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On an L-estimator with data-dependent

coefficients ∗

Yijun Zuo †and Du Juan ‡

Abstract

A classical L-estimator is a linear combination of order statistics with constant

coefficients. This paper studies an L-estimator which has data-dependent coefficients.

The paper focuses on the efficiency behavior of the estimator and addresses the ro-

bustness and the asymptotics issues as well. It turns out that the random-coefficient

estimator enjoys a remarkably high absolute efficiency relative to the most efficient

estimators at a variety of light and heavy tailed models while sharing the best break-

down point robustness of the univariate median. Findings in the paper suggest that

the random-coefficient L-estimator can serve very well as a location estimator and an

alternative to both the median and the mean.

1. Introduction Classical L-estimators of location parameters are defined to be linear

combinations of order statistics with constant coefficients; see, e.g., Serfling (1980). They

compete well against M - and R- estimators from both the efficiency and the robustness

view points. Indeed, the mean, an L-estimator, is most efficient at normal models whereas

the median, another L-estimator, is most robust. Both the mean and the median, however,

bear some shortcomings. For example, the median is just 64% efficient relative to the
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mean at normal models while the mean has the worst breakdown-point robustness (see

Section 3). The mean, albeit most efficient at normal models, is just 50% efficient relative

to the most efficient estimator, the median, at double exponential models. All these raise

a natural question as to whether there are estimators that can share the best robustness

of the median while possessing a universally high efficiency relative to the most efficient

estimators at different models.

The random-coefficient L-estimator studied in this paper provides a positive answer to

the question. The estimator has data-dependent coefficients. The idea of data-dependent

weighting dates back to Tukey (1970) or earlier. The estimator here has strong connections

to but different from, M -, Tukey W - and other existing estimators (see Section 6). Fur-

thermore, it has never been singled out and subjected to a careful scrutiny in the literature.

After defining the estimator in Section 2, the paper shows in Section 3 that it shares the

best breakdown point of the median and is locally robust with a bounded influence func-

tion. Asymptotic representation and limiting distribution of the estimator are presented in

Section 4. The large and finite sample efficiencies of the estimator relative to the median,

the mean, and the best estimators at a variety of light and heavy tailed symmetric and

asymmetric models with different weighting schemes are carefully examined in Section 5.

With appropriately selected weight functions, the estimator turns out to be overwhelmingly

more efficient than the median and the mean, except at the double exponential and the

normal models where the latter two are respectively most efficient. On the other hand,

the estimator enjoys remarkably high (about 90% or higher) efficiency relative to the most

efficient estimators universally across a variety of distributions range from very light to

very heavy tailed ones. The main body of the paper ends in Section 6 with discussions and

concluding remarks. Proofs of main results are reserved for the Appendix.

2. The random-coefficient L-estimator Consider location and scale models and

let µ and σ be some (initial) estimators of location and scale, respectively. Choices of

(µ, σ) include (the mean, the standard deviation) and (the median, the median absolute

deviation). Write µn and σn for µ(X) and σ(X) at a random sample X = {X1, · · · , Xn}.
Denote |x−µn|/σn, the scaled deviation of x to the center µ(X) of the data set, by d(x,X).

When x − µn = σn = 0, we defines d(x,X) = 0. The random-coefficient L-estimator, Ln,
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a scaled deviation weighted mean, is defined as

Ln :=
n∑

i=1

aniXni :=
n∑

i=1

w(d(Xi, X))Xi

/ n∑
i=1

w(d(Xi, X)) (2.1)

where Xn1 ≤ · · · ≤ Xnn are ordered values of X1, · · · , Xn, the random coefficient ani =

w(d(Xni, X))/
∑n

i=1 w(d(Xni, X)), and weight w(r) > 0 is bounded and even on [−∞,∞].

Throughout the paper let µ and σ be affine equivariant : µ(aX + b) = aµ(X) + b and

σ(aX + b) = |a|σ(X) for any a, b ∈ R1, where aX + b = {aX1 + b, · · · , aXn + b}. Roughly

speaking, this means that µ and σ do not depend on the underlying coordinate system

and measurement scale. Common choices of µ and σ are affine equivariant. This affine

equivariance implies that d(x,X) is affine invariant, that is, d(ax + b, aX + b) = d(x,X).

Consequently Ln is also affine equivariant. If Xi ∼ F is symmetric about a point θ ∈ R1

(i.e. ±(Xi − θ) have the same distribution), then so is Ln. Furthermore, if E(Xi) exists,

then Ln is unbiased for θ. Let Fn be the empirical version of F based on X and write

X and Fn interchangeably, then Ln = L(Fn) = L(X) with the functional L(·) defined as

follows:

L(F ) =

∫
xw((x− µ(F ))/σ(F ))dF (x)

/∫
w((x− µ(F ))/σ(F ))dF (x). (2.2)

Assume in the following the functionals µ(·) and σ(·) are affine equivariant, then so is L(·).
Further, L(·) is Fisher consistent in the sense that L(F ) = θ if F is symmetric about θ.

3. Robustness Robustness is a fundamental issue in statistics. Any statistical proce-

dures are desired to be robust. This section studies the robustness aspects of L(·). At the

sample level, we investigate its global robustness in term of the finite sample breakdown

point. At the population level, we examine its local robustness in term of the influence

function.

3.1. Finite sample breakdown point

This notion, introduced in Donoho and Huber (1983), has become the most popular quan-

titative measure of the global robustness of an estimator. Roughly speaking, the finite

sample breakdown point of a location estimator is the minimal fraction of “bad points” (or



On an L-estimator 27

contaminated points) in a data set that can render the estimator unbounded. More pre-

cisely, the replacement breakdown point (RBP) of an estimator Tn at X = {X1, · · · , Xn}
is defined as

RBP(Tn, X) = min{m

n
: sup

Xm

‖T (Xm)− T (X)‖ = ∞}, (3.1)

where Xm denotes a contaminated sample resulting from replacing m points of X with

arbitrary values. Clearly the sample mean has the lowest breakdown point 1/n whereas

the median (Med) can be seen to possess the highest one, b(n + 1)/2c/n, among all affine

equivariant estimators. Here bxc denotes the largest number no larger than x.

