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Nonparametric order–restricted inference for

factorial and temporal data ∗
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Abstract

Often in medical studies, the detection of biological trend underlying different

treatments or varying time points are of primary interest to biologists. To assess

the significance of the underlying trend, a researcher may restrict attention to an

ordered alternative and thus increase the power of his test. As the crucial normality

assumptions for parametric inferences are often untenable in practice, we propose a

nonparametric procedure to test for completely ordered alternatives with monotone,

non–monotone, or cyclical orderings. The approach consists of forming a statis-

tic which measures the correlation between the empirical ranking of the treatments

based on the data and the criterion ranking induced by the alternatives. By consid-

ering a vector of Spearman correlations on multiple subsets of treatment effects, the

proposed method is extended to test for incompletely ordered alternatives with multi-

ple sub–orderings. Using the projection technique, the variance–covariance structure

associated with the test statistic is derived and consistently estimated under unbal-

anced factorial designs and repeated measures designs. The limiting distribution

and asymptotic relative efficiency of the proposed test under Pitman alternatives

are established. The application of the proposed test to assess biological trends is

demonstrated through the analysis on real data sets.

∗This research is supported by Natural Science and Engineering Research Council of Canada Grants.
Received: January 10 2006; Accepted: September 27, 2006.
Key words and phrases: Asymptotic relative efficiency; linear rank statistics; ordered alternatives; rank
transform; repeated measures; trend.
AMS 2000 subject classifications. Primary 62G10; secondary 62K15, 62G30.

†Mailing Address: Department of Mathematics and Statistics, York University, Toronto, ON, Canada
M3J 1P3.
E–mail: xingao@mathstat.yorku.ca.

International Journal of Statistics and Management Systems 
Vol. 3 No. 2 (July-December, 2018), ISSN: 0973-7395

Received: January 10 2018; Accepted: September 27, 2018



Nonparametric order–restricted 121

1. Introduction

In medical studies we are often interested in a trend of a biological phenomenon. In

time–course microarray experiments, gene expression levels are measured at various time

points. The trend of up–regulation, down–regulation or cyclical–regulation relative to the

time points are associated with particular biological functions of the genes. For example

a variety of distinct cyclical patterns of gene expression levels have been observed in yeast

cell cycle data which correspond to genes with different functional roles in the cell cycle

development (Spellman et al., 1998). Dose–response is another well–known example of a

biological trend. The changing pattern of response profile under different dose levels can

provide insights into both functional and side effects of a drug candidate. The goals of the

experiments above share the common nature of detecting trends in biological data.

Consider a factorial experiment with a treatment factor such as the dose level or the

time effect and a clinical covariate such as age, gender or certain clinical symptom. The

nth observation from cell (i, j) is modelled as

Xijn = θ + αi + Tj + εijn,

i = 1, . . . , I; j = 1, . . . , J ; n = 1, . . . , Nij,
(1.1)

where i indexes for the covariate group, j indexes for the treatment group, n indexes for

the replicate number. In testing the null hypothesis of no treatment effects, a researcher

may wish to be more specific about the trend in the treatment effects and restrict attention

to an ordered alternative. The following examples of ordered alternatives are commonly

used to describe various trends that occur in practice.

• Monotone increasing trend:

T1 ≤ T2 ≤ · · · ≤ TJ , (1.2)

with at least one strict inequality. Similarly a monotone decreasing trend can be

defined by reversing the directions of the inequalities.

• Up–down trend with maximum at j:

T1 ≤ T2 · · · ≤ Tj ≥ Tj+1 · · · ≥ TJ , (1.3)

with at least one inequality among T1 ≤ T2 · · · ≤ Tj and one among Tj ≥ Tj+1 ≥
· · · ≥ TJ .
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• Cyclical trend with minima at 1, j and J and maxima at k and l:

T1 ≤ T2 · · · ≤ Tk ≥ Tk+1 ≥ · · · ≥ Tj ≤ Tj+1 ≤ · · · ≤ Tl ≥ Tl+1 ≥ · · · ≥ TJ , (1.4)

with at least one strict inequality among each monotone sub–trend. Cyclical pattern

often arises when the response oscillates.

• Union of multiple sub–trends:

T1 ≤ T2 · · · ≤ Tk, or Tk+1 ≥ · · · ≥ Tj, or Tj+1 ≤ · · · ≤ Tl, or Tl+1 ≥ · · · ≥ TJ , (1.5)

with at least one strict inequality among each monotone sub–trend.

There has been a series of seminal work on nonparametric procedures to test for the

monotone increasing or decreasing alternative. For a randomized complete block design,

Jonckheere (1954) and Page (1963) proposed to measure the Kendall or Spearman cor-

relation between each block and the vector of (1, 2, . . . , J) representing the ordering of

the treatments specified by the alternative. In contrast, Hollander (1967) proposed a test

statistic that is the sum of linear signed rank statistics between all pairs of treatments.

The three tests presented above are restricted to randomized block design with exactly one

observation in each cell. Skillings and Wolfe (1977, 1978) further developed a class of test

statistics that are applicable for testing against ordered alternatives in balanced or unbal-

anced block designs accommodating multiple observations per cell. Kepner and Robinson

(1984) proposed a composite Wilcoxon signed rank statistic for randomized complete block

designs and repeated measure designs with a limitation that the number of treatments has

to be four or fewer. Based on the notion of compatibility of complete ranking with in-

complete ranking, Alvo and Cabilio (1995) generalized Jonckheere’s and Page’s test to the

situation in which one or more observations are missing from one or more blocks. All the

aforementioned tests have been focused on the alternatives with a complete order, which is

defined as follows.

Definition 1.1. (Robertson, Wright, and Dykstra, 1988) An ordering on a set X is com-

plete if

(1) It is reflexive: x ≤ x for all x ∈ X.

(2) It is transitive: x, y, z ∈ X, x ≤ y and y ≤ z imply x ≤ z.

(3) It is antisymmetric: x, y ∈ X, x ≤ y and y ≤ x imply x = y.

(4) Every two elements of X are comparable: x, y ∈ X implies that either x ≤ y or y ≤ x.
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In contrast to a complete order, a partial order is an ordering on X, which is reflexive,

transitive, and antisymmetric, but there may be noncomparable elements. A quasi–order

is reflexive, and transitive, but may not be antisymmetric and may admit noncomparable

elements. Every complete order is a partial order and every partial order is a quasi–

order. In practice the alternatives of interest often take the form of a partial order and

allow ambiguity among certain treatments. Furthermore, some quasi–ordered alternatives

may allow two distinct elements to satisfy both x ≤ y, and y ≤ x, and thus contain

symmetric binary relationship. A sub–ordering is a special type of quasi–order such that

there exists a nonempty subset X∗ ⊆ X, with the ordering on X∗ being complete and

any binary relationship involving elements in (X∗)c ∩ X being undefined. For instance

the alternatives in expressions (1.3–1.5) specify complete orderings within each sub–trend

and allow unspecified orderings across different sub–trends. These alternatives can be

formulated as intersections or unions of several sub–orderings. It would be desirable to

extend the proposed methodology to accommodate these alternatives with multiple sub–

orderings.

Moreover, biological trends are often associated with repeated measures designs in which

correlation exists among the treatment factor. Except for Kepner and Robinson’s method

which is restricted to the case of J ≤ 4, there has been no nonparametric method available

to deal with ordered alternatives for repeated measures designs with arbitrary finite number

of treatment levels. For two–way layouts without interaction effects, the rank transform

method proposed by Conover & Iman (1976) and further investigated by Hora & Conover

(1984) has proven to be a valid and powerful tool for unordered alternatives regarding

the main effects. The technique consists of replacing the observations by their ranks in

the combined sample regardless of the row and column membership. As the limiting dis-

tribution of any rank transform statistic can be readily derived through Hájek’s (1968)

projection method, the rank transform technique offers a potential tool to devise new tests

for ordered alternatives as well. More importantly, we shall consider the factorial design

with arbitrary correlation structure on the treatment factor. The method will be flexible

enough to accommodate completely or incompletely ordered alternatives with arbitrary

monotone, non–monotone and cyclical orderings. It is of further interest to investigate the

large–sample properties of the proposed nonparametric method and compare its asymptotic

relative efficiency versus the normal theory competitor.
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2. The test statistic

The essential idea behind the approaches of Jonckheere (1954) and Page (1963) for testing

the monotone alternative is to measure the correlation between the empirical ranking of

the treatments based on the data and the vector of (1, 2, . . . , J) induced by the alternative.

