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Asymptotic distributions of BJE in linear

regression models with mixed

interval–censored data ∗

Cuixian Chen †

Abstract

We consider the estimation problem with mixed interval–censored (MIC) data

under the multiple linear regression model. The Buckley–James(1979) type of esti-

mator (BJE) has been extended from right–censored data to interval-censored data

by Rabinowitz et. al. (1995). We establish that the BJE has an asymptotic normal

distribution under certain discrete regularity conditions. The real data examples of

discrete data are given and various non-normal asymptotic distributions of the BJE

are also presented when the regularity conditions are violated.

1. Introduction This article provides the asymptotic properties of the Buckley–James

(1979) estimator under certain discrete regularity conditions and under the multiple linear

regression model with MIC data (see Yu, Wong and Li (2001)). This study is motivated by

the data analysis of the marriage data set with covariates from the National Longitudinal

Survey of Youth (NLSY, 1979-1998). The variables of interests in this data set are the

first marriage ages of a couple. For each variable, there are exact observations, as well as

right-censored (RC), left-censored (LC) and strictly interval-censored (SIC) observations.

Since all records are discretized, the data are discrete.

For univariate interval-censored data, Groeneboom & Wellner (1992) proposed a case 2

interval censorship model. The main assumption in the model is that there are exactly two
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follow-ups for each individual. Schick and Yu (2000) pointed out that the assumption in the

case 2 model is not realistic and proposed a mixed case interval censorship model, which

allows the number of follow-ups to be random. These models do not allow uncensored

observations. Yu, Wong and Li (2001) extended the mixed case model to a MIC model,

which allows RC, LC, SIC and uncensored observations and established strong consistency

and asymptotic normality of the self-consistent estimator (SCE) under mild conditions.

Linear regression models with censored data were first studied in 1970’s (see Miller

(1981)). Miller (1976) and Buckley and James (1979) proposed two extensions of the least

squares estimator to the case of univariate right censorship regression model. It turns out

that the Buckley-James estimator is an optimal extension of the least squares estimator

under certain smoothness regularity conditions (see Lai and Ying (1991)). The Buckley-

James type of estimator (BJE) has been extended from RC data to IC data by Rabinowitz

et. al. (1995). Li and Pu (1999) considered generalization of the BJE for IC data that

contained exact observations. However, both papers did not give proofs of the asymptotic

properties of the BJE under interval censoring.

Kong and Yu (2006) showed that the BJE has an asymptotic normal distributions un-

der certain discontinuity assumptions and under the univariate right censorship regression

model. The BJE for the linear regression model with MIC data makes use of the SCE of

the underlying error distribution. It is an interesting question whether the BJE still has

asymptotic normality under certain discontinuity assumptions on the error distribution and

under our model set-ups. This note settles the problem.

The paper is organized as follows. A multiple mixed interval-censorship linear regression

model and notations are introduced in section 2. Main results are presented in section 3.

It is shown that under certain regularity conditions, the BJE has an asymptotic normal

distribution. We also present examples that the BJE has different asymptotic distributions

when the regularity conditions are violated. The proofs of lemmas are relegated in section

4. The proofs of the statements in the examples are given in a technical report (Chen

(2006)), as they are elementary and tedious.

2. Model description. Consider a multiple linear regression model:

X = β′Z + ε,

where Z is a vector of p-dimensional covariate, X a monotonically transformed failure time

from a known transformation and ε has an unknown distribution function F0. Moreover,
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assume that X is subject to mixed interval censoring, that is, a mixture of various case k

models and a right censorship model. Let K be a non-negative random integer. If K = 0,

then X is subject to a right censorship model with censoring variable Y0,0. If K > 0, then

on the event {K = k}, X is subject to a case k interval censorship model with random

variables {Yk,j : j = 1, · · · , k} such that Yk,1 < · · · < Yk,k. Denote

Y =




Y0,0

Y1,1

Y2,1 Y2,2

...
...

. . .

Yk,1 Yk,2 · · · Yk,k

...
...

...
...

. . .




.