For a scale estimator S(·), we can define its breakdown point with the same definition

but with T (·) on the right side replaced by log(S(·)). That is, we say that Sn breaks down if

it vanishes or gets unbounded. If all the data points coincide, then any reasonable Sn will be

0 (hence breaks down). To avoid trivial cases like this, we will consider the random sample

X that is in general position, namely, data points of X are distinct with each other. For

X in general position, the standard deviation has the lowest breakdown point 1/n whereas

the median absolute deviation (MAD): MAD(X)=Med{|Xi−Med{Xi}|} is readily seen to

have the highest one, bn/2c/n, among all affine equivariant estimators. It turns out that

Ln can also have the best breakdown point with Med and MAD for µ and σ, respectively.

Theorem 3.1 Let µ = Med and σ = MAD. Let w(r) and rw(r) be bounded on [0,∞] and

inf0≤r≤1 w(r) > 0. Then for any X in general position, RBP (Ln, X) = b(n + 1)/2c/n.

From the proof we see that the theorem remains valid if Med and MAD is replaced with

any µ and σ that have the same breakdown points as those of Med and MAD respectively.

The restrictions on w are quite mild and examples of such w are given in later sections.

The random-coefficient L-estimator shares with the median the best breakdown point.

As a global robustness measure, the breakdown point alone, however, does not depict the

entire picture of the robustness of the estimator. The influence function of the estimator

provided in the next section can complement the picture and fill the local robustness gap.

3.2. Influence function and gross error sensitivity

Denote by δx the point mass probability distribution at a fixed point x ∈ R1. For a given

distribution F and an ε > 0, the distribution resulting from contaminating F with an ε
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amount of δx is denoted by F (ε, δx) = (1−ε)F +ε δx. The influence function of a statistical

functional T at a given point x ∈ R1 for a given F is defined as [see Hampel et al. (1986)]

IF (x; T (F )) = lim
ε→0+

T (F (ε, δx))− T (F )

ε
. (3.2)

This function describes the relative effect (influence) on T of an infinitesimal point-mass

contamination at x, capturing the local robustness of T . A functional with a bounded

influence function is therefore robust and desirable. The supremum of |IF (x; T (F ))| is

called the gross error sensitivity (GES) of T at F [see Hampel et al. (1986)]. That is

GES (T (F )) = sup
x∈Rd

|IF(x; T (F ))|, (3.3)

which is the maximum relative effect on T of an infinitesimal point-mass contamination

and measures the local (and the global in some sense as well) robustness of T .

The functional L(·) turns out to possess a bounded influence function for appropriate

µ and σ as shown in the following result. Hence L(·) is locally robust.

Theorem 3.2 Let IF(x; µ(F )) and IF(x; σ(F )) exist for x ∈ R1, w(r) be continuously

differentiable on [0,∞], and
∫ |w′(d(y, F ))|(d(y, F ))idF (y) < ∞ (i = 1, 2). Then

IF(x; L(F )) =

∫
w′(d(y, F ))(y − L(F ))IF(x; d(y, F ))dF (y) + (x− ÃL(F ))w(d(x, F ))∫

w(d(y, F ))dF (y)
,

(3.4)

where

IF(x; d(y, F )) =
Iy=µ(F )|IF(x; µ(F ))| − sign(y − µ(F ))IF(x; µ(F ))− d(y, F )IF(x; σ(F ))

σ(F )
,

(3.5)

and the gross error sensitivity of L(F ), supx |IF(x; L(F ))|, is finite as long as those of µ(F )

and σ(F ) are finite and rw(r) is bounded on [0,∞].

Location and scale measures that possess bounded influence functions include a large

class of M -functionals; see Huber (1981). The Med and MAD are the special cases in the

class. The restrictions on w are mild and examples of such w are given in later sections.

When F is symmetric about a point θ, the influence function in the theorem simplifies.

Since L(F ) is affine equivariant, we can assume without loss of generality that θ = 0.
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Corollary 3.3 If F is symmetric about 0, then under the conditions of Theorem 3.2,

IF(x; L(F )) =
(∫

−w′(|y|)|y|IF(x; µ(F ))dF0(y) + xw(|x|/σ(F ))
)/∫

w(|y|)dF0(y),

(3.6)

where F0(y) = F (σ(F )y). The gross error sensitivity of L(F ) is finite as long as that of

µ(F ) is and rw(r) is bounded on [0,∞]. When µ = Med, f(0) = F ′(0) > 0, then

GES (L(F )) =
(∫

−w′(|y|)|y|dF0(y)/(2f(0)) + σ(F ) sup
r>0

rw(r)
)/∫

w(|y|)dF0(y), (3.7)

if the numerator is positive, otherwise

GES (L(F )) =

∫
w′(|y|)|y|dF0(y)/(2f(0))

/∫
w(|y|)dF0(y), (3.8)

The corollary indicates that the influence function of L(F ) does not depend on that of

the scale functional as long as F is symmetric about a point θ ∈ R1. A sufficient condition

for the display (3.7) to hold is that w(r) is non-increasing on [0,∞). This condition, of

course, will fail the display (3.8). That is, for (3.8) w(r) must increase for r in some part

of [0,∞).

Both the median and the L functionals (with appropriate choices of µ and σ) share

the best global robustness in terms of their breakdown point. Both are also locally robust

in terms of their bounded gross error sensitivities. In light of these, they are equally

robust. A possible more detailed comparison between the two, of course, is to see how large

their gross error sensitivities are. The median has a very moderate gross error sensitivity

1/(2f(0)) for F symmetric about 0 with f(0) = F ′(0) > 0. An immediate question is can

the GES (L(F )) in Corollary 3.3 be smaller than GES (Med(F ))? From the GES (L(F ))

results in Corollary 3.3, this seems possible for suitable w and F . For example, when the

display (3.8) is true, this holds if
∫

w′(|r|)|r|dF0(r) <
∫

w(|r|)dF0(r) for appropriate w and

F . Providing some examples of such w and F seems non-trivial though. On the other

hand, when w is non-increasing and f is unimodal, the answer to the above question is

negative.