To accommodate other types of ordered alternatives, it is natural to extend this idea and

introduce the general definition of criterion ranking.

Definition 2.1. Consider an arbitrary alternative with complete ordering. The ordering

of treatment effects T = (T1, . . . , TJ) is specified by assigning the relationship R(Tj, Tj′)

between each ordered pair of treatments Tj and Tj′ as one of the following “ < ”, “ ≤ ”,

“ = ”, “ > ”, or “ ≥ ”. The criterion ranking is defined as a vector c = (c1, . . . , cJ), where

cj =
∑J

j′=1 u(R(Tj, Tj′)), with the indicator function u(x) = 0 if x = “ < ”, “ ≤ ”, or “ = ”

and u(x) = 1 if x = “ > ” or “ ≥ ”.

The proposed test statistic will be based on the correlation measure and thus it will

be invariant under any location shift or scale shift applied to the criterion ranking. For

monotone increasing alternative T1 ≤ T2 < · · · ≤ TJ , the corresponding criterion ranking

c plus one takes the form of (1, 2 . . . , J), which coincides with the conventional criterion

ranking used for this alternative. Criterion ranking is well defined for non–monotone alter-

natives as well. Consider the yeast cell cycle data (Spellman et al., 1998) in which the cell

alternates among the G1, S, G2, M phases. The expression level of a given gene repeats

at the same phase during different cycles. It is shown that a collection of genes including

CLN1, CLN2, and CLB6 etc., attain their peak expression level in G1 phase and steadily

decay in the following three phases. For these genes, it is reasonable to assume a cyclic

alternative with T1 ≥ T2 ≥ T3 ≥ T4, and T4n+j = T4n′+j, for n ∈ N , and j = 1, . . . , 4.

The corresponding criterion ranking c divided by the number of cycles takes the form of

(3, 2, 1, 0, 3, 2, 1, 0, . . . ). In another study of MCF–7 breast cancer cell line (Lobenhofer et

al. 2002), the cell samples were harvested at 1, 4, 12, 24, 36, and 48 hours after the

treatment. The six time points were denoted as T1 − T6. Peddada et al. (2003) analyzed

this data set and demonstrated that the expression profile of insulin induced gene I has a

down–up pattern T1 ≥ T2 ≤ T3 = T4 = T5 = T6, with minimum achieved at 4 hours and

maximum achieved at 12–48 hours. The corresponding criterion ranking takes the form

c = (1, 0, 2, 2, 2, 2).
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Our approach consists of obtaining the empirical ranking of the J treatments and mea-

suring its correlation with the criterion ranking. High correlation is regarded as evidence

to support the ordered alternative. To apply the rank transform technique on unbalanced

designs, we introduce the definition of weighted ranks in a combined sample (Gao & Alvo,

2005). Let Ω = {Xijn, i = 1, .., I, j = 1, ..., J, n = 1, ..., nij} be a collection of random

variables with N =
∑

ij Nij. The weighted rank of Xijn within this set is

R∗
ijn =

N

IJ

∑

i′j′

1

Ni′j′

(∑

n′
I(Xi′j′n′ ≤ Xijn)

)
,

with I(A) denoting the indicator function of the event A. The weighted rank is a sum

of indicator functions weighted by the reciprocal of the number of replicates in each cell

to circumvent the unbalance in the design. When the Nij’s are equal, the weighted rank

reduces to the usual rank Rijn. Let the score function φ be a real–valued, absolutely contin-

uous function defined on (0, 1) with bounded second derivative. Weighted rank scores are

generated from φ as αN(R∗
ijn) = φ(R∗

ijn/(N+1)). To simplify notation, let α∗ijn = αN(R∗
ijn).

Define S∗
N = (S∗N(j), j = 1, . . . , J) to be a vector of weighted linear rank statistics with

components S∗N(j) =
∑

i
N

Nij

∑Nij

n=1 α∗ijn. Each S∗N(j) can be viewed as a nonparametric

measurement of the effect of treatment j. Let E0(S
∗
N(j)) denote the expectation of S∗N(j)

under the null hypothesis of no treatment effects. Let c =
∑

j cj/J be the average criterion

ranking. We measure the Spearman rank correlation between the vector of S∗
N and the

criterion ranking c = (c1, c2, . . . , cJ):

Q =
J∑

j=1

(
cj −−c

)(
S∗N(j)− E0(S

∗
N(j))

)

=
J∑

j=1

(cj − c)S∗N(j)

(2.1)

From this expression, one arrives at an equivalent and simper form

Q =
∑

i

∑
j

∑
n

dijα
∗
ijn, (2.2)

with the coefficient dij = (cj − c)N/Nij. Large values of Q leads to the rejection of H0.

As the Q statistic can always be formulated as a weighted linear rank statistic regardless

of the underlying criterion ranking, the properties of the test statistic for different ordered

alternatives can be investigated under a unified framework.
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3. Limiting distributions.

3.1. Asymptotic null distribution

First we consider the properties of the proposed statistic for unbalanced designs with in-

dependent observations. Assume the error terms εijn in model (1.1) are independent and

identically distributed according to the absolutely continuous distribution function F. The

distribution function for observations in cell (i, j) is denoted as Fij(x) = F (x−θ−αi−Tj).

It is also assumed that as the total sample size increases, limN→∞ Nij/N = ρij, with

0 < ρij < 1. From expression 2.2, it is seen that Q is a sum of correlated rank scores. For

statistics not expressible as sums of independent random variables such as Q, the projection

technique provides an effective way of deriving asymptotic normality. The essential idea of

the technique consists in approximating the statistic Q by
∑

ijn Z∗
ijn, where the projections

Z∗
ijn are independent and square–integrable random variables (Hájek, 1968).

Define the average distribution function H(x) = 1/(IJ)
∑

ij Fij(x) and the average

regression constants d̄ = 1/(IJ)
∑

ij ρijdij. We construct the projection of S∗N(j) onto Xijn

denoted by Z∗
ijn with the following form:

Z∗
ijn =

1

IJnij

∑

i′j′n′
(di′j′ − ρij

ρi′j′
dij)

∫ (
u(x−Xijn)− Fij(x)

)
φ′

(
H(x)

)
dFi′j′(x)

=
1

IJρij

∑

i′j′
(cj′ − cj)

∫ ∞

Xijn

φ′
(
H(x)

)
dFi′j′(x) + c,

(3.1)

Where c is a generic constant. The total variance of the projection variables is denoted by

σ2 =
∑

ijn var(Z∗
ijn). Also define the asymptotic mean

µ∗ =
∑
ijn

cj − c

ρij

∫
φ(H(x))dFij(x).

In light of the result in Theorem 3 and 4 in Gao & Alvo (2005), it can be shown

that (Q − u∗)/σ d−→ N(0, 1). This asymptotic result can be extended to a broader class of

score functions including the commonly used normal score function. This class of score

functions can be formulated as a difference function between two square integrable and

non–decreasing functions.

Next we can establish the limiting distribution of the statistic Q under the null hypoth-

esis.
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Theorem 3.1. Assume that limN→∞ Nij/N = ρij, with 0 < ρij < 1. Define the average

cumulative distribution function under the null hypothesis as H0(x) = 1/I
∑

i F (x−θ−αi)

and σ2
0 =

∑
ijn var(Z0

ijn), with

Z0
ijn =

(cj − c)

ρij

φ(H0(Xijn)). (3.2)

Under the null hypothesis of no treatment effect,

Q

σ0

d−→ N(0, 1), asN →∞.

To estimate the limiting variance σ2
0, it is worthy to note that the projection variables

in equation (3.2) are simply expressed in terms of average cumulative distribution function.

Therefore we may replace the cumulative distribution function by the corresponding em-

pirical distribution to obtain the consistent variance estimator. In light of this observation,

we construct variables

Cijn =
(cj − c)

ρij

φ(Ĥ0(Xijn)),

with φ(Ĥ0(Xijn)) = α∗ijn.

Define σ̂0
2 =

∑
ijn(Cijn − Cij.)