For convenience, let Yk,0 = −∞ and Yk,k+1 = ∞ for k ≥ 1.

We assume that on the event {K = k}, the observable extended random vector is (L,R),

where

(L,R) =





(X,X) if k = 0 and X ≤ Y0,0,

(Y0,0,∞) if k = 0and X > Y0,0,

(Yk,j−1, Yk,j) if k ≥ 1, Yk,j−1 < X ≤ Yk,j, j = 1, ...., k + 1.

Note that L and R are not ordinary random variables as they may take ±∞.

We make use of the following assumptions throughout the paper.

A1 ε and (Z, K,Y) are independent.

A2 (ε, Z,K, Y) takes on finitely many values.

Let (Xi,Zi, εi, Li, Ri), i = 1, · · · , n be i.i.d. copies of (X,Z, ε, L, R). (Li, Ri,Zi)s are

called MIC data. Denote the observed intervals by

Ii = Ii(b) =

{
(Li − b′Zi, Ri − b′Zi] if Li < Ri,

[Li − b′Zi, Ri − b′Zi] if Li = Ri.

The BJE is a zero-crossing of the modified score function H(b),

H(b) =
n∑

i=1

(Zi − Z)(X̂∗
i − b′Zi)
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where

X̂∗
i = Xiδi + (1− δi)

(
b′Zi +

∑
t∈Ii(b)

tf̂b(t)
∑

t∈Ii(b)
f̂b(t)

)
, (2.1)

δi is an indicator function that Xi is exact, f̂b is a generalized MLE (GMLE) of the density

function of ε based on the data Ii(b)s and a zero-crossing of H is a point v ∈ Rp such that

for each c > 0, there exists a point b− with coordinate b−j ∈ (vj− c, vj] for each j and there

exists a point b+ with coordinate b+
j ∈ [vj, vj + c) for each j satisfying Hj(b

+)Hj(b
−) ≤ 0

for each j, where v′ = (v1, ..., vp) and H(b) = (H1(b), ..., Hp(b))′. Moreover, the GMLE

maximizes the generalized likelihood function, Λn.

Define innermost intervals Aj, j = 1, · · · , m induced by I1, · · · , In to be all the

disjoint intervals which are non-empty intersections of these Iis such that

Aj ∩ Ii = ∅ or Aj for any i and j.

Peto (1973) showed that the GMLE of F0 assigns weights, say s1, · · · ,sm, to the cor-

responding innermost intervals A1, · · · , Am only. Using an argument similar to Hanley

and Parnes (1983), it can be shown that the GMLE of F0(x) must assign all the probabil-

ity masses s1, ..., sm to the sets A1, ..., Am. Thus the generalized likelihood function is as

following:

Λn =
n∏

i=1

µF (Ii) =
n∏

i=1

[
m∑

j=1

1(Aj ⊂ Ii)sj] =
n∏

i=1

[
m∑

j=1

ηijsj]

where 1(A) is an indicator function of an event A, ηij = 1(Aj ⊂ Ii), s (= (s1, ..., sm−1)
′)

∈ Ds, Ds = {s; si ≥ 0, s1 + · · ·+ sm−1 ≤ 1} and sm = 1− s1 − · · · − sm−1.

We make use of the following notations: let T2i−1(b) and T2i(b) be the endpoints of the

interval Ii(b), i.e., T2i−1(b) = Li−b′Zi and T2i(b) = Ri−b′Zi. Take ξ2i−1 = 1 and ξ2i = 1

if T2i−1(b) = T2i(b); Otherwise, define ξ2i−1 = 0 and ξ2i = 0, i = 1, 2, · · · , n. Let Mk(b)

be the right endpoint of the k-th innermost interval, k = 1, · · · , m. Obviously, for each k,

Mk(b) = Rik − b′Zik for some ik ∈ {1, · · · , n}. Denote

Rs
k = Rik and Zs

k = Zik . (2.2)

Since a GMLE F̂ (t) of F0(t) is not uniquely defined for t in an open innermost interval