Theorem 3.4 Assume that the density f(x) of F is even and non-increasing on [0,∞) and

that w(r) is non-increasing on [0,∞]. Let µ = Med. Then GES (L(F )) ≥ GES (Med(F )).
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The theorem indicates that the gross error sensitivity of the median can not be improved

if (i) the median itself is employed to define the L functional, (ii) the weight function in L

is non-increasing, and (iii) the distribution F is symmetric with a non-increasing density.

Now a natural question raised is: how larger can the gross sensitivity of L be, compared

to that of the median under the setting of Theorem 3.4? To partly answer the question, we

consider, for simplicity, the likelihood weighting scheme case. That is, w(r) is the Lebsegue

density f0(r) of F0(r). Under the setting of Theorem 3.4, we observe that

∫
−w′(|y|)|y|dF0(y) = 2

∫ ∞

0

−f ′0(y)yf0(y)dy =

∫ ∞

0

f 2
0 (y)dy =

1

2

∫
w(|y|)dF0(y).

Let N(f) = supr>0 rf(r) and D(f) =
∫∞

0
f 2(r)dr. Then it is readily seen that

GES (L(F )) = (1/(2f(0)) + N(f)/D(f))/2. (3.9)

It is interesting to note that the scale measure σ plays no role in GES (L(F )) in this setting.

The distribution of greatest interest is, of course, the normal. We have D(f) = 1/(4
√

π)

and N(f) = 1/
√

2eπ. Thus GES (Med(F )) =
√

π/2 <
√

π/8 +
√

2/e) = GES (L(F ).

For a slightly heavier tailed one, the logistic LG(0, 1) with p.d.f. 1/(ex/2 + e−x/2)2,

D(f) = 1/12 and N(f) = 0.22387. Thus GES (Med (LG(F))) = 2 < 2.34323 = GES (L(F )).

For the double exponential DE(0, 1) with p.d.f. e−|x|/2, a yet more heavier tailed one,

D(f) = 1/8 and N(f) = 1/(2e). Thus GES (Med (DE(F))) = 1 < 1/2+2/e = GES (L(F )).

Finally for the most heavy tailed one, the Cauchy CAU(0, 1) with p.d.f. 1/(π(1 + x2)),

D(f) = 1/(4π) and N(f) = 1/(2π). GES (Med (DE(F))) = π/2 < π/4 + 1 = GES (L(F )).

We now list the above results in the following table.

Table 1. The gross error sensitivity of the median and L functionals

distribution F N(0, 1) LG(0, 1) DE(0, 1) CAU(0, 1)

GES (Med(F )) 1.2533 2.0000 1.0000 1.5708

GES (L(F )) 1.4844 2.3432 1.2358 1.7854

Remark 3.5 (i) The table indicates that supx |IF(x; Med(F ))| is (slightly) smaller than

that of L(F ) for all the four distributions. The median has a slight advantage over the
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L functional in term of the worst case relative influence of an infinitesimal point mass

contamination on the underlying estimator. (ii) On the other hand, |IF(x; Med(F ))| is

actually greater than that of L(F ) for most of points x ∈ R1 for these distributions, as

exemplified in Figure 1. (iii) This implies that the relationship between E(IF2(X; Med(F ))

and E(IF2(X; L(F )), the asymptotic variances of the median and the L estimator, can be

the very opposite, namely, E(IF2(X; Med(F )) > E(IF2(X; L(F )). Indeed, this is the case

for three of the four distributions, as shown in Section 5.
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Figure 3.1: The influence functions of Med(F ) and L(F ) at normal (left) and Cauchy (right) F .

4. Asymptotics Asymptotic results offer guidance for finite sample practice. They

are often employed to develop practical inference procedures. Indeed, the essence of model

statistical practice is asymptotic approximation. Here we focus on the asymptotic normality

of L(Fn). The strong consistency of L(Fn) can be established in a similar but less involved

manner with much less (and weaker) assumptions. Let Fn be the empirical version of F

based on a random sample from F . To establish desired results, we need the following

condition:

C: µ(Fn)− µ(F ) =
1

n

n∑
i=1

fµ(Xi) + op(
1√
n

), σ(Fn)− σ(F ) =
1

n

n∑
i=1

fσ(Xi) + op(
1√
n

),

where Xi ∼ F , Efµ(Xi) = Efσ(Xi) = 0 and Ef 2
µ(Xi) and Ef 2

σ(Xi) exist, i = 1, · · · , n.

Condition C holds true for smooth M -estimators of location and scale; see p.133 (The-

orem 3.1) of Huber (1981), for example. It also holds for less smooth estimators such as

Med and MAD at smooth F ; see Theorem 2.5.1 of Serfling (1980), for example.
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Theorem 4.1 Let w′(r) be continuous and w(∞) = 0, µ(Fn) and σ(Fn) be strongly con-

sistent for µ(F ) and σ(F ), respectively, condition C hold, and P (X = µ(F )) = 0. Then

L(Fn)− L(F ) =
1

n

n∑
i=1

g(Xi) + op(
1√
n

),

where

g(x) =

∫
(L(F )− y)w′(d(y, F ))

d(y,F )fσ(x)+sign(y−µ(F ))fµ(x)

σ(F )
dF (y) + (x− L(F ))w(d(x, F ))∫

w(d(y, F )dF (y)

and Eg(X) = 0 and v := Eg2(X) < ∞. Hence
√

n (L(Fn)− L(F ))
d−→ N(0, v).

The consistency of L(Fn) follows. The proof of the theorem indicates that the strong

consistency of L(Fn) can be established less challengingly under weaker assumptions. Note

that g(x) has exactly the same form as IF(x; L(F )) except with IF(x; µ(F )) and IF(x; σ(F ))

replaced by fµ(x) and fσ(x) respectively. In the location setting, it is very common to

assume that F is symmetric, say, about 0, by virtue of the affine equivarience of the

underlying location estimator. For symmetric F about the origin, g(x) takes a much

simpler form which also does not depend on fσ, as manifested in the following result.