2, with Cij. = 1/Nij

∑Nij

n=1 Cijn. According to Glivenko–

Cantelli lemma, maxijn |α∗ijn − φ(H0(Xijn))| → 0 almost surely as N → ∞. Thus we have

|σ̂2
0 − σ2

0| → 0 almost surely. As a direct application of the Slutsky’s theorem, we establish

the following result concerning our test statistic.

Theorem 3.2. Under the null hypothesis of no treatment effect,

Q

σ̂0

d−→ N(0, 1), asN →∞.

3.2. Asymptotic distribution under Pitman alternatives

Next we investigate the limiting distribution of Q under the alternative situation. To con-

struct Pitman alternatives for the ordered inference, let T = β(t1, . . . , tJ) be a vector of

real numbers, where β is a common factor and the vector (t1, . . . , tJ) induces a criterion

ranking c = (c1, . . . , cJ). A sequence of Pitman alternatives, indexed by N, is given by

Fij;N(x) = Fi(x − βtj√
N

). These Pitman alternatives allow for both the ordered treatment

effects and the block effects. They converge to the null hypothesis of no treatment effects.
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All of the limits in this section are taken under this sequence of alternatives. Denote the av-

erage distribution function under the Pitman alternatives as HN(x) = 1/(IJ)
∑

ij Fij;N(x).

It is further assumed that as the total sample size increases, limN→∞ Nij/N = ρij, with

0 < ρij < 1. Denote the projection variables under the Pitman alternatives as ZN
ijn and

define the total variance of all the projections as σ2
N =

∑
ijn var(ZN

ijn). Under the assump-

tion that the score function φ has bounded second derivative, ZN
ijn is a uniformly bounded

function. We have the following convergence result:

Lemma 3.3. Under the sequence of Pitman alternatives, limN→∞ σ2
N = σ2

0.

Proof. According to equation (3.1), we have

σ2
N =

∑
ijn

var(ZN
ijn)

=
∑
ijn

var

(
1

IJρij

∑

i′j′
(cj′ − cj)

∫ ∞

Xijn

φ′(HN(x))dFi′j′;N(x) + c

) (3.3)

Under the Pitman alternatives, we have the pointwise convergence limN→∞ HN(x) = H0(x),

and limN→∞ Fij;N(x) = Fi(x). As Φ(x) has bounded first and second derivatives, using the

generalized dominated convergence theorem (Royden, 1968, p. 232), we obtain

lim
N→∞

var
(∫ ∞

Xijn

φ′(HN(x))dFi′j′;N(x)
)

= lim
N→∞

∫ [∫ ∞

y

φ′(HN(x))dFi′j′;N(x)
]2

dFij;N(y)− [∫
(

∫ ∞

y

φ′(HN(x))dFi′j′;N(x))dFij;N(y)
]2

=

∫ [∫ ∞

y

φ′(H0(x))dFi′(x)
]2

dFi(y)− [∫
(

∫ ∞

y

φ′(H0(x))dFi′(x))dFi(y)
]2

= var
(∫ ∞

Xijn

φ′(H0(x))dFi′(x)
)
.

(3.4)

It follows that limN→∞ σ2
N → σ2

0.

Define the asymptotic mean of Q under the Pitman alternative as µN :

µN =
∑
ijn

cj − c

ρij

∫
φ(HN(x))dFij;N(x)

=
∑
ijn

cj − c

ρij

∫
φ
( 1

IJ

∑

i′

∑

j′
F (x− αi′ − βtj′√

N
+ αi +

βtj√
N

)
)
dF (x).
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It follows that

lim
N→∞

∂µN√
N∂β

= lim
N→∞

∑
ijn

cj − c√
Nρij

∫
φ′(HN(x))H ′

N(x)
1

IJ

∑

i′

∑

j′

(tj − tj′)√
N

dF (x)

= I(

∫
Φ′(H0(x))H ′

0(x)dH0(x))
∑

j

(cj − c)(tj − t).

Using a Taylor expansion, we obtain the difference of the two asymptotic means under

the alternative versus the null situation:

lim
N→∞

µN − µ0√
N

= βI

∫
φ′(H0(x))H ′

0(x)dH0(x)
∑

j

(cj − c)(tj − t), (3.5)

where t =
∑

j tj/J. This expression will lead to the derivation of the noncentrality param-

eter of the limiting distribution under the alternatives.

Theorem 3.4. Under the sequence of Pitman alternatives,

Q2

σ̂2
0

d−→ χ2(∆R, 1),

with

∆R =

β2I2

(
φ′(H0(x))H ′

0(x)dH0(x)
∑

j(cj − c)(tj − t)

)2

∑
i,j

1
ρij

(cj − c)2 varH0(φ(H0(Xi11)))
.

Throughout this article, we have focused on the approach of preselecting the specific

criterion ranking and developing the corresponding test statistic. This approach originally

proposed by Jonckheere (1954) has been commented by Abelson and Tukey (1963) as

one efficient way to utilize order information in hypothesis testing. Abelson and Tukey

(1963) further pointed out that although the Jonckheere’s selection of criterion ranking is

arbitrary, it is reasonably wise as the criterion ranking is chosen to be highly correlated with

the hypothesized ordering on the parameters. Alternatively, we may choose the centered

criterion ranking c− c from all possible contrast vectors to maximize the least value of the

noncentrality parameter with the specified order restrictions on the treatment effects T . It

is shown from Theorem 3.4 that the noncentrality parameter of the limiting distribution

depends on the criterion ranking through the term:

(
∑

j

(cj − c)(tj − t))2/
∑
i,j

1

ρij

(cj − c)2 varH0(φ(H0(Xi11))). (3.6)
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Under balanced design, this optimization problem is equivalent to obtain the “maximin-r2”

between the vectors c−c and T under the order restriction. Abelson and Tukey (1963) have

derived such optimal contrast coefficients as cj−c = {(j−1)[1−((j−1)/J)]} 1
2−{j(1−j/J)} 1

2

for a monotonic ordering. These optimal contrast coefficients are applicable here to achieve

the maximum–least asymptotic power for our proposed test statistic. For non–monotonic

order restrictions, Abelson and Tukey have proposed a general computational intensive

algorithm to obtain the optimal contrast coefficients. Later, Schaafsma and Smid (1966)

have generalized these optimum contrast coefficients to unbalanced settings. The results

are also useful for our test statistic to achieve the maximum–least asymptotic power under

unbalanced designs.

3.3. Asymptotic relative efficiency

To compare the proposed nonparametric method versus the parametric counterpart, we

restrict our attention to the ordered alternatives with linear trend, i.e. T = β√
N

(c1, . . . , cJ),

where c is the criterion ranking. The sequence of Pitman alternatives, indexed by N,

is given by Fij;N(x) = Fi(x − βcj√
N

). The corresponding parametric approach consists of

converting the problem into one of regression and testing the significance of the slope of

the linear trend (Park and Lee, 2000). Under this assumption, the two–way layout model

of (1.1) can be reformulated as a one–way classification with one covariate and a single

slope (Searle, 1987, p171):

Xijn = θ + αi + βWijn + εijn,

with the covariate Wijn = cj/
√

N.

Denote var(εijn) = s2. Following the least–squares approach, the estimate for the slope

takes the form

β̂ =

∑
i

∑
j

∑Nij

n=1(Xijn −Xi..)(Wijn −Wi..)∑
i

∑
j

∑Nij

n=1(Wijn −Wi..)2
,

with Ni. =
∑J

j=1 Nij, Xi.. = 1
Ni.

∑J
j=1

∑Nij

n=1 Xijn, Wi.. = 1
Ni.

∑J
j=1

∑Nij

n=1 Wijn. Furthermore,

we obtain

ŝ2 =
1

N − I − 1

(∑
i

∑
j

Nij∑
n=1

(Xijn −Xi..)
2 − β̂2

∑
i

∑
j

Nij∑
n=1

(Wijn −Wi..)
2
)
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and

v̂ar(β̂) =
ŝ2

∑
i

∑
j

∑Nij

n=1(Wijn −Wi..)2
.

Consider the usual t statistic for testing hypothesis H0 : β = 0,

t = β̂/

√
v̂ar(β̂).

By applying the central limit theorem, we can establish the limiting distribution of t2.