(see Peto (1973) and Turnbull (1976)), we make use of the convention that we only assign
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probability masses to the right endpoints of innermost intervals, except perhaps at the

innermost interval Am with sup{Am} = ∞. Then

X̂∗
i = Xiδi + (1− δi)

(
b′Zi +

∑m
j=1 ηij ŝjMj(b)∑m

k=1 ηikŝk

)

= Xiδi + (1− δi)

(
b′Zi +

∑m
j=1 ηij ŝj(R

s
j − b′Zs

j)∑m
k=1 ηikŝk

)
(see(2.2))

= Xiδi + (1− δi)

(∑m
j=1 ηij ŝjR

s
j∑m

k=1 ηikŝk

)
− (1− δi)

(∑m
j=1 ηij ŝj(Z

s
j)
′

∑m
k=1 ηikŝk

− Zi
′
)

b.

Therefore,

H(b) =
n∑

i=1

(Zi − Z)(X̂∗
i − Zi

′b) = A(b)− B(b)b, (2.3)

where A(b) =
∑n

i=1Ai(b) and B(b) =
∑n

i=1 Bi(b),

Ai(b) = (Zi − Z)

(
Xiδi + (1− δi)

∑m
j=1 ηij ŝjR

s
j∑m

k=1 ηikŝk

)
, (2.4)

Bi(b) = (Zi − Z)

(
Zi

′
δi + (1− δi)

∑m
j=1 ηij ŝj(Z

s
j)
′

∑m
k=1 ηikŝk

)
. (2.5)

Remark 1 Arrange those m distinct innermost intervals which are induced by the n

Ii(b)s in increasing order. If the largest observation (L(n)(b), R(n)(b)) is right censored,

then the largest innermost interval will also be right censored. In the latter case, we use

(L(n)(b), L(n)(b) + 1] to replace the role of the innermost interval (L(n)(b),∞). Denote

F ∗
0 (t) =





F0(t) if t ≤ τ ,

F0(τ) if t ∈ (τ, τ + 1),

1 if t ≥ τ + 1,

τ = inf{t : P{V (β) ≤ t} = 1}, where V (β) = L− β′Z .

Without loss of generality (WLOG), we assume F ∗
0 = F0, otherwise, replace F0 by F ∗

0 .

It is well known that the GMLE of F0 only depends on the ranks of 2n observations

Tj(b)s. Note that the ranks of these Tj(b)s will only change at the solutions of each pair

of linearly independent equations of a form of

Ti(b) = Tj(b), where Zi 6= Zj. (2.6)
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The latter equations are of forms:

Li − b′Zi = Lj − b′Zj, Li − b′Zi = Rj − b′Zj or Ri − b′Zi = Rj − b′Zj ,

where Li, Ri, Lj and Rj are finite, i 6= j and Zi 6= Zj.

Since there are at most (n(2n−1)−n) equations of the form of (2.6), and the solutions to

these equations are hyperplanes in Rp, there are at most (n(2n−1)−n) distinct hyperplanes

which partition Rp into finitely many disjoint regions, say O1, · · · , Om0 .

For example, if p = 2, for each pair of linearly independent equations of the form of

(2.6), there is a unique solution, which represents the intersection of two lines in R2. Let

B1 be the collection of all such distinct solutions. Each line is further partitioned into

finitely many disjoint open line segments by the points belonging to both B1 and that

line. Denote the collection of all such open line segments in all distinct lines by B2. Take

C1 = {O : O = {b},b ∈ B1}. Notice that C1 and B2 are disjoint. These points in B1 and

the open line segments in B2 will further partition R2 \ {∪b∈B1
{b} ∪∪O∈B2O} into finitely

many disjoint open regions, which is denoted by B3. Then an Oi has one of the forms as

follows:

1. {b} where b ∈ B1 ;

2. an open line segment that belongs to B2;

3. an open region in R2 that belongs to B3.

Take C2 = B2 ∪ B3. We shall prove in section 4 the following statement.