Corollary 4.2 Let F be symmetric about 0. Then under the conditions of Theorem 4.1,

the results in the theorem hold with

g(x) =
(
−

∫
|r|w′(|r|)dF0(r) fµ(x) + xw(|x|/σ(F ))

)/∫
w(|r|)dF0(r),

where F0(r) = F (σ(F )r). When µ = Med and f(0) = F ′(0) > 0, fµ(x) = sign(x)/(2f(0)),

v =
(
a2 + 2a

∫
|x|w(|x|/σ(F ))dF (x) +

∫
x2w2(|x|/σ(F ))dF (x)

)/
b2,

where a = − ∫ |r|w′(|r|)dF0(r)/(2f(0)) and b =
∫

w(|r|)dF0(r).

The asymptotic result can be very useful for inferring the underlying location parameter

in practice. Although, quantities such as a and b in v are unknown, we can use the

corresponding sample versions as strong consistent estimators. The density f(0) can be

dealt with in the same manner as done in the inference procedures of the median and

quantiles. Furthermore, bootstrap technique can be employed. Details will not be pursued

here.
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5. Efficiency Efficiency is another main concern in statistics in addition to robustness.

Statistical procedures are desired to be efficient. This section investigates the large as well

as finite sample relative efficiency of Ln. The asymptotic results in the last section become

very useful here.

5.1. Asymptotic relative efficiency

Throughout the subsection, we assume that F is symmetric about 0, unless stated other-

wise.

Likelihood weighting First we revisit the convenient case that w(x) is the same as

f0(x), the density of F0(x). This weighting scheme actually is a very reasonable one: points

are weighted based on their likelihoods and large likelihoods correspond to large weights.

With this likelihood weighting and µ = Med, g(x) in Corollary 4.2 takes the following form

g(x) =
(∫ ∞

0

f 2(r)dr/(2f(0)) + |x|f(|x|)
)
sign(x)

/(
2

∫ ∞

0

f 2(r)dr
)
, (5.1)

which has nothing to do with σ(F ) any more. Now a straightforward calculation gives

v =
1

4

( 1

2f(0)

)2

+
( 1

2f(0)

)∫∞
0

rf 2(r)dr∫∞
0

f 2(r)dr
+

∫∞
0

r2f 3(r)dr

2
(∫∞

0
f 2(r)dr

)2 := σ2
Ln

, (5.2)

where σ2
Tn

denotes the asymptotic variance of
√

n (Tn − T (F )) for an estimator Tn. Note

that σ2
Med = (1/2f(0))2 and σ2

X̄n
= 1, π2/3, 2, ∞, respectively, for the four distributions in

Table 1. We now list the asymptotic relative efficiencies of Ln and Med as follows.

Table 2 Asymptotic relative efficiency of Ln with w(r) = f0(r)

distribution F N(0, 1) LG(0, 1) DE(0, 1) CAU(0, 1)

σ2
Med/σ

2
Ln

1.0580 1.0751 0.9558 1.1656

σ2
X̄n

/σ2
Ln

0.6735 0.8843 1.9115 ∞

σ2
X̄n

/σ2
Med 0.6366 0.8225 2.0000 ∞

The random-coefficient estimator Ln outperforms the median in but the double expo-

nential distribution case where it is about 96% efficient relative to the median. The latter
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case is no surprising since in this case the median is the uniformly minimum variance

unbiased estimator (UMVUE). It even attains the Cramér-Rao lower bound.

There are two immediate concerns about the likelihood weighting scheme. First, one

has to estimate the likelihood function f(x), which can be even more challenging than

estimating the location parameter in practice, and there is no fixed weight function. Second,

the random-coefficient estimator, albeit more efficient than the median in most cases, has

a low efficiency relative to the mean at light tailed (normal and logistic) distribution cases.

Outlyingness weighting Here we propose a single weight function so that Ln can

have all the advantages in the likelihood weighting case but be very efficient relative to the

sample mean at light tailed distributions. The weight function w(x), which is continuously

differentiable on [0,∞] , takes the following form (cf Zuo, Cui and He (2004))

w(x, c, k) = I(x ≤ c) + (e−k(1−((1+c)/(1+x))2)2 − e−k)/(1− e−k)I(x > c), (5.3)

where 0 ≤ c < ∞ and k > 0 are two parameters. The function is plotted in Figure 2.
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Figure 5.2: The weight function w(x, c, k) and its derivative functions w′(x, c, k).

The basic idea of this weight function is as follows. Points close to the center of sym-

metry are treated equally (and simply get averaged) and those away from the center are

exponentially down-weighted based on their relative distance to the center. The parameter

c controls the proportion of central points to be averaged and k determines the exponential

down-weighting rate. Generally speaking, a large c is favorable at light tailed distributions

whereas a small c at heavy tailed ones. The same is true in general for the parameter k.
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A natural question raised here is how to determine the values of c and k for a given

distribution or data set. We discuss a fully and a partially adaptive approaches here.

First, we can, of course, select the most favorable ones at each given model by appro-

priately tuning the parameters. For example, at normal models, if we select an extremely

large c, then Ln becomes the most efficient sample mean. On the other hand, at double

exponential models, if we let c be 0 and k be extremely large, then Ln becomes the most

efficient median. The true distribution, of course, is unknown in practice. So for a given

data set, we may select c and k such that the resulting Ln has the smallest sample variance.

Here c and k become data-dependent. We can denote them by cn and kn. Suppose that

for a given population distribution F there are optimal values c(F ) and k(F ) (the ones

that can minimize the asymptotic variance of Ln). Then one can show that cn and kn are

consistent estimators of c(F ) and k(F ) under some regularity conditions. Employing em-

pirical process theory, one can further show that the asymptotic results in the last section

still hold. Proofs and further details of this fully adaptive approach will not be pursued

here.

Instead, we now focus on a partially adaptive approach and give a general rule here

for selecting the values of k and c. If the distribution is light tailed, we select c = 4σ(F )

(σ = MAD); otherwise, we take c = σ(F )/4 (a more involved way is to replace 4 with

σ2
Med/σ

2(F ).) For simplicity, we fix k = 3 here. To determine if a distribution is light

or heavy tailed, we can employ various tail indices (or tail probabilities) in the literature.