Theorem 3.5. Under the sequence of Pitman alternatives with linear trend, the parametric

statistic t2
d−→ χ2

1(∆P ), with

∆P =
β2

s2

∑
i

∑
j

ρij(cj −
J∑

j=1

ρij

ρi.

cj)
2.

According to Rao and Mitra (1971), the asymptotic relative efficiency of the proposed

rank transform method versus the parametric least squares approach for detecting linear

trend is the ratio of the two noncentrality parameters:

ARE =
∆R

∆P

=

I2s2

(∫
φ′(H0(x))H ′

0(x)dH0(x)
∑

j(cj − c)2

)2

(∑
i,j

1
ρij

(cj − c)2 var(φ(H0(Xij1)))

)(∑
i

∑
j ρij(cj −

∑J
j=1

ρij

ρi.
cj)2

)
(3.7)

It is observed that the ARE value generally depends on the distribution function, the

cell frequencies and the criterion ranking in a complex way. Nevertheless for balanced one–

way layout or balanced two–way layout with no block effects, we obtain a simplified result

without the influence of the design and the underlying criterion ranking.

Lemma 3.6. For balanced one–way layouts or balanced two–way layouts with no block

effects, the ARE of the proposed nonparametric method with linear score function versus

the parametric approach to detect linear trend equals 12s2(
∫

F ′(x)dF (x))2, which coincides

with the ARE of the Wilcoxon rank test versus the t–test for two–sample problem.

Numerical evaluations of ARE under different design settings were conducted across

several distributions including normal, uniform, logistic, and double–exponential. Table
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9.1 provides the summarized results. Two designs were considered. The first design was

balanced with three rows, six columns and equal cell frequencies. The second design was

unbalanced with the same number of rows and columns and unequal relative cell fre-

quencies ρ11 = 0.038, ρ12 = 0.053, ρ13 = 0.068, ρ14 = 0.076, ρ15 = 0.053, ρ16 = 0.045,

ρ21 = 0.068, ρ22 = 0.053, ρ23 = 0.045, ρ24 = 0.076, ρ25 = 0.045, ρ26 = 0.038, ρ31 = 0.061,

ρ32 = 0.053, ρ33 = 0.061, ρ34 = 0.038, ρ35 = 0.076, ρ36 = 0.053. Three different se-

quences of Pitman alternatives were considered. They induces three different criterion

rankings: c1 = (0, 1, 2, 3, 4, 5), c2 = (0, 2, 4, 4, 2, 0), c3 = (0, 3, 0, 3, 0, 3). To study the effect

of block parameters on ARE value, we considered the location shifts among the blocks

to be 0 or 0.25. Under balanced designs, the ARE expression in (3.7) can be simplified

as Is2
(∫

φ′(H0(x))H ′
0(x)dH0(x)

)2
/
∑I

i=1 var(φ(H0(Xi11))), which does not depend on the

criterion ranking but depends on the Fi(x), consequently depends on the block shift. There-

fore given the same balanced design and block shift, the ARE attains the same value across

the three different alternatives. As the block shift changes from 0 to 0.25, the ARE value

slightly increases. For unbalanced designs, the ARE depends on both the block shift and

the criterion ranking. It is observed that given other settings fixed, the ARE value differs

very slightly for monotonic ordering, up–down ordering and oscillating ordering. Similar

to balanced design, the ARE value under unbalanced design also slightly increases as the

block shift changes from 0 to 0.25. Regarding the underlying distributions, it is shown that

for light–tailed distributions such as the normal and uniform, the efficiency of the rank

transform method is slightly below that of the parametric test. For heavy–tailed distribu-

tions including logistic and double–exponential distributions, the gain in efficiency over the

parametric test is substantial.

4. Extension to repeated measures designs

Next we wish to extend our method to factorial designs with repeated measures on the

treatment factor. The general repeated measures design can be formulated by independent

random vectors X ik = (X ′
i1k, . . . , X

′
iJK)′, i = 1, . . . , I, and k = 1, . . . , ni, when X ijk =

(Xijk1, . . . , Xijkmijk
)′, j = 1, . . . , J and Xijks ∼ Fij, s = 1, . . . , mijk ≥ 1. Within each ith

level of the row factor, i = 1, . . . , I, there are ni independent subjects, which are repeatedly

measured under all J different treatments. There are mijk replications at each (i, j, k) factor

level and subject combinations. The covariance structure within each random vector X ik
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can be arbitrary and not necessarily of equal correlation. The null hypothesis of no treat-

ment effect is H0 : Fi1(x) = Fi2(x) = · · · = Fi(x). Focused on location alternatives, we as-

sume Fij(x) = Fi(x−Tj). Similar to the two–way layouts with independent observations, the

test statistic is constructed to be a weighted linear rank statistic. The asymptotic normal-

ity of the weighted linear rank statistic with dependent observations has been established

in Domhof (2001). Let R∗
ijks = N

IJ

∑I
i′=1

∑J
j′=1

1
Ni′j′

(
∑ni′

k′=1

∑mi′j′k′
s′=1 I(Xi′j′k′s′ ≤ Xijks)) with

Ni′j′ =
∑ni′

k′=1 mi′j′k′ . Let the rank scores be generated from φ as α∗ijks = φ(R∗
ijks/(N + 1)),

with N =
∑I

i=1

∑J
j=1 Nij.

Similar to Section 2, we introduce the weighted linear rank statistic:

Q =
I∑

i=1

J∑
j=1

ni∑

k=1

dijα
∗
ijk., (4.1)

with dij = N(cjc/ni), and α∗ijk. =
∑mijk

s=1 α∗ijks/mijk.

Let H0(x) = 1
I

∑I
i=1 Fi(x) be the average univariate marginal cumulative distribution

function under the null hypothesis. It is further assumed that as N → ∞, min ni → ∞,

and 0 < ni/N < 1, and 1 ≤ mijk ≤ M ≤ ∞. According to Theorem 5.6 in Domhof (2001),

the limiting variance of Q can be expressed as

σ2
0 =

I∑
i=1

ni∑

k=1

var
( J∑

j=1

dijY ijk.

)
, (4.2)

with Y ijk. =
∑mijk

s=1 Φ(H0(Xijks))/mijk. This variance expression implicitly incorporates the

covariances within the vectors of X ik. According to Theorem 5.8 in Domhof (2001), we

obtain a consistent variance estimate

σ̂2
0 =

I∑
i=1

ni∑

k=1

( J∑
j=1

dij(α
∗
ijk. − α∗ij..)

)2

, (4.3)

with α∗ij.. =
∑ni

k=1 α∗ijk./ni. Combining the results above, we are able to show that under the

null hypothesis, Q
σ̂0

d−→ N(0, 1). Note that the limiting distribution of the statistic remains

the same as the independent case. However, the variance estimation is different due to the

covariance structure of the data.

5. Extension to alternatives with multiple sub–ordering

Situations may arise that the alternative hypothesis of treatment effects only specifies the

ordering within a subset of the treatments (Tb1 , . . . , TbK
), where b = (b1, . . . , bK) is a subset
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of (1, . . . , J). To deal with this type of sub–ordering, we can form the Spearman correlation

of the empirical ranking and the criterion ranking restricted on this subset of treatments:

Qb =
K∑

k=1

(cbk
− cb)

(
S∗N(bk)− E0(S

∗
N(bk))

)
, (5.1)

whereas cbk
=

∑K
k′=1 u(R(Tbk

, Tbk′ )) and cb = 1/K
∑K

k=1 cbk
. It is shown that even though

Qb is defined on a subset of treatments, it can still be reformulated as a linear rank statistic:

Qb =
K∑

k=1

(cbk
− cb)S

∗
N(bk)

=
∑

i

∑
j

∑
n

db
ijα

∗
ijn,

(5.2)

with db
ij = (cbk

−cb)N/Nij, if j = bk; and dij = 0, otherwise. Thus the limiting distributions

of Qb can be established following the same technique as in Sections 3.1 and 3.2. It is

worthy to point out that although the correlation is restricted on treatments included in

the subset, the rank scores are formed on the combined sample including the treatments

not being ordered. It utilizes ranking information from all the observations and therefore it

is more advantageous compared to the approach of simply ignoring the treatments without

hypothesized ordering.