Lemma 1 Given Oj ∈ C2,

1. for each i, the rank of Ti(b) remains the same if b ∈ Oj;

2. for each k, the probability mass ŝk assigned to the k-th innermost interval is constant

in b on Oj;

3. H(·) is linear (in b) on Oj.

3. Main results. We establish in this section the asymptotic normality of the BJE under

certain discrete regularity conditions. We also show that if these conditions are violated,

then the BJE has various non-normal asymptotic distributions.
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In order to establish the asymptotic properties of the BJE, we further assume that:

A3 P{δ1 = · · · = δp+1 = 1, rank(Z1 − Zp+1, ...,Zp − Zp+1) = p} > 0.

A4 P{ε1 = Y ∗
2 − β′Z2} = 0 and P{Y ∗

3 − β′Z3 = Y ∗
4 − β′Z4 and Y ∗

3 6= Y ∗
4 } = 0, where

(εi,Zi, Ki,Yi)s are i.i.d. from (ε,Z, K,Y) and Y ∗
i ∈ {Yi,0,0, Yi,Ki,1, Yi,Ki,2, · · · , Yi,Ki,Ki

},
i = 2, 3, 4.

A3 is an identifiability condition, which is introduced in Kong and Yu (2006). A4 is a

modification of A4 in Kong and Yu (2006).

Lemma 2 Under assumptions A1 through A4, given an ω ∈ Ω, there exists a neighborhood

of β, say O(β, c) = {b : ‖ b− β ‖< c} such that (Ai(b),Bi(b)) is constant in b for each i,

where Ω is the sample space.

Lemma 3 If assumptions A1 through A4 hold, with probability 1 (w.p.1), b̂ = (B(b))−1A(b)

is a BJE if n is large enough.

For the later development, we need to assume

A5 µF0(Aj(β)) > 0 for each innermost interval Aj(β).

A5 is a modification of assumption 3 in Yu et. al. (1998) under the multiple regression

model.

Theorem 1 Suppose that A1 through A4 hold, then the BJE β̂n = (B(b))−1A(b) is con-

sistent. Moreover, if A5 holds, then the BJE is asymptotically normally distributed.

The proof of the theorem is given in section 4. We present an example as follows

which satisfies A1-A5 and thus the BJE does have an asymptotic normal distribution. For

simplicity, we consider p = 1.

Example 1 Let β = 1. Suppose that (1) ε is a random variable which takes values 0 and

2 w.p. 0.5 respectively, Z ∼ Bin(1, 1/2), K is a random integer which takes values 0 and

2 w.p. 0.5 respectively, Y0,0 ≡ 1.5, Y2,1 ≡ 0.3, Y2,2 ≡ 1.4, Y = {Y0,0, Y2,1, Y2,2}; (2) ε, Z, Y

are independent. It is easy to check that A1 through A5 hold in this example. It is shown

in the technical report (Chen (2006)) that

β̂n is asymptotically normal. (3.1)

Assumption A4 is critical in the proof of Theorem 1. Notice that A4 is always true if

(ε, Y, Z) is a continuous random vector. The condition that µF0(Aj(β)) > 0 for j = 1,
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· · · , m is a sufficient condition for the asymptotic normality of the SCE of the probability

masses assigned to each innermost interval Aj(β) (see Yu et. al. (1998)). We shall establish

an example in the following that if assumptions A5 is violated, the BJE may still has an

asymptotic normal distribution under assumptions A1 through A4.

Example 2 Let β = 1. Suppose that (1) ε and Z ∼ Bin(1, 1/2), K is a random integer

which takes values 0 and 2 w.p. 0.5 respectively, Y0,0 ≡ 1.5, Y2,1 ≡ 0.3, Y2,2 ≡ 1.8, Y =

{Y0,0, Y2,1, Y2,2}; (2) ε, Z, Y are independent. It is shown in the technical report (Chen

(2006)) that

β̂n is asymptotically normal. (3.2)

We shall establish examples in the following such that if A3 or A4 do not hold, then the

BJE may have various non-normal asymptotic distributions if F0 is not continuous. The

proof of these examples are given in the technical report (Chen (2006)).