Another way we propose here is to simple check the ratio of σ2
Med/σ

2
X̄n

. If it is greater than

0.9, we treat F as light tailed, or heavy tailed otherwise. Note that at the sample level, all

the above quantities can be approximated by the corresponding (strongly consistent) sample

versions. (With the help of empirical process theory, one can prove that the asymptotic

results in the last section remain valid for a weight function with random parameters.

Details will not be pursued here though. Details will not be pursued here.) Table 2 lists

the efficiency results of Ln relative to Med and X̄n with w(x, c, k) as the weight function.

Table 3 Asymptotic relative efficiency of Ln with w(r) = w(r, c, 3)



36 Zuo

distribution F N(0, 1) LG(0, 1) DE(0, 1) CAU(0, 1)

c = 4σ(F ) c = 4σ(F ) c = σ(F )/4 c = σ(F )/4

σ2
Med/σ

2
Ln

1.5071 1.2572 0.9782 1.1054

σ2
X̄n

/σ2
Ln

0.9595 1.0340 1.9563 ∞

σ2
X̄n

/σ2
Med 0.6366 0.8225 2.0000 ∞

The table contains two striking results. First, the efficiency of Ln with w(x, c, k) is

universally improved relative to that given in Table 2 with the likelihood weighting, expect

in the cauchy case where it is very slightly reduced (but still higher than that of the median).

The median is only about 66%, 80%, and 90% efficient relative to Ln at normal, logistic,

and cauchy models, respectively. At double exponential model where the median performs

the best, Ln still possesses a 98% relative efficiency. Second, Ln with w(x, c, k) becomes

extremely efficient at light tailed distributions. At normal model where the mean performs

the best, it is 96% efficient. At logistic model, it is more efficient than the mean.

The efficiency of Ln relative to the best estimators, which is called absolute efficiency;

see, e.g., p. 363 of Lehmann (1983), is very high at normal and double exponential models.

A very relevant question is how is the performance of Ln at other two models relative to the

best possible estimators? We answer this question by calculating the ratio of Cramér-Rao

lower bound (crlb) to σ2
Ln

at these models. The results are given in Table 4 below.

Table 4 Absolute efficiency of Ln with w(r) = w(r, c, 3)

distribution F N(0, 1) LG(0, 1) DE(0, 1) CAU(0, 1)

c = 4σ(F ) c = 4σ(F ) c = σ(F )/4 c = σ(F )/4

crlb/σ2
Ln

0.9595 0.9409 0.9782 0.8960

The estimator Ln is about 90% or high efficient relative the most efficient estimator

at each model. This is remarkable. Leading competitors in the literature include Hodges-

Lehmann estimator and the 12.5% trimmed mean. Their absolute efficiency [see p. 364 and

p. 386 of Lehmann (1983)] is comparable to that of Ln, though lower in most cases. These

two estimators, however, pay a price of very low breakdown points for the high efficiencies.
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Tukey bi-weighting The surprisingly high efficiency values of Ln resulting from

the use of w(r, c, k) raise the question as to whether other popular weight functions could

do a even better job. A very popular weight function in the literature is Tukey bi-weight

function

wT (x, c) = x(1− (x/c)2)2I(x <= c), x ∈ [0,∞), (5.4)

where c > 0 is a parameter. The efficiency of Ln with this function, however, is lower than

that with w(x, c, k) at all the four models. Indeed, even with the best choice of c (resulting

in the maximum efficiency) at each of the four different models, the asymptotic efficiency of

Ln relative to the median is respectively 123.31%, 106.33%, 95.77%, and 108.30% instead

of 150.71%, 125.72%, 97.82%, and 110.54% in the w(x, c, k, ) case given in Table 3.

Contaminated models In practice, data may not follow exactly the models discussed

above. For example, we may have the contaminated normal distribution suggested by Tukey

(1960) as a model for observations, which usually follow a normal distribution but where

occasionally something goes wrong with the experiment or its data processing step so that

the resulting observation is a gross error. A legitimate concern about the location estimators

above is how do they perform when the underlying models are slightly contaminated.

That is, are the efficiency results robust against the model assumptions? We select the

(Tukey) contaminated normal model, as an example, to investigate the asymptotic efficiency

behavior of the estimators. Under this model, the distribution takes the form

F (x; ε, τ) = (1− ε)Φ(x) + εΦ(x/τ), 0 < ε < 1/2, 1 < τ. (5.5)

It has the same mean θ (which is assumed to be 0 w.l.o.g.) but a larger variance. For this

mixture F , the density is f(x; ε, τ) = (1− ε)φ(x) + ε
τ
φ(ε/τ) and σ2

X̄n
= (1− ε) + ετ 2, where

φ(x) is the p.d.f. of the standard normal distribution. We now list the efficiency results for

a number of combinations of ε and τ (as before MAD is the scale measure σ).

Table 5 Asymptotic relative efficiency of Ln at F (x; ε, τ ) with

w(r) = w(r, 4σ(F ), 3)

distribution F F (x; 0.01, 5) F (x; 0.05, 4) F (x; 0.10, 3) F(x; 0.15, 2)

σ2
Med/σ

2
Ln

1.5112 1.4868 1.4211 1.4085

σ2
X̄n

/σ2
Ln

1.1739 1.5345 1.4186 1.1124

σ2
X̄n

/σ2
Med 0.7768 1.0321 0.9982 0.7898
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The table conveys some remarkable messages. Firstly, Ln is overwhelmingly more ef-

ficient than the median in all cases. Indeed the median is only about 66%, 67%, 70%

and 71% efficient relative to Ln in the four cases, respectively. Secondly, Ln outperforms

the sample mean X̄n in all cases. Note that the mean is the best location estimator (the

UMVUE) without the slight contamination. Thirdly, with some special combinations ε and

τ (4((1 − ε) + ετ 2)f 2(0; ε, τ) > 1), it is seen that the median can be more efficient than

the mean when the distribution slightly deviates from a pure normal model. Note that the

combinations in Table 4 are in favor of the mean. A large τ accompanied with a large ε

would lead to a relatively worse performance for the mean and a relatively better one for

Ln and the median. Finally, our calculation indicates that the variances of Ln (and Med)

are very robust against slight departure from the assumed distribution.