Furthermore, the alternative may specify the sub–orderings on a collection of L subsets

of the treatments with Ol representing the sub–ordering on the lth subset. For instance, the

example in expression (1.3) specifies T1 ≤ T2 · · · ≤ Tj ≥ Tj+1 · · · ≥ TJ with the inequality

between Tk and Tk′ for any 1 ≤ k < j and j < k′ ≤ J being unspecified. Let O1 = T1 ≤
T2 · · · ≤ Tj, with the first subset = (1, 2, . . . , j), and O2 = Tj ≥ Tj+1 · · · ≥ TJ with the

second subset = (j, j + 1, . . . , J). Then the alternative can be formulated as Ha :
⋂2

l=1 Ol.

The example in expression (1.5) specifies T1 ≤ T2 · · · ≤ Tk, or Tk+1 ≥ · · · ≥ Tj, or Tj+1 ≤
· · · ≤ Tl, or Tl+1 ≥ · · · ≥ TJ . Let O1 = T1 ≤ T2 · · · ≤ Tk, O2 = Tk+1 ≥ · · · ≥ Tj,

O3 = Tj+1 ≤ · · · ≤ Tl, O4 = Tl+1 ≥ · · · ≥ TJ . Then the alternative can be formulated as

Ha :
⋃4

l=1 Ol. We can obtain a vector of Spearman correlations Q = (Q1, . . . , QL) with Ql,

1 ≤ l ≤ L, defined on the lth subset of the treatments. By applying the projection method

as outlined in Section 3.1, we can construct the projection of Ql onto Xijn as Z l
ijn. Define

a L× L matrix Σ = (σll′) with σll′ =
∑

i

∑
j ρij cov(Z l

ij1, Z
l′
ij1).

Theorem 5.1. Under the null hypothesis of no treatment effect, Q/
√

N → NL(0,Σ).
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To test for Ha :
⋂

Ol, we can perform an intersection test which rejects H0 and favors

Ha if Ql ≥ Zα for all 1 ≤ l ≤ L, with Zα being the upper 100(1− α) point of the standard

normal distribution. As under the null hypothesis P (
⋂

(Ql ≥ Zα)) ≤ minl P (Ql ≥ Zα) = α,

the significance level of this procedure is well controlled under the correct nominal level.

Alternatively we may set u(R(Tj, Tj′)) = 0 for any two elements which are unrelated and

still obtain one criterion ranking for the whole set of elements. For instance, consider the

simple tree ordering, T1 ≤ T2, T1 ≤ T3, . . . , T1 ≤ Tk. The extended criterion ranking will

take the form of (0, 1, 1, . . . , 1). A linear rank statistic QE can be constructed based on this

extended criterion ranking.

To compare these two approaches, we note that the intersection test is a conservative

test and its power is lower than the minimum power of the Ql, l = 1, . . . , L. In contrast,

the statistic QE combines the strength of the correlation from each sub–ordering and is

more powerful than the intersection test when Ha :
⋂

Ol holds true. Nevertheless, the

statistic QE is not specific to the alternative Ha and it can yield significant result even

though the overall Ha does not hold true. As an illustration, we consider the testing of the

alternative Ha specifying the simple tree order T1 ≤ Tk, k = 1, . . . , K. First we assume that

the treatment effects satisfy the simple tree order with T = (0.25, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9).

Under this parameter setting, the QE is advantageous as it achieves higher power than

the intersection statistic. Next we assume that the parameters completely violate the

hypothesized tree order with all the directions of the inequalities being reversed : T1 ≥ Tk,

k = 1, . . . , K, and T = (1.55, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9). The intersection test is advantageous

as it will make correct conclusion and yield insignificant result. However, the QE test will

result in highly significant result and lead to incorrect conclusion. The false significance

of the QE statistic is due to the fact that the pattern of part of the treatment effects

(0.9, 0.9, . . . , 0.9) agrees with the counterpart of the extended criterion ranking (1, 1, . . . , 1).

Therefore extra caution is needed when the QE test is employed to test for intersection

alternatives. In the simulation section, more empirical results will be provided to compare

these two methods.

Next we proceed to consider the test for Ha :
⋃

Ol. A quadratic form 1/NQ′Σ̂
−1

Q

can be formed as a chi–squared statistic with Σ̂
−1

denoting the general inverse of the

estimated covariance matrix. The degree of freedom of the statistic is equal to the rank of

the covariance matrix Σ, which can be readily obtained as follows.

Lemma 5.2. Define a IJ×L matrix D = (D1, D2, . . . , DL), with Dl = (dl
11, d

l
12, . . . , d

l
IJ)′.
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The rank of Σ equals the rank of matrix D.

6. Simulation studies

Monte Carlo simulations were conducted to investigate the type I error rates and the power

of the proposed tests for a variety of ordered alternatives under different design settings.

The results were summarized based on 1,000 simulation runs. The significance level was

set to be 0.05. Four different distributions were simulated: normal distribution N(0, 1),

normal with two outliers, lognormal (0, 1) and Cauchy distribution Cauchy(1).

First we investigated the performance of the proposed rank transform statistic Q for

unbalanced factorial designs with independent observations. The simulated design has

three rows and six columns with unbalanced cell sizes N11 = 5, N12 = 7, N13 = 9,

N14 = 10, N15 = 7, N16 = 6, N21 = 9, N22 = 7, N23 = 6, N24 = 10, N25 = 6,

N26 = 5, N31 = 8, N32 = 7, N33 = 8, N34 = 5, N35 = 10, and N36 = 7. Three dif-

ferent ordered alternatives are considered. Under H1a, a monotone increasing alterna-

tive T = {0.175, 0.350, 0.525, 0.700, 0.875, 1.050} was specified. The corresponding cri-

terion ranking was set to be c = (0, 1, 2, 3, 4, 5). Under H2a, an up–and–down alter-

native T = {0.2, 0.6, 0.8, 0.8, 0.6, 0.2} was specified. The corresponding criterion rank-

ing was set to be c = (0, 2, 4, 4, 2, 0). Under H3a, a cyclic alternating alternative T =

{0.4, 1.0, 0.4, 1.0, 0.4, 1.0} was specified. The corresponding criterion ranking was set to be

c = (0, 3, 0, 3, 0, 3). We evaluated the proposed Q statistic with two score functions–normal

score and linear score, respectively. Our proposed method was compared with the least–

squares approach using the criterion ranking as the covariate. The corresponding results

are summarized in Table 9.2. It is demonstrated that the proposed statistic Q with normal

score and linear score both attain type I error rates close to the correct nominal level with

small sample size regardless of the underlying distributions. In contrast, the parametric

statistic only maintains type I error rate close to nominal level under normal distribution.

For the other three distributions, the type I error rates of the parametric statistic are ei-

ther inflated or deflated. With regard to power, the proposed nonparametric method is

slightly less powerful than the parametric method for normal distribution. For the other

three distributions, the proposed method consistently outperforms the parametric method

to a fairly large extent. Concerning different ordered alternatives, the proposed method

achieves satisfactory power for all the three ordered alternatives considered in the simu-



Nonparametric order–restricted 137

lation. In terms of different score functions, the test statistic with normal score appears

to have slightly better power than linear score for normal distribution. This could be due

to the fact that the normal score function is the optimum score function for normally dis-

tributed observations. For other distributions, it is also observed that the normal score

achieves better power than linear score in most of simulation settings. Nevertheless, the

difference appears to be marginal.

Next we investigated the proposed rank transform statistic Q for ordered alternatives

under repeated measures designs. Two different designs were considered. The first design

has three rows and six columns with equal cell sizes M = 20. This design corresponds

to the scenario that the number of treatments is small but the number of replications

is relatively large. Three different alternatives were simulated. Under H1a, we have a

monotone increasing alternative T = (1 : 6) ∗ 0.125; Under H2a, we have an up–and–down

alternative T = (1, 3, 4, 4, 3, 1) ∗ 0.14; Under H3a, we have a cyclic alternating alternative

T = (2, 5, 2, 5, 2, 5) ∗ 0.125. The design II has three rows and 20 columns with equal cell

size M = 6. This design corresponds to the scenario that the number of treatments is

relatively large whereas the number of replications within each cell is small. For design

II, three different alternatives were simulated. Under H1a, we have a monotone increasing

alternative T = (1 : 20) ∗ 0.035; Under H2a, we have an up–and–down alternative T =

(1 : 10, 10 : 1) ∗ 0.06; Under H3a, we have a cyclic alternating alternative T = (1 : 5, 1 :

5, 1 : 5, 1 : 5) ∗ 0.13. Equal correlation structure was generated among the column factors.