Example 3 Let β = 1. Suppose that (1) ε and Z ∼ Bin(1, 1/2), K is a random integer

which takes values 0 and 2 w.p. 0.5 respectively, Y0,0 ≡ 0.5, Y2,1 ≡ 0.5, Y2,2 ≡ 1, Y =

{Y0,0, Y2,1, Y2,2}; (2) ε, Z, Y are independent. In this case, it can be shown that if n is

large,

BJE =





0.5 w.p. 0.5,

1 w.p. 0.5.
(3.3)

Thus, the BJE is not consistent and not asymptotically normally distributed.

Example 3 justifies the identifiability condition A3 for multiple linear regression model

with MIC data.

Example 4 Let β = 1. Suppose that (1) ε and Z ∼ Bin(1, 1/2), K is a random integer

which takes values 0 and 2 w.p. 0.5 respectively, Y0,0 ≡ 1.5, Y2,1 ≡ 0.5, Y2,2 ≡ 1, Y =

{Y0,0, Y2,1, Y2,2}; (2) ε, Z, Y are independent. It can be shown that the BJE β̂n is consistent

and √
n(β̂n − β)

D−→ min{W, 0}, (3.4)

where W ∼ N(0, σ2) and σ > 0.

In other words, the BJE does not have an asymptotic normal distribution.

The main character in Example 4 is that

Y2,2 − βZ = ε if (Y2,2, Z, ε) = (1, 0, 1) or (Y2,2, Z, ε) = (1, 1, 0),
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Y0,0 − βZ1 = Y2,1 − βZ2 if (Y0,0, Z1, Y2,1, Z2) = (1.5, 1, 0.5, 0).

It can be rewritten as:

P{ε1 = Y ∗
2 − β′Z2} > 0 or P{Y ∗

3 − β′Z3 = Y ∗
4 − β′Z4 and Y ∗

3 6= Y ∗
4 } > 0

where Y ∗
i ∈ {Yi,0,0, Yi,2,1, Yi,2,2}, i = 2, 3, 4, and (εi,Zi, Yi,0,0, Yi,2,1, Yi,2,2)s are i.i.d.

Example 4 justifies that condition A4 is needed for asymptotic normality of the BJE.

4. Proofs of lemmas and the theorem.

Proof of Lemma 1 (1) Given b, it is well known that F̂b only depends on the ranks of

2n Tj(b)s(see Turnbull (1974)). That is, F̂b1
(Tj(b1)) = F̂b2

(Tj(b2)) if the rank of Tj(b1)

is the same as the rank of Tj(b2) for each j.

Note that the ranks of these Tj(b)s will only change at the solution of each pair of

linearly independent equations of the form of (2.6). The solutions to these equations

together with the hyperplanes corresponding to these equations partition Rp into O1, · · · ,
Om0 , so that for each b ∈ Ok, Ok ∈ C2, the ranks of the 2n Ti(b)s do not change.

(2) Consequently, F̂b(Tj(b)) is constant on each regionOk, Ok ∈ C2, that is, F̂b1
(Tj(b1)) =

F̂b2
(Tj(b2)) for b1,b2 ∈ Ok, Ok ∈ C2, for j = 1, · · · , 2n and k = 1, · · · , m0. That is, the

probability mass ŝi assigned to ith innermost interval is constant in b on each Ok, Ok ∈ C2.

(3) From (2.4) and (2.5), it is obvious that Ai(b) and Bi(b) only depend on the proba-

bility masses assigned to innermost intervals and the right endpoints of innermost intervals,

Mk(b) = Rs
k − b′Zs

k (see(2.2)). They are constant functions of b on Oj, Oj ∈ C2, by (2).

Therefore, by the definition of H(b), it is a linear function of b on Oj, Oj ∈ C2, as Ai(b)

and Bi(b) are constant functions of b.