5.2. Finite sample relative efficiency

All the results in the last section are in the asymptotic nature. This naturally raises con-

cerns about their validity and relevance in finite sample applications. Indeed, asymptotic

results are often vulnerable to criticism for their merits in finite sample practice. We address

this concern in this section with finite sample simulations.

Here we first generate 1000 samples of size 50 from each of the four models in Table 3.

Then we calculate Ln, the median, and the mean for each of the 1000 samples. Finally we

calculate the sample variance (denoted by s2
Tn

for an estimator Tn) of the 1000 estimates

at each of the three cases. The weight function w(x, c, 3) is used for Ln with c = σ(Fn) ∗ 4

or σ(Fn)/4 for light or heavy tailed models, respectively. Here σ = MAD and µ = Med.

The efficiency results, listed in Table 6 below, are strikingly close to the asymptotic ones

in Table 3 except in the double exponential case for the efficiencies of Ln and the median

relative to the mean (1.6403 and 1.6469 in Table 6 versus 1.9563 and 2.0000 in Table 4).

The slow convergence in this cases presumably is due to the lack of smoothness of f at

zero.

Again Ln is seen to be much more efficient than the median except at the double

exponential case. In the latter case it is almost as efficient as the median. But in the other

three cases, the median is only about 68%, 79%, and 89% efficient relative to Ln. On the

other hand, unlike the median, Ln is very efficient (with efficiency about 92% and 106%)

relative to the mean at normal and logistic (light tailed) distributions and overwhelmingly

more efficient than the mean at heavy tailed ones (164% and 576× 106 %).
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Table 6 Finite sample relative efficiency of Ln with n = 50, w(r) = w(r, c, 3)

distribution F N(0, 1) LG(0, 1) DE(0, 1) CAU(0, 1)

c = 4σ(Fn) c = 4σ(Fn) c = σ(Fn)/4 c = σ(Fn)/4

s2
Med/s

2
Ln

1.4642 1.2641 0.9960 1.1287

s2
X̄n

/s2
Ln

0.9179 1.0567 1.6403 5.7596× 106

s2
X̄n

/s2
Med 0.6269 0.8359 1.6469 5.1031× 106

As pointed out hereinbefore, data in practical applications do not follows exactly the

above four distributions, it is therefore important to examine the relative efficiency of Ln

at slightly contaminated models. We select the Tukey contaminated normal model again

to exemplify the finite sample behavior of Ln. In practice, the contaminating distribution

is most likely to have a small location change as well in addition to the scale change. We

therefore consider the contaminated model which takes the following form

F (x; ε, τ, η) = (1− ε)Φ(x) + εΦ((x− η)/τ), 0 < ε < 1/2, −∞ < η < ∞, 1 < τ. (5.6)

We generate 1000 samples of size 50 from this model and calculate Ln, the median, and the

mean for each samples as before. The weight function w(x, c, 3) with c = 4σ(Fn) is used

for Ln. Again µ = Med and σ = MAD. Since the target location parameter θ is still 0, we

will calculate the empirical mean squared error: mseTn = 1
m

∑m
i=1(T

i
n−0)2 for an estimator

Tn. Here m = 1000 and n = 50. The ratio of the empirical mean squared errors will be

used for the relative efficiency. The results are listed in Table 7 below.

Table 7 Finite sample relative efficiency of Ln with

n = 50, w(r) = w(r, 4σ(Fn), 3)

distribution F F (x; 0.02, 5, 0.5) F (x; 0.04, 4, 1) F (x; 0.10, 3, 1.5) F(x; 0.14, 2, 2)

mseMed/mseLn 1.4764 1.3238 1.2430 0.9520

mseX̄n
/mseLn 1.4669 1.3574 1.9143 1.9098

mseX̄n
/mseMed 0.9936 1.0254 1.5401 2.0061
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The table entries indicates that under these contaminated normal models Ln is more

efficient than the median except at one case where it is 95.2% efficient relative to the

median. On the other hand, Ln is overwhelmingly more efficient than the mean which is

the best estimator if the underlying model is not slightly contaminated. The histograms of

the 1000 medians, means, and Ln’s based on the samples from F (x; 0.02, 5, 0.5) are given in

Figures 2 and 3. The superiority of Ln over the median and the mean is very clear visually.

6. Concluding remarks The random-coefficient estimator Ln shares the best break-

down point robustness of the median while possessing a overwhelmingly high efficiency

relative to the latter and the mean at a variety of light- and heavy- tailed distributions

with appropriate (outlyingness) weighting schemes. In fact, it can be much more efficient

than both the median and the mean for the most models considered in the paper. Further,

it enjoys an extremely high (about 90% or higher) absolute efficiency at the four distribu-

tions considered. In the more practical contaminated model settings, Ln can outperform

both the mean and the median at most light- and heavy- tailed distributions we considered.

Findings in the paper indicate that Ln can serve very well as an alternative to both the

mean and the median in practice.

The success of Ln is mainly due to the random weighting idea. The latter appeared in

the literature and consequently Ln has close connections with existing estimators. First,

Ln is of the exact form of Tukey W-estimator: Tn =
∑n

i=1 wiXi/
∑n

i=1 wi. It, however, is

not a W-estimator since the latter is defined implicitly with wi = w((Xi − Tn)/(cσn)) for

the bi-weight w and σn =MADn; see, e.g., page 205 of Mosteller and Tukey (1977). It can

be viewed as a one-step W-estimator with µn as the initial estimate of Tn, nevertheless.

Second, Ln clearly is the solution of
∑n

i=1 w((Xi − µn)/σn)((Xi −Ln)/σn) = 0. On the

other hand, an M -estimator Tn is the solution of
∑n

i=1 ψ(Xi, Tn) = 0; see, e.g., Serfling

(1980). Hence Ln is not exactly an M -estimator. Neither is it an M -estimator with an

initial scale estimate, the solution of
∑n

i=1 ψ((Xi − Tn)/σn) = 0; see Huber (1981). It can

be viewed as a one-step M -estimator with initial scale and location estimates σn and µn.