The summarized simulation results are provided in Table 9.3. It is demonstrated that the

rank transform statistic Q echoes similar performance for the repeated measures design as

that of the factorial designs with independent observations. For the first design scenario, it

controls the type I error rate at the correct level, whereas for the second design it maintains

the type I error rate close to but slightly above the significance level. For both designs,

the proposed test achieves satisfactory power for various distributions and different ordered

alternatives. Thus we can draw the conclusion that the number of replications within each

cell needs to be at least greater than 8 or 10 to maintain a very good type I error rate

control. Regarding the number of treatments, as long as it is a bounded finite number,

its size does not affect the validity of the proposed test. This observation also agrees with

the asymptotic behavior of the proposed test which is derived under the assumption that

the number of treatments is a finite number where the number of replications per cell goes

to infinity as the total sample size goes to infinity. Furthermore, the proposed method is
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advantageous compared to the parametric method for non–normal distributions.

To investigate the proposed statistics for alternatives of multiple sub–ordering, we

consider the treatment effects T = (T1, . . . , T7). The statistic Q1 is designed to test for

the sub–ordering O1 : T1 ≤ T2 ≤ T3; the statistic Q2 is designed to test for the sub–

ordering O2 : T3 ≥ T4 ≥ T5; the statistic Q3 is designed to test for the sub–ordering

O3 : T5 ≤ T6 ≤ T7. The statistic W is the chi–squared statistic for Ha :
⋃3

l=1 Ol. The

statistic R is the intersection test statistic for Ha :
⋂3

l=1 Ol. Independent observations

were simulated from two different noise distributions–N(0, 1) and lognormal(0, 1). The

simulated design has three rows and seven columns with cell sizes N11 = 15, N12 = 21,

N13 = 27, N14 = 30, N15 = 21, N16 = 18, N17 = 18, N21 = 27, N22 = 21, N23 = 18,

N24 = 30, N25 = 18, N26 = 15, N27 = 18, N31 = 24, N32 = 21, N33 = 24, N34 = 15,

N35 = 30, N36 = 21, N37 = 18. Table 9.4 provides the summary of the performance of

all the test statistics under different parameter settings. In the null situation, the treat-

ment effects were set to be T = (0, 0, 0, 0, 0, 0, 0). The Q1, Q2, Q3 statistics for each of

the sub–ordering and the W statistic for the union of the orderings maintain type I er-

ror rates close to the correct nominal levels. The R statistic for the intersection test has

very small type I error rate demonstrating its conservativeness. In the alternative situ-

ation I, the treatment effects were set to be T = (0.025, 0.35, 0.75, 0.90, 0.90, 0.90, 0.90),

for which only the O1 holds true among the three sub–orderings. Correspondingly the

Q1 statistic and the W statistic demonstrate the satisfactory power to detect the O1 and

the
⋃3

l=1 Ol. As the other two orderings do not hold true, both Q2 and Q3 demonstrate

very low empirical power. In the alternative situation II, the treatment effects were set

to be T = (0.30, 0.45, 1.05, 0.60, 0.45, 0.90, 1.20), for which all the O1, O2, and O3 hold

true. The Q1, Q2 and Q3 all demonstrate high power to detect each of the corresponding

sub–ordering. The intersection statistic R also demonstrates satisfactory power to detect

Ha :
⋂3

l=1 Ol. The performance of all the test statistics remains consistent between the

normal distribution and lognormal distribution. In conclusion the proposed Ql, W and R

are valid and powerful statistics to detect ordered alternatives with multiple sub–orderings.

To further compare the performance of the R statistic and the QE statistic based on the

extended criterion ranking, we consider the testing of simple tree ordering: Ha :
⋂7

l=2(T1 ≤
Tl). The simulated design has three rows and seven columns with cell sizes same as out-

lined in the paragraph above. Table 9.5 provides the summary of the performance of

the two test statistics under different parameter settings. In the null situation, the treat-
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ment effects were set to be T = (0, 0, 0, 0, 0, 0, 0). The QE statistic maintains type I er-

ror rate close to the correct nominal level. The R statistic for the intersection test has

very small type I error demonstrating its conservativeness. In the alternative situation

I and II, the simple tree order holds true and the treatment effects were set to be T =

(0.25, 0.9, 0.9, 0.90, 0.90, 0.90, 0.90), and T = (0.25, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95). Both

the QE statistic and the R statistic demonstrate the satisfactory power to detect the simple

tree order, whereas the power of QE is higher than that of the R statistic. In the alternative

situation III and IV, the simple tree order does not hold true with each inequality’s direction

reversed and the treatment effects were set to be T = (1.55, 0.9, 0.9, 0.90, 0.90, 0.90, 0.90),

and T = (1.55, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95). The intersection statistic R yields insignif-

icant result and leads to the correct conclusion. In contrast, the QE test statistic yields

highly significant result and leads to the incorrect conclusion. This result demonstrates

that although QE statistic is more powerful than the intersection statistic R under Ha, it

can incorrectly yield significant result when Ha does not hold true.

7. Data analysis

To illustrate the use of the proposed rank transform test, we considered a data set which

contains the data for 27 patients involved in a pilot study for a new treatment for AIDS

(Thompson, 1991). For each of the 27 patients, TMHR scores were gathered three times

during the study: at the beginning, after 90 days of treatment and after 180 days of

treatment. The study can be viewed as a one–way layout with repeated measurements.

The null hypothesis is that there is no effect over time. The previous analysis in Thompson

(1991) has found that the time effect is significant. However we were further concerned if

the change was in the correct direction. If the patients are improving, it is expected that

TMHR scores will follow a dramatic decrease from the initial date to 90 days and then

stabilize from the 90 days to the 180 days. Based on the hypothesized ordering of the time

effect T1 > T2 = T3, we set the criterion ranking to be (3, 2, 2). The rank transform method

yields χ2
1 = 96.92 with p–value< 10−16, whereas the least squares method yields t279 = 84.64

with p–value= 1.98×10−14. Both methods yield significant results to support the alternative

that the TMHR scores follow a decreasing trend. To investigate the robustness of the two

methods, the data of total 81 observations was modified to contain six outliers. For the

modified data, the rank transform method yields χ2
1 = 17.42 with p–value= 3 × 10−5,
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whereas the least squares method yields t79 = 0.1549 with p–value= 0.5614. The least

squares method fails to detect the decreasing trend in the modified data due to the existence

of outliers.

Next we investigated the biological trend underlying the gene expression levels of the

gene AA028265 from a microarray data set (Sandberg et al., 2000). The expression levels

were collected from two mouse strains (129SvEv vs. C57BL/6) and six different brain

regions (amygdala, cerebellum, cortex, entorhinalcortex, hippocampus and midbrain). The

data is provided in Table 9.6 in the Appendix. This experiment can be viewed as a two–way

layout with repeated measures on the factor of brain regions. Detecting the regional trend

of gene expression levels can help elucidate the unique functions and structures of each brain

region. It is observed that the expression levels of AA028265 consistently follow a monotone

increasing trend in the six brain regions throughout the samples. As the gene AA028265

encodes the fibromodulin, which is a collagen binding protein, it is hypothesized that the

expression level of AA028265 is correlated with the collagen composition in different brain

regions. To test if the observed monotone increasing trend is significant or not, we applied

our proposed method and the least squares method on this data. As there are only two

biological replications for each mouse strain, we proposed to use the permutation method to

evaluate the significance of the test statistics instead of the asymptotic limiting distribution.

To validate the permutation approach, we assumed equal correlations among the brain

regions. To perform the permutation, we randomly relabelled six region groups within

each biological sample and calculate the proportion of the resulting statistic being equal

to or larger than the observed statistic under the null hypothesis over 1,000 permutations.

The permutation p–value of the rank transform statistic is 0.005 while as the permutation

p–value of the least squares statistic is 0.018. The normal quantile plot of the 24 residuals

from the least squares fit was plotted and a deviation from normality was observed in the

data. This can explain why the nonparametric test yields more significant result compared

to the parametric method on this data set.