Proof of Lemma 2 Hereafter, we fix an ω ∈ Ω. Under assumption A4, it is easy to verify

that b = β is not a solution to any pair of linearly independent equations of a form of

Ti(b) = Tj(b), ξi · ξj = 0 and Zi 6= Zj. (4.1)

Notice that by assumption A2, there are only finitely many equations of the form (4.1)

whose solutions are hyperplanes in Rp. Thus there are finitely many distinct hyperplanes,

which will not change as long as n is large enough. All such distinct hyperplanes partition

Rp into finitely many disjoint regions, say O∗
1, · · · , O∗

m1
. For each i, it satisfies:

O∗
i =

⋃
j∈Ei

Oj, where Ei = {j : Oj ⊂ O∗
i }.
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Since β does not belong to the hyperplanes obtained by solving (4.1), the distance from

β to each of such hyperplanes is positive. So there exists a neighborhood of β, say O(β, c),

with c > 0 such that:

O(β, c) ⊂ O∗
k0

=
⋃

j∈Ek0

Oj, for some 1 ≤ k0 ≤ m1;

For any b1 ∈ O(β, c) ∩ O with arbitrary O ∈ C2, and for any i and j, with Zi 6= Zj,

it satisfies Ti(b1) 6= Tj(b1), which means that Ti(b)s do not change their ranks at b1.

Furthermore, for any b2 ∈ O(β, c) ∩ B1, there may exist i0 and j0 such that Ti0(b2) =

Tj0(b2), ξi0 · ξj0 = 1, and Zi0 6= Zj0 , which means that only those exact observations may

tie together at b2. Therefore, for any b ∈ O(β, c), there is no non-singleton observation

between any two exact observations. Moreover, only those exact observations Ti(b) may

change the ranks.

For each b ∈ O(β, c), let ψj = 1(Aj is a singleton), Gi = Gi(b) = {j : Aj(b) ⊂ Ii(b)}
, then we have:

∑
j∈Gi

ηij ŝjMj(b) =
∑
j∈Gi

ηij[ψj + (1− ψj)]ŝjMj(b)

=
∑
j∈Gi

ηijψj ŝj

∑n
k=1 1(T2k(b) = Mj(b), ξk = 1)T2k(b)∑n

h=1 1(T2h(b) = Mj(b), ξh = 1)

+
∑
j∈Gi

ηij(1− ψj)ŝjMj(b),

Notice that T2i(b) = Ri − b′Zi and Mk(b) = Rs
k − b′Zs

k (see(2.2)), then

H(b) =
n∑

i=1

(Zi − Z)(X̂∗
i − Zi

′b) = A(b)− B(b)b,

where A(b) =
∑n

i=1Ai(b) and B(b) =
∑n

i=1 Bi(b),

Ai(b) = (Zi − Z)

(
Xiδi + (1− δi)

1∑
j∈Gi

ηij ŝj

∑
j∈Gi

(
ηij(1− ψj)ŝjR

s
j

)

+(1− δi)
1∑

j∈Gi
ηij ŝj

∑
j∈Gi

(
ηijψj ŝj

∑n
k=1 1(T2k(b) = Mj(b), ξk = 1)Rk∑n

h=1 1(T2h(b) = Mj(b), ξh = 1)

))
,
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Bi(b) = (Zi − Z)

(
Z
′
iδi + (1− δi)

1∑
j∈Gi

ηij ŝj

∑
j∈Gi

(
ηij(1− ψj)ŝjZ

s
j

′
)

+(1− δi)
1∑

j∈Gi
ηij ŝj

∑
j∈Gi

(
ηijψj ŝj

∑n
k=1 1(T2k(b) = Mj(b), ξk = 1)Z

′
k∑n

h=1 1(T2h(b) = Mj(b), ξh = 1)

))
.

Now we need to prove for any b1,b2 ∈ O(β, c), Ai(b1) = Ai(b2), Bi(b1) = Bi(b2).

Consider two cases: (1) δi = 1 and (2) δi = 0.

Case (1), δi = 1. Since (Ai(b),Bi(b)) = ((Zi − Z)Xi, (Zi − Z)Z
′
i), it is trivially true.

Case (2), δi = 0. We have:

Ai(b) = (Zi − Z)
1∑

j∈Gi
ηij ŝj

∑
j∈Gi

ηij

×
(

(1− ψj)ŝjR
s
j + ψj ŝj

∑n
k=1 1(T2k(b) = Mj(b), ξk = 1)Rk∑n

h=1 1(T2h(b) = Mj(b), ξh = 1)

)
.

