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Tests Based on Empirical Likelihood for an

AR(1) Process with ARCH(1) Errors∗

CLAUDIA KLÜPPELBERG† and LIANG PENG‡

Abstract

For an AR(1) process with ARCH(1) errors, we propose empirical likelihood tests

for testing whether the sequence is strictly stationary but has infinite variance, or

the sequence is an ARCH(1) sequence or the sequence is an iid sequence. Moreover,

an empirical likelihood based confidence interval for the parameter in the AR part is

proposed. All of these results do not require more than a finite second moment of the

innovations. This includes the case of t-innovations for any degree of freedom larger

than 2, which serves as a prominent model for real data.

1. Introduction Consider the following autoregressive model with ARCH(1) errors:

Xt = αXt−1 + (β + λX2
t−1)

1/2εt, t ∈ N, (1)

where α ∈ R, β > 0, λ ≥ 0, {εt : t ∈ N} are independent and identically distributed (iid)

random variables with mean zero and variance one, and X0 is independent of {εt : t ∈
N}. Borkovec & Klüppelberg (2001) show the existence and uniqueness of a stationary

distribution under some regularity conditions, and prove that the stationary distribution

is heavy-tailed. Asymptotic normality of the quasi maximum likelihood estimator for the
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parameter vector (α, β, λ) is derived in Ling (2004) under the assumption that E(ε4
t ) < ∞.

Chan & Peng (2005) study the weighted least absolute deviations estimator and derive its

asymptotic normality only assuming that E(ε2
t ) < ∞.

Another important issue in economic and financial study is to test the stationarity of a

model. It follows from Borkovec & Klüppelberg (2001) that {Xt} is geometrically ergodic

and has a unique stationary distribution if the following regularity conditions hold:

Condition 1. The noise εt has a symmetric, positive and continuous Lebesgue density in

(−∞,∞).

Condition 2. The parameter space is

Θ = {θ = (α, β, λ)T : E(log |α + λ1/2εt|) < 0,−∞ < α < ∞, β > 0, λ ≥ 0} .

It is clear that {Xt} is neither strictly nor weakly stationary when (α, λ) = (±1, 0). Ling

(2004) employs the Lagrange multiplier test to test the null hypothesis (α, λ) = (±1, 0)

against the alternative hypothesis (α, λ) 6= (±1, 0). However, one can not claim that {Xt} is

stationary when the above null hypothesis is rejected. On the other hand, Klüppelberg et al.

(2002) employ a pseudo-likelihood ratio test to test the null hypothesis α = 0, β > 0, λ = 0

against the alternative hypothesis β > 0, λ ≥ 0, (α, λ) 6= (0, 0). Note that both tests require

that E(ε4
t ) < ∞.

As shown in Remark 5 of Borkovec & Klüppelberg (2001) the strictly stationary distri-

bution has finite second moment if and only if α2 + λEε2 < 1. Consequently, for α = 1 the

process {Xt} is strictly but not weakly stationary as the second moment does not exist.

Define Θ1 = {(α, β, λ)T : α = 1} ∩ Θ, Θ2 = {(α, β, λ)T : α = 0} ∩ Θ and Θ3 =

{(α, β, λ)T : α = 0, λ = 0} ∩Θ. In this paper, we propose to apply the empirical likelihood

method to test the following three different tests:

H
(i)
0 : θ ∈ Θi against H

(i)
1 : θ ∈ Θ \Θi

for i = 1, 2, 3. We remark that H
(1)
0 , H

(2)
0 and H

(3)
0 imply that {Xt} is strictly stationary

but not weakly stationary, is an ARCH(1) sequence and is an iid sequence, respectively.

The empirical likelihood method as a non-parametric robust statistical method has

many advantages in comparison to parametric likelihood methods, see Owen (2001). Re-

cently, Chuang & Chan (2002) applied the empirical likelihood method to unit root AR

models with finite variance errors, and Chan et al. (2005) apply the empirical likelihood

method to near-integrated AR models with infinite variance errors.
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We organize this paper as follows. In Section 2, the empirical likelihood tests are

proposed. Moreover, an empirical likelihood based confidence interval for α is given. A

simulation study supports our theory in Section 3. All proofs are postponed to the ap-

pendix.

2. Empirical Likelihood Method Throughout we assume that the median of ε2
t is

m, which is unknown. Rewrite model (1) as

(Xt − αXt−1)
2 − (βm + λmX2

t−1) = (βm + λmX2
t−1)(

ε2
t

m
− 1). (2)

When m is assumed to be known and equal to one, Chan & Peng (2005) propose the

following weighted least absolute deviations estimator for θ∗ = (α∗, β∗, λ∗)T = (2α, βm, α2−
λm)T, which is defined as

θ̂∗ = (α̂∗, β̂∗, λ̂∗)T = arg min
(α∗,β∗,λ∗)

n∑
t=1

1

1 + X2
t−1

|X2
t − α∗XtXt−1 − β∗ + λ∗X2

t−1|. (3)

Here we propose to employ the empirical likelihood method to the above weighted least

absolute deviations with unknown m as follows.

Let p = (p1, . . . , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for i = 1, . . . , n.