8. Conclusion

Based on the general definition of criterion ranking, we have proposed a rank based method

to test for ordered alternatives with monotone, non–monotone, or cyclical orderings. The

approach consists of measuring the Spearman correlation between the empirical ranking of
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the treatments and the criterion ranking induced by the alternative. The resulting Spear-

man correlation can be reformulated as a linear rank statistic regardless of the underlying

criterion ranking. Therefore all the asymptotic properties of the proposed statistic can

be investigated using the theoretical results pertaining to the linear rank statistics. Fur-

thermore, we have shown that the vector of Spearman correlations defined on multiple

subsets of treatment effects follows an asymptotic multivariate normal distribution. Thus

our proposed method is extended to test for incompletely ordered alternatives with multi-

ple sub–orderings. With regard to the types of designs, arbitrary unbalanced designs can

be analyzed by formulating the Spearman correlation in terms of a weighted linear rank

statistic. By taking into account the possible correlation structure on the treatment factor,

the method is extended to handle repeated measures designs. In conclusion, the proposed

nonparametric method provides a comprehensive tool to perform order–restricted inference

on a variety of design settings for a wide range of ordered alternatives.

9. Appendix

Proof of Theorem 3.1. Under the null hypothesis of no treatment effects, the distribution

function Fij(x) is reduced to F (x− θ − αi). The expression of the projection variable can

be simplified as

Z∗
ijn =

1

IJρij

∑

i′j′
(cj′ − cj)

∫ ∞

Xijn

φ′(H0(x))dFi′j′(x)

=
1

Jρij

∑

i′j′
(cj′ − cj)

∫ ∞

Xijn

φ′(H0(x))dH0(x)

=
(cj − c)

ρij

φ(H0(Xijn)) + c.

(9.1)

The constant c can be dropped as it does not attribute to the total variance. Further-

more, the asymptotic mean can be simplified as µ∗ =
∑

ijn
cj−c

ρij

∫
φ(H0(x))dFij(x) =

NI
∑

j(cj − c)
∫

φ(H0(x))dH0(x) = 0. The limiting distribution of Q follows.
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Proof of Theorem 3.4. Under the sequence of Pitman alternative, (Q− µN)/σN →
N(0, 1). As limN σ2

N = σ2
0, it follows that Q2/σ2

0 → χ2(∆R), with

∆R = lim
N→∞

µ2
N

σ2
0

=

β2I2

(∫
φ′(H0(x))H ′

0(x)dH0(x)
∑

j(cj − c)(tj − t)

)2

∑
i,j

1
ρij

(cj − c)2 varH0(φ(H0(Xi11)))

(9.2)

Proof of Theorem 3.5. Let M =
∑

i

∑
j

∑
n(Xijn−Xi..)(Wijn−Wi..). It follows that

E(M) =
∑

i

∑
j

∑Nij

n=1(θ +αi +βWijn)(Wijn−Wi..) = β
∑

i

∑
j ρij(cj−

∑
j

ρij

ρi.
cj)

2. Further-

more, as var(Xijn) = s2, we have var(M) = s2
∑

i

∑
j

∑
n(Wijn−Wi..)

2 = s2
∑

i

∑
j ρij(cj−∑

j
ρij

ρi.
cj)

2 According to the central limit theorem, we have

M − E(M)√
var(M)

d−→ N(0, 1), as N →∞. (9.3)

As ŝ2 → s2 a.s., we have |t2 −M2/var(M)| → 0 a.s. It follows that t2
d−→ χ2

1(∆P ), with

∆P =
(E(M))2

var(M)
=

β2

s2

∑
i

∑
j

ρij(cj −
J∑

j=1

ρij

ρi.

cj)
2. (9.4)

Proof of Lemma 3.6. Under balanced one–way layout, the noncentrality parameter

for the nonparametric method with linear score can be simplified as

∆R =
12β2

J

∑
j

(cj − c)2
(∫

H ′(x)dH(x)
)2

, (9.5)

whereas the noncentrality parameter for the parametric method can be simplified as

∆P =
β2

s2J

∑
j

(cj − c)2. (9.6)

Thus ARE = ∆R/∆P = 12s2(
∫

H ′(x)dH(x))2.

Proof of Theorem 5.1. Given any vector λ = (λ1, . . . , λL)′, λ′Q =
∑L

l=1 λlQl =∑
ijn(

∑L
l=1 λldl

ij)α
∗
ijn. Therefore, λ′Q can be viewed as a weighted linear rank statistic with

the bounded coefficients
∑L

l=1 λldl
ij. The projection of λ′Q onto Xijn is given by Vijn =∑L

l=1 λlZ
l
ijn. Thus limN→∞ 1/N var(λ′Q) = limN→∞ 1/N var(

∑
ijn

∑
l λlZ

l
ijn) = λ′Σλ ≥ 0.
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Unless 1/
√

Nλ′Q converges to a constant, we have the assurance that limN→∞ var(λ′Q)

→ ∞. Furthermore under the null hypothesis, E(Q) = 0. Thus according to Theorem 3

in Gao and Alvo (2005), we have 1/
√

Nλ′Q → N(0, λ′Σλ). Consequently the multivariate

normality of 1/
√

NQ follows.

Proof of Lemma 5.2. To find out the rank of the covariance matrix Σ, it is instruc-

tive to find the dimension of its null spaceN (Σ). If λ ∈ N (Σ), then λ′Σλ = 0. This implies

var[(
∑L

l=1 λl
√

ρij

∑
ij Z l

ij1)] =
∑

ij ρij var(
∑L

l=1 λlZ
l
ij1) =

∑
ij ρij var(

∑L
l=1 λld

l
ijφ(H0(Xij1))) =

0. As var(φ(H0(Xij1)) > 0, it follows that
∑L

l=1 λld
l
ij = 0, for all i, and j. Thus we have

Dλ = 0. This further implies that the solution space of Dλ = 0 is equivalent to the N (Σ).

Thus rank of Σ is equal to the rank of D.

Acknowledgments: The author thanks the editor, the associate editor and two ref-

erees for their valuable comments and insightful suggestions that led to a significant im-

provement of the material.

References

[1] Abelson, R. P. & Tukey, J. W. (1963). Efficient utilization of non–numerical information in
quantitative analysis: General theory and the case of simple order. Ann. Math. statist. 34
1347–1369.

[2] Alvo, M. & Cabilio, P. (1995). Testing ordered alternatives in the presence of incomplete
data. J. Amer. Statist. Assoc. 90 1015–1024.

[3] Conover, W. J. & Iman, R. L. (1976). On some alternative procedures using ranks for the
analysis of experimental designs. Commun. Statist. A5 1349–1368.

[4] Domhof, S. (2001). Nichtparametrische relative Effekte. PhD Thesis, University of Göttingen.
(webdoc.sub.gwdg.de/diss/2001/domhof/)

[5] Gao, X. & Alvo, M. (2005). A unified nonparametric approach for unbalanced factorial
designs. J. Amer. Statist. Assoc. 100 926–941.
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Table 9.1: ARE of the proposed rank transform statistic relative to the least squares
statistic for testing ordered alternative with linear trend

Distribution b Bal Design Unbal Design
C1 −−C3 C1 C2 C3

N(0, 1) 0 0.955 0.920 0.910 0.915
0.25 0.992 0.955 0.945 0.949

U(−− 1, 1) 0 1.000 0.963 0.952 0.958
0.25 1.039 1.000 0.989 0.994

logis(1) 0 1.097 1.056 1.046 1.051
0.25 1.111 1.070 1.060 1.065

dexp(1) 0 1.500 1.440 1.434 1.437
0.25 1.545 1.484 1.478 1.480

Table 9.1: The table lists the ARE values for balanced and unbalanced two–way layouts. The

balanced design has three rows and six columns with equal cell frequencies. The unbalanced design

has three rows and six columns with unequal relative cell frequencies. The parameter b measures

the location shift between blocks, i.e., F1(x) = F (x−−b), F2(x) = F (x), and F3(x) = F (x+b). The

ARE values were evaluated under three different sequences of Pitman alternatives which induce

three different criterion rankings: c1 = (0, 1, 2, 3, 4, 5), c2 = (0, 2, 4, 4, 2, 0), c3 = (0, 3, 0, 3, 0, 3).