Take

s∗j =
sj∑n

h=1 1(T2h(b) = Mj(b), ξh = 1)
. (4.2)

Remark 2 The motivation of defining s∗i is as follows. Note that each distinct {Ti(b)}
with ξi = 1 is a (singleton) innermost interval. If there is a tie of several exact observations

Tj(b)s at Ti(b), we can pretend that each exact observation is a distinct singleton innermost

interval. It is similar to the case of the empirical distribution function, that is, in the case

that there is a tie, the weight at that tie is the accumulation of weights assigned to each

observation at that tie which is 1/n. By defining s∗i , WLOG, we can assume that all exact

observations within Ii(b) are distinct, and thus their ranks are irrelevant as far as s∗j is

concerned.

In order to prove that for any b1,b2 ∈ O(β, c), Ai(b1) = Ai(b2), it suffices to show

that:

1. Gi(b1) = Gi(b2), where Gi(b) = {j : Aj(b) ⊂ Ii(b)},
2. s∗j(b1) = s∗j(b2),

3.
∑

j∈Gi(b1)
ηij(b1)ŝj(b1) =

∑
j∈Gi(b2)

ηij(b2)ŝj(b2).
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Notice that the GMLE of sj is an SCE. According to self-consistent equation sj =
∑n

i=1
1
n

ηijsjP
k∈Gi

ηiksk
,

for any b ∈ O(β, c), we have:

sj = ψj

n∑

h=1

1(T2h(b) = Mj(b), ξh = 1)s∗j + (1− ψj)sj

=
n∑

i=1

1

n

ηij[ψj

∑n
h=1 1(T2h(b) = Mj(b), ξh = 1)s∗j + (1− ψj)sj]∑

k∈Gi
ηik[ψk

∑n
h=1 1(T2h(b) = Mk(b), ξh = 1)s∗k + (1− ψk)sk]

, (4.3)

In view of the foregoing expression of self-consistent equation and Remark 2, WLOG,

we can assume that all exact observations within Ii(b) are distinct.

Since the non-singleton innermost intervals within Ii(b) will not change at all and the

singleton innermost intervals are the “same” according to the discussion in Remark 2 for

each b ∈ O(β, c), Gi(b1) = Gi(b2) and therefore (1) holds.

Note that by assumption in Remark 2, all exact observations within Ii(b) are distinct

and the ranks are irrelevant. Then the GMLE of the probability mass on each singleton

innermost interval within Ii(b) is the same as s∗j (see (4.2) and (4.3)), therefore (2) holds.

According to (1) and (2), all possible innermost intervals within Ii(b) are the same and

the weights on each innermost interval are also the same for each b ∈ O(β, c) and therefore

(3) holds.

It implies that for any b1,b2 ∈ O(β, c), Ai(b1) = Ai(b2). The proof of Bi(b1) = Bi(b2)

is similar and is skipped.

Proof of Lemma 3 Note that from the proof of lemma 2, under A3 and A4, for n large

enough, the distinct hyperplanes obtained by solving Ti(b) = Tj(b), ξi · ξj = 0 do not

change as n increases. Furthermore, β does not belong to these hyperplanes. Thus O(β, c)

remains the same as n increases. Moreover, (Ai(β),Bi(β)) will take finitely many values.

WLOG, we can assume that the first m of (Ai(β),Bi(β)) are distinct.

H(b)

n
=

m∑
i=1

piAi(b)−
m∑

i=1

piBi(b)b =
m∑

i=1

piAi(β)−
m∑

i=1

piBi(β)b, for b ∈ O(β, c),

where

pi =
1

n

n∑
j=1

1[(Aj(b),Bj(b)) = (Ai(b),Bi(b))], for b ∈ O(β, c).