Third, note that a weighted least squares estimator with an initial scale estimate mini-

mizes:
∑n

i=1 w((Xi − θ)/σn)((Xi − θ)/σn)2, among all θ ∈ R1. Thus, Ln can be viewed as

a weighted least squares estimator with initial scale and location estimates σn and µn since

it minimizes:
∑n

i=1 w((Xi − µn)/σn)((Xi − θ)/σn)2, among all θ ∈ R1.
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Finally, Ln can be viewed as a special one-dimensional version of Stahel-Donoho (Stahel

(1981), Donoho (1982)) or more generally the multi-dimensional data depth weighted esti-

mators discussed in Zuo, Cui and He (2004) and Zuo, Cui and Young (2004). The latter two

papers focus on the general multi-dimensional versions and establish general results under

very general (and hence strong) assumptions. This paper, on the other hand, focuses on

the performance evaluation (relative efficiency) of Ln with respect to leading competitors.

It also scrutinizes the robustness and asymptotic properties of this special one-dimensional

case in a more precise manner and obtains specific and stronger results under weaker and

more precise conditions. Furthermore, it covers topics such as gross error sensitivity and

asymptotic efficiency that are not treated in the aforementioned two papers.

7. Appendix: proofs of main results Proof of Theorem 3.1. Write µ and σ for

Med and MAD for convenience. Recall that we adopt the convention that (y − µ(Z))/σ(Z) =

0 if y−µ(Z) = σ(Z) = 0 for any y and data Z = {Z1, . . . , Zn} in R1 throughout the paper.
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Figure 7.3: The histograms of 1000 medians (left) and Ln’s (right) based on F (x; 0.02, 5, 0.5).

First, we show that m = b(n + 1)/2c points are sufficient to breakdown Ln. Move m

original points in X to the same site y and let y →∞. Denote by Z = Xm = {Z1, . . . , Zn}
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Figure 7.4: The histograms of 1000 means (left) and Ln’s (right) based on F (x; 0.02, 5, 0.5).

the contaminated data set. Since n −m < (n + 1)/2, thus σ(Z) → ∞. It is readily seen

that d(y, Z) = 0 for odd n and = 1 for even n. Hence wi = w(d(Zi, Z)) ≥ δ > 0 for some δ

and for all m points Zi at y. It is readily seen that the numerator of Ln approaches infinity

as y →∞ while the denominator is no less than mδ. Hence m points can break down Ln.

Second, we show that m − 1 points are not sufficient to breakdown Ln. We first show

that the denominator of Ln is uniformly bounded away from zero for any Z resulting form

contaminating X with m−1 points. Let Z = {Z1, · · · , Zn} and Z(1), . . . , Z(n) be the ordered

values of Z1, . . . , Zn such that Z(1) ≤ Z(2) ≤ . . . ≤ Z(n). Then it is not difficult to see that

d(Z(b(n+1)/2c), Z) ≤ 1. Since w(r) > 0 and inf0≤r≤1 w(r) > 0, thus the denominator of Ln is

uniformly bounded away from zero for any Z mentioned above.

Now we show that the numerator of Ln is bounded above uniformly for any Z resulting

form contaminating X with m−1 points. Since n−(m−1) > m−1 and n−(m−1) > n/2,

thus µ and σ(Z) are also bounded above uniformly for any contaminated data set Z.

Assume without loss of generality that w(r) ≤ 1 and rw(r) ≤ 1 for r ≥ 0. By the definition

of d(Zi, Z) we have |Zi| ≤ σ(Z)d(Zi, Z) + |µ(Z)|. Thus

w(d(Zi, Z))|Zi| ≤ sup
Z

σ(Z) + sup
Z
|µ(Z)|,

which is bounded and hence implies that the numerator of Ln is bounded above uniformly

for any aforementioned Z. Thus, m− 1 contaminating points can not break down Ln. 2
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Proof of Theorem 3.2. Denote F (ε, δx) by Fεx for convenience. First we can write

L(Fεx)− L(F ) =
(1− ε)

∫
(y − L(F ))w(d(y, Fεx))dF (y)∫
w(d(y, Fεx))dFεx(y)

+
εw(d(x, Fεx))(x− L(F ))∫

w(d(y, Fεx))dFεx(y)
.

By the existence of IF(x; µ(F )) and IF(x; σ(F )) for any given x, we conclude that µ(Fεx) →
µ(F ) and σ(Fεx) → σ(F ) > 0 as ε → 0 for any fixed x. By the continuities of d(y, F ) in µ

and σ, and w(r) in r, and by the Lebesgue’s dominated convergence theorem, we see that

the second part on the right hand side gives immediately the second part of the desired

influence function result in the theorem. We therefore focus on the first part of the last

display. Denote it by L1(Fεx). Then we observe that

L1(Fεx) =
(1− ε)

∫
(y − L(F ))(w(d(y, Fεx))− w(d(y, F )))dF (y)∫

w(d(y, Fεx))dFεx(y)

=
(1− ε)

∫
(y − L(F ))w′(θ(y, F, Fεx))(d(y, Fεx)− d(y, F ))dF (y)∫

w(d(y, Fεx))dFεx(y)
,

for some θ(y, F, Fεx) in-between d(y, F ) and d(y, Fεx). Now we can write

d(y, Fεx)− d(y, F ) =
(|y − µ(Fεx)| − |y − µ(F )|)− (σ(Fεx)− σ(F ))d(y, F )

σ(Fεx)
.

Hence we see that IF(x; d(y, F )) is exactly the one given in the theorem. Now the given

conditions, Lebesgue’s dominated convergence theorem, yield the first part of the desired

result. The boundedness of GES(L(F ) under the given conditions is straightforward. 2

Proof of Theorem 4.1. Let D(y, F ) = 1/(1 + d(y, F )). Then 0 ≤ D(y, F ) ≤ 1 for any

y and F in R1 (since 0 ≤ d(y, F ) ≤ ∞). Note that w(d(y, F )) = w(1/D(y, F ) − 1) :=

w∗(D(y, F )) and w∗(r) is continuously differentiable on [0, 1] since w(r) is on [0,∞]. We

will use w∗(D(y, F )) for w(d(y, F )) in the proof below to take the great technical advantage.

To prove the theorem we first establish the following results.