146 Gao

Table 9.2: Type I error rates and power of the proposed rank transform test vs the least
squares test to detect ordered alternatives for factorial designs with independent observa-
tions

Dist Alternative Q∗ Q LS
N H1a 0.891 (0.046) 0.880 (0.049) 0.966 (0.056)

H2a 0.725 (0.057) 0.723 (0.063) 0.864 (0.050)
H3a 0.906 (0.054) 0.894 (0.050) 0.963 (0.053)

Outlier H1a 0.860 (0.042) 0.832 (0.042) 0.429 (0.079)
H2a 0.351 (0.075) 0.333 (0.074) 0.035 (0.000)
H3a 0.894 (0.047) 0.882 (0.043) 0.047 (0.027)

LogN H1a 0.855 (0.052) 0.810 (0.058) 0.510 (0.063)
H2a 0.659 (0.057) 0.627 (0.056) 0.393 (0.036)
H3a 0.849 (0.061) 0.818 (0.059) 0.541 (0.067)

Cauchy H1a 0.321 (0.047) 0.318 (0.048) 0.079 (0.040)
H2a 0.221 (0.053) 0.223 (0.055) 0.087 (0.050)
H3a 0.315 (0.046) 0.311 (0.049) 0.083 (0.025)

Table 9.2: The symbols Q∗ and Q stand for the proposed rank transform statistic with normal

score and linear score respectively. The symbol LS stands for the least–squares statistic. The

values inside parenthesis are the type I error rates are the values outside parenthesis indicate

the power. Three different ordered alternatives are considered: H1a, a monotone increasing

alternative T = {0.175, 0.350, 0.525, 0.700, 0.875, 1.050}; H2a, an up–and–down alternative T =

{0.2, 0.6, 0.8, 0.8, 0.6, 0.2}; H3a, a cyclic alternating alternative T = {0.4, 1.0, 0.4, 1.0, 0.4, 1.0}.



Nonparametric order–restricted 147

Table 9.3: Type I error rates and power of the proposed rank test for repeated measures
designs

Dist Design Alternative Q∗ Q LS
N I H1a 0.962 (0.056) 0.964 (0.059) 0.991 (0.058)

I H2a 0.877 (0.058) 0.878 (0.057) 0.951 (0.058)
I H3a 0.916 (0.064) 0.910 (0.053) 0.969 (0.064)
II H1a 0.967 (0.072) 0.969 (0.065) 0.994 (0.086)
II H2a 0.868 (0.076) 0.868 (0.075) 0.953 (0.075)
II H3a 0.908 (0.080) 0.910 (0.080) 0.975 (0.080)

Outlier I H1a 0.972 (0.050) 0.971 (0.048) 0.708 (0.021)
I H2a 0.757 (0.066) 0.740 (0.068) 0.132 (0.001)
I H3a 0.937 (0.056) 0.930 (0.058) 0.769 (0.038)
II H1a 0.975 (0.065) 0.970 (0.068) 0.662 (0.036)
II H2a 0.725 (0.078) 0.700 (0.070) 0.085 (0.000)
II H3a 0.926 (0.080) 0.928 (0.076) 0.654 (0.041)

LogN I H1a 0.947 (0.064) 0.931 (0.046) 0.635 (0.060)
I H2a 0.844 (0.048) 0.808 (0.051) 0.517 (0.058)
I H3a 0.911 (0.053) 0.888 (0.053) 0.546 (0.045)
II H1a 0.937 (0.063) 0.914 (0.071) 0.665 (0.080)
II H2a 0.852 (0.068) 0.822 (0.066) 0.534 (0.069)
II H3a 0.880 (0.085) 0.855 (0.087) 0.582 (0.090)

Cauchy I H1a 0.443 (0.057) 0.446 (0.057) 0.084 (0.035)
I H2a 0.302 (0.064) 0.301 (0.064) 0.077 (0.031)
I H3a 0.347 (0.043) 0.351 (0.042) 0.066 (0.037)
II H1a 0.392 (0.065) 0.386 (0.064) 0.101 (0.054)
II H2a 0.332 (0.073) 0.331 (0.071) 0.094 (0.058)
II H3a 0.366 (0.069) 0.361 (0.066) 0.109 (0.061)

Table 9.3: The design I has three rows and six columns with equal cell sizes M = 20. Three

different alternatives were considered: H1a, a monotone increasing alternative T = (1 : 6) ∗ 0.125;

H2a, a up–and–down alternative T = (1, 3, 4, 4, 3, 1) ∗ 0.14; H3a, a cyclic alternating alternative

T = (2, 5, 2, 5, 2, 5) ∗ 0.125. The design II has three rows and 20 columns with equal cell size

M = 6. Three different alternatives were considered: H1a, a monotone increasing alternative

T = (1 : 20) ∗ 0.035; H2a, an up–and–down alternative T = (1 : 10, 10 : 1) ∗ 0.06; H3a, a cyclic

alternating alternative T = (1 : 5, 1 : 5, 1 : 5, 1 : 5) ∗ 0.13.
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Table 9.4: Performance of the proposed rank transform tests to detect alternatives with
multiple sub–orderings

Parameter Statistic N(0, 1) LogN(0,1)
T = (0, 0, 0, 0, 0, 0, 0) Q1 0.046 0.040

Q2 0.040 0.059
Q3 0.056 0.066
W 0.059 0.056
R 0.002 0.001

T = (0.25, 0.35, 0.75, 0.90, 0.90, 0.90, 0.90) Q1 0.843 0.782
Q2 0.005 0.008
Q3 0.065 0.072
W 0.916 0.817

T = (0.30, 0.45, 1.05, 0.60, 0.45, 0.90, 1.20) Q1 0.991 0.982
Q2 0.943 0.890
Q3 0.994 0.980
R 0.933 0.869

Table 9.4: The design has three rows and seven columns with unequal cell sizes. The statistics

Q1 is designed to test for the sub–ordering O1 : T1 ≤ T2 ≤ T3; the statistics Q2 is for O2 : T3 ≥
T4 ≥ T5; statistics Q3 is for O3 : T5 ≤ T6 ≤ T7. The statistic W is the chi–squared statistic for

Ha :
⋃3

l=1 Ol. The statistic R is the intersection test statistic for Ha :
⋂3

l=1 Ol. In the null situation,

the treatment effects T = (0, 0, 0, 0, 0, 0, 0). In the alternative situation I, the treatment effects

T = (0.25, 0.35, 0.75, 0.90, 0.90, 0.90, 0.90), for which only the O1 holds true. In the alternative

situation II, the treatment effects T = (0.30, 0.45, 1.05, 0.60, 0.45, 0.90, 1.20), for which all the O1,

O2, and O3 hold true.
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Table 9.5: Comparison of the intersection test with the extended criterion ranking test

Parameter Statistic N(0, 1) LogN(0,1)
T = (0, 0, 0, 0, 0, 0, 0) T 0.062 0.063

R 0.001 0.001
T = (0.25, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90) T 0.992 0.940

R 0.826 0.692
T = (0.25, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95) T 0.993 0.940

R 0.803 0.665
T = (1.55, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90) T 0.990 1.000

R 0.000 0.000
T = (1.55, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95) T 0.990 1.000

R 0.000 0.000

Table 9.5: The design has three rows and seven columns with unequal cell sizes. The statistics QE

and R are designed to test for the simple tree ordering Ha :
⋂7

l=2(T1 ≤ Tl). In the null situation,

the treatment effects T = (0, 0, 0, 0, 0, 0, 0). In the alternative situation I and II, the treatment

effects T = (0.25, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90), and T = (0.25, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95),

for which Ha holds true. In the alternative situation III and IV, the treatment effects T =

(1.55, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90) and T = (1.55, 0.85, 0.95, 0.85, 0.95, 0.85, 0.95), for which Ha

does not hold true.



150 Gao

Table 9.6: The expression levels of Gene AA028265 in the microarray data of Sandberg et
al. (2000)

Strain Sample amygdale cere– cortex entorhinal– hippo– midbrain
ID bellum cortex campus

129SvEv I –96 –67 12 30 –72 53
129SvEv II –72 –41 –51 –61 58 120
C57BL III –107 22 23 59 111 130
C57BL IV –144 –58 –65 –73 –23 68