By strong law of large number, w.p.1, pi → E(pi) (, pi). For b ∈ O(β, c), i =

1, 2, · · · ,m, w.p.1,

Ai(b) = Ai(β) → (Zi − E(Z)){Xiδi + (1− δi)E(Xi|εi ∈ Ii(β))}(, Ai0(β)),
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Bi(b) = Bi(β) → (Zi − E(Z)){Z′iδi + (1− δi)E(Z′i|εi ∈ Ii(β))}(, Bi0(β)).

Then, w.p.1

limn→∞
H(β)

n
=

m∑
i=1

pi(Ai0(β)− Bi0(β)β)

= E[E((Z− E(Z))ε|ε ∈ I)]

= E[(Z− E(Z))ε]

= E(Z− E(Z))E(ε) (as ε and X are independent)

= 0p×1.

Claim 1: B(β) =
∑m

i=1 piBi(β) is not singular, provided that n is large enough.

Then based on claim 1, w.p.1, for b ∈ O(β, c) and under A4, we have,

H(b)

n
=

m∑
i=1

piAi(β)−
m∑

i=1

piBi(β)b, for b ∈ O(β, c)

→
m∑

i=1

pi(Ai0(β)− Bi0(β)b) =





0 if b = β,

6= 0 if b ∈ O(β, c)\{β}.

It follows from the foregoing equation that w.p.1,

b̂ = (
m∑

i=1

piBi(β))−1(
m∑

i=1

piAi(β)) = (B(β))−1A(β) → β, as n →∞. (4.4)

b̂ may not be a BJE. However, by taking a large sample size, WLOG, we can assume,

b̂ ∈ O(β, c). Thus, (A(b̂),B(b̂)) = (A(β),B(β)) and

H(b̂) = A(b̂)− B(b̂)b̂ = A(β)− B(β)b̂ = 0.

Therefore, β̂n = b̂ is a BJE.

Now we shall prove claim 1: Take G to be a transformation such that:

G(Z′i) = Z′iδi + (1− δi)E(Z′i|εi ∈ Ii(β)).
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Let µZ = E(Z), then

∑
i∈Gi

pi(Zi − µZ)G(µ′Z) =
∑
i∈Gi

pi(Zi − µZ){µ′Zδi + (1− δi)E(µ′Z|εi ∈ Ii(β))}

=
∑
i∈Gi

pi(Zi − µZ){µ′Zδi + (1− δi)µ
′
Z}

= E(Z− µZ)µ′Z
= 0p×p.

Therefore,

∑
i∈Gi

piBi0(β) =
∑
i∈Gi

piBi0(β)−
∑
i∈Gi

pi(Zi − µZ)G(µ′Z)

=
∑
i∈Gi

pi(Zi − µZ){(Zi
′ − µ′Z)δi + (1− δi)E[(Zi

′ − µ′Z)|εi ∈ Ii(β))]}

=
∑
i∈Gi

pi(Zi − µZ){(Zi
′ − µ′Z)δi + (1− δi)E[(Zi

′ − µ′Z)]}

(as Zi and εi are independent)

=
∑
i∈Gi

piδi(Zi − µZ)(Zi − µZ)′

= E{δ(Z− µZ)(Z− µZ)′}.

By A3, E{(Z− µZ)(Z− µZ)′} is positive definite and therefore
∑

i∈Gi
piBi0(β) is also

positive definite.

Proof of Theorem 1 Since b̂ is a BJE if n is large enough by Lemma 3 and b̂ → β w.p.1

by (4.4), it follows that the BJE is consistent. Now given ω ∈ Ω, in view of the expressions

of Ai(β) and Bi(β), it is clear that (Ai(β),Bi(β)) is a rational function of the SCE ŝj. Since

A(β) and B(β) are the linear functions of Ai(β) and Bi(β) respectively, (A(β),B(β)) is a

rational function of the SCE ŝj. By using similar arguments in Yu et. al. (1998, 2001), it

can be proved that under the assumptions A1, A2 and A5, the SCE of probability masses

si with MIC data is strong consistent and asymptotic normality. By Lemma 3, when n is

large enough, β̂n = b̂ = (B(β))−1A(β) is the BJE and it is a rational function of the SCE

ŝj. Therefore, β̂n = b̂ is asymptotically normally distributed by using the delta method.
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