration and with the results of [13] for the limit case of a
spheroid in unbounded fluid. All results are in good agreement. Note that in our case, less than
512 triangles were used whereas [12] used 1200 triangles.

F κx /µcκz
a/c (a) (b) (c)

0.1 6.088 6.055 6.104
0.2 7.834 7.798 7.841
0.35 10.079 10.027 10.081
0.5 12.172 12.105 12.171
0.7 14.872 14.789 14.870
0.8 16.204 16.113 16.201
0.9 17.529 17.432 17.527
0.95 18.190 18.089 18.188
0.990 18.718 18.614 18.716
0.9999 18.848 18.744 18.846
0.999999 18.850 18.747 18.848

F κz /µcκz
a/c (a) (b) (c)

0.1 -1.098 -1.088 -1.109
0.2 -1.105 -1.106 -1.112
0.35 -0.999 -1.002 -1.004
0.5 -0.825 -0.827 -0.827
0.7 -0.529 -0.530 -0.529
0.8 -0.362 -0.363 -0.362
0.9 -0.185 -0.186 -0.185
0.95 -0.094 -0.095 -0.093
0.990 -0.019 -0.021 -0.019
0.9999 -0.000 -0.002 -0.000
0.999999 -0.000 -0.000 -0.000

Table 1 A prolate spheroid far from the wall z = 0 in a shear flow with velocity
v ∞ = κz e 1. Dimensionless drag force along x (top) and along z (bottom). (a) Analytical
results of [13] for a sphere in an unbounded shear flow, (b) results of [12] (c) our results.
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5.3 A prolate spheroid moving perpendicularly to a wall

Consider a prolate spheroid with a/c = 1/3 moving perpendicularly to a wall in a fluid at rest.
The semi-major axis (with dimension c) is parallel to the wall. The drag force on the spheroid
is normalized with the drag on a sphere of the same volume, that is the volume 4

3πa
2c, when

moving in unbounded fluid. Results for the dimensionless drag force are presented in Fig. 11
versus the dimensionless gap (L− 1 after normalizing by a) between the spheroid and the wall.
They are compared with those for the sphere of the same volume.

It is observed that because of the flatness of the spheroid in the near wall region, the drag
is much larger than that on the sphere. Our meshing technique is well adapted to describe this
situation.
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Figure 11 Normalized force exerted on a prolate spheroid moving perpendicularly to
a wall (E) compared with the normalized drag on a sphere (S) with the same center and
same volume.

5.4 Interaction between two prolate spheroids near a wall

Consider now two identical prolate spheroids with a/c = 1/3 moving near a wall z = 0 in a
fluid at rest. Lengths are normalized by a. In a dimensionless coordinate system (X,Y, Z), the
equations of the two spheroids are:

(X ± 3)2 +
Y 2

9
+ (Z − L)2 = 1

As above, the drag forces on the spheroids are normalized with the drag on a sphere of the same
volume when moving in unbounded fluid. Results for the dimensionless drag forces are shown
in table 2 for the cases when the spheroids are both translating normally to the wall (F tzz) and
along the wall in the direction of their semi-major axis (F tyy).
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f tzz f tyy

L− 1 (1) (2) (1) (2)

0.01 114.58 114.58 2.280 2.280
0.02 30.866 30.866 1.977 1.977
0.04 14.644 14.644 1.763 1.763
0.06 10.653 10.653 1.641 1.641
0.08 8.602 8.602 1.555 1.555
0.1 7.280 7.280 1.487 1.487
0.5 2.233 2.233 1.023 1.023
1 1.498 1.498 0.864 0.864
5 0.857 0.857 0.646 0.646
10 0.742 0.742 0.606 0.606
50 0.640 0.640 0.568 0.568

Table 2 Normalized drag forces on two spheroids moving with the same velocity in a
fluid at rest, normally to a wall (left) and parallel to a wall (right).

6 Fluid trajectories around spheroidal particles

Fluid trajectories around equal prolate spheroids with the same aspect ratio as above are pre-
sented in Fig. 12. The particles are held fixed in a shear flow.
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Figure 12 Fluid trajectories around spheroidal particles fixed in a shear flow: two
particles with centers at (−2, 0, 1.1) and (2, 0, 1.1) for (A); (−1.6, 0, 1.1) and (1.6, 0, 1.1)
for (B); three particles centered at (−1.6, 0, 1.1), (1.6, 0, 1.1), (0, 0, 3) for (C).
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7 Conclusions

The BEM technique is applied with a mesh refinement consisting in dividing triangles in the
areas of large stress gradient. This technique is appropriate for configurations where lubrication
effects are important. The results of the technique are compared to various earlier results for
validation. As examples of application, flow trajectories are presented for various configurations
involving one or several spheres and prolate spheroids, the particles being either fixed in a shear
flow near a wall or moving normally to the wall in a fluid at rest.
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