Lemma 7.1 Under the conditions of Theorem 4.1, we have

sup
y∈R1

(1 + |y|)|D(y, Fn)−D(y, F )| = o(1), a.s. (7.1)

sup
y∈R1

(1 + |y|)|D(y, Fn)−D(y, F )| = Op(
1√
n

), (7.2)

D(y, Fn)−D(y, F ) =
s(Fn)d(y, F ) + l(Fn)sign(y − µ(F ))− |l(Fn)|I(y = µ(F )

σ(F )(1 + d(y, F ))2
+ op(

1√
n

),

(7.3)
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where s(Fn) = σ(Fn)− σ(F ) and l(Fn) = µ(Fn)− µ(F ).

Proof: First we can write

d(y, Fn)− d(y, F ) =
|l(Fn)|I(y = µ(F ))− l(Fn)sign(y − µ(F ))− s(Fn)d(y, F )

σ(Fn)
. (7.4)

Therefore

|d(y, Fn)− d(y, F )| ≤ (|µ(Fn)− µ(F )|+ d(y, F )|σ(Fn)− σ(F )|)/σ(Fn).

Hence we have

|D(y, Fn)−D(y, F )| ≤ |µ(Fn)− µ(F )|/(1 + d(y, F )) + |σ(Fn)− σ(F )|/(1 + d(y, Fn))

σ(Fn)
,

which yields immediately displays (7.1) and (7.2) by the strong consistency of µ(Fn) and

σ(Fn) and the condition C since supy∈R1(1 + |y|)/(1 + d(y,G)) < ∞ a.s. for G = F or Fn

with large n. Now (7.3) follows from (7.4) and the condition C. 2

Proof of Theorem 4.1 Write

L(Fn)− L(F ) =

∫
(y − L(F ))w∗(D(y, Fn))dFn(y)

/∫
w∗(D(y, Fn))dFn(y). (7.5)

We first work on the numerator. Observe that
∫

(y − L(F ))w∗(D(y, Fn))dFn(y) =

∫
(y − L(F ))(w∗(D(y, Fn))− w∗(D(y, F )))dFn(y)

+

∫
(y − L(F ))w∗(D(y, F ))d(Fn − F )(y). (7.6)

The strong law of large numbers takes care of the second term on the right hand side. We

now focus on the first term on the right side. Denote it by N1n. Then we have

N1n =

∫
(y − L(F ))w′

∗(θ(y, F, Fn))(D(y, Fn)−D(y, F ))dFn(y)

=

∫
(y − L(F ))w′

∗(D(y, F ))(D(y, Fn)−D(y, F ))dFn(y) + op(
1√
n

),

by the continuous differentiability of w∗ on [0, 1] and Lemma 7.1, where θ(y, F, Fn) is a

point in-between D(y, Fn) and D(y, F ). Now we show via empirical process theory that

N1n =

∫
(y − L(F ))w′

∗(D(y, F ))(D(y, Fn)−D(y, F ))dF (y) + op(
1√
n

). (7.7)
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Define a set of Borel measurable functions by

F := {h(y, α, β) :=
(y − L(F )) w′

∗(D(y, F ))

1 + |y − α|/β : µ(F )/2 < α < 2µ(F ), σ(F )/2 < β < 2σ(F )}

Clearly, h(y, µ(G), σ(G)) belongs to F for G = F and for G = Fn a.s. with large n. Let

γi = (αi, βi)
′ ∈ R2. Then it can be seen that there is an 0 < M < ∞ such that

|h(y, α1, β1)− h(y, α2, β2)| ≤ |y − L(F )| |w′
∗(D(y, F ))|

β2 + |y − α2| (|α1 − α2|+ |β1 − β2|)

≤ M ‖2(γ1 − γ2)‖,

by the continuity of w′
∗(r) on [0, 1] and |y − L(F )|/(β2 + |y − α2|) on [0,∞]. Now by 19.5

and 19.7 of van der vaart (1998) (or section 2.7.4 of Wellner and van der Vaart (1996)),

we conclude that F is a P-Donsker class. On the other hand, by the preceding display and

the strong consistency of µ(Fn) and σ(Fn), it is readily seen that

∫
(h(x, µ(F ), σ(F ))− h(x, µ(Fn), σ(Fn)))2dF (x) = o(1), a.s.

Now invoking Lemma 19.24 of van der Vaart (1998), we have display (7.7). This, in

conjunction with Lemma 7.1, Fubini’s Theorem, and display (7.6), gives

∫
(y − L(F ))w∗(D(y, Fn))dFn(y)

=

∫ ( ∫
(x− L(F ))w′

∗(D(x, F ))
d(x, F )fσ(y) + sign(x− µ(F ))fµ(y)

σ(F )(1 + d(x, F ))2
dF (x)

+ (y − L(F ))w∗(D(y, F ))
)
d(Fn − F )(y) + op(1/

√
n). (7.8)

Likewise and less challengingly, we can show for the denominator of display (7.5) that

∫
w∗(D(y, Fn)dFn(y) =

∫
w∗(D(y, F ))dF (y) + o(1), a.s.

Note that w′
∗(D(y, F )) = −w′(d(y, F ))(1 + d(y, F ))2. The desired result follows. 2
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[9] Tukey, J. W. (1960). A survey of sampling from contaminated distributions, in Contributions

to PRobability and Statistics, Olkin, Ed. Stanford University Press, Stanford, Clif.

[10] Tukey, J. W. (1970). Exploratory Data Analysis, mimeographed preliminary edition.

[11] Tukey, J. W. (1975). Mathematics and picturing data. Proc. Intern. Congr. Math. Vancouver

1974 2 523–531.

[12] van der Vaart, A. W. (1998). Asymptotic Sattistics. Cambridge University Press.

[13] van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Empirical Processes

With Applications to Statistics. Springer.

[14] Zuo, Y. (2003). Projection based depth functions and associated medians. Ann. Statist. 31

1460–1490.

[15] Zuo, Y., Cui, H., and He, X. (2004). On the Stahel-Donoho estimators and depth-weighted

means of multivariate data. Ann. Statist. 32 (1) 167–188.



On an L-estimator 47

[16] Zuo, Y., Cui, H., and Young, D. (2004). Influence function and maximum bias of projection

depth based estimators. Ann. Statist. 32 (1) 189–218.

[17] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist.

28(2) 461–482.