Put Yt(θ
∗) = X2

t − α∗XtXt−1 − β∗ + λ∗X2
t−1 and Zt = (−XtXt−1

1+X2
t−1

,− 1
1+X2

t−1
,

X2
t−1

1+X2
t−1

)T for

t = 1, . . . , n. Then the empirical likelihood is defined as

L(θ∗) = sup

{
n∏

t=1

pt :
n∑

t=1

pt = 1, pt ≥ 0,
n∑

t=1

ptZtsgn(Yt(θ
∗)) = 0

}
,

where sgn(x) equals 1 if x ≥ 0, and −1 if x < 0. By the method of Lagrange multipliers,

we have

pt =
1

n
{1 + γTZtsgn(Yt(θ

∗))}−1, t = 1, . . . , n, (4)

where γ = (γ1, γ2, γ3)
T satisfies

g(γ) =
1

n

n∑
t=1

Ztsgn(Yt(θ
∗))

1 + γTZtsgn(Yt(θ∗))
= 0. (5)

The empirical likelihood ratio is defined as

l(θ∗) = 2
n∑

t=1

log{1 + γTZtsgn(Yt(θ
∗))}.
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Our main results are as follows.

Theorem 1. Suppose model (1) holds with Conditions 1 and 2. Then

lp(α0) = arg min
θ∗=(2α0,β∗,λ∗)T

l(θ∗)− arg min
θ∗

l(θ∗)
d→ χ2(1),

where α0 denotes the true value of α. Therefore, an asymptotic confidence interval for α0

with significance level 100a% is

Ia = {α : lp(α) ≤ ua},

where ua denotes the 100a%-level quantile of χ2(1).

Theorem 2. Suppose model (1) holds with Conditions 1 and 2. Then,

(i) under H
(1)
0 , we have

T1 = arg min
θ∗=(2,β∗,λ∗)T

l(θ∗)− arg min
θ∗

l(θ∗)
d→ χ2(1);

(ii) under H
(2)
0 , we have

T2 = arg min
θ∗=(0,β∗,λ∗)T

l(θ∗)− arg min
θ∗

l(θ∗)
d→ χ2(1);

(iii) under H
(3)
0 , we have

T3 = arg min
θ∗=(0,β∗,0)T

l(θ∗)− arg min
θ∗

l(θ∗)
d→ χ2(2).

Remark 1. Klüppelberg et al. (2002) employ the pseudo likelihood ratio test to test

H
(3)
0 , but obtained a different limiting distribution from that given in case (iii) of Theorem

2. The reason is that θ∗ = (0, β∗, 0)T is not at the boundary of the parameter set of θ∗

although θ = (0, β, 0)T is indeed at the boundary of the parameter set of θ. Moreover, the

limit in Klüppelberg et al. (2002) involves the fourth moment of εt.

3. Numerical Studies We investigate the finite sample behaviors of our tests based

on empirical likelihood for the case, where the fourth moment of the innovations is infinite.

Since other methods like the pseudo likelihood ratio test in Klüppelberg et al. (2002) and
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the Lagrange multiplier test in Ling (2004) require finite fourth moment, we concentrate

on noise variables with infinite fourth moment.

We draw 1 000 random samples with size n = 1000 from model (1) with α = 1 − δ/n,

β = 1, λ = 0.5 for testing H
(1)
0 , α = δ/n, β = 1, λ = 0.5 for testing H

(2)
0 , and α = δ/n,

λ = δ/n, β = 1 for testing H
(3)
0 . We consider δ = 0, 1, 10, 50, 100, 500, and εt having a

standardized t(3) or t(4) distribution such that E(ε2
t ) = 1. For the significance level 0.05,

we compute the empirical sizes and powers based on our empirical likelihood method, see

Table 1. We conclude from Table 1 that the sizes of the tests based on empirical likelihood

are reasonably close to the nominal level 0.05 and the powers show that these tests are

powerful.

H
(1)
0 : α = 1

δ 0 1 10 50 100 500

t(3) 0.043 0.041 0.052 0.226 0.644 0.999

t(4) 0.036 0.033 0.053 0.223 0.690 1.000

H
(2)
0 : α = 0

δ 0 1 10 50 100 500

t(3) 0.051 0.043 0.053 0.125 0.358 0.998

t(4) 0.035 0.049 0.047 0.120 0.389 1.000

H
(3)
0 : α = 0, λ = 0

δ 0 1 10 50 100 500

t(3) 0.041 0.039 0.043 0.161 0.565 1.000

t(4) 0.044 0.034 0.051 0.163 0.609 1.000

Table 1: Empirical sizes and powers of the tests based on empirical likelihood at the

significance level 0.05.

4. Appendix: Proofs

Proof of Theorem 1. Define v = (v1, v2, v3)
T, v1 = n1/2(α∗ − α∗0), v2 = n1/2(β∗ − β∗0),

and v3 = n1/2(λ∗−λ∗0), where θ∗0 = (α∗0, β
∗
0 , λ

∗
0)

T denotes the true value of θ∗. Our first step
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is to prove that

||γ|| = Op(n
−1/2) locally uniformly in v, (6)

where || · || denotes the Euclidean norm. Write γ = ργ0, where ρ ≥ 0 and ||γ0|| = 1. By

(4), we have

1 + γTZtsgn(Yt(θ
∗)) > 0,

i.e.,

(1 + γTZtsgn(Yt(θ
∗)))−1 = (1 + ργT

0 Ztsgn(Yt(θ
∗)))−1 ≥ {1 + ρ max

1≤t≤n
||Ztsgn(Yt(θ

∗))||}−1.

Hence

0 = ||g(γ)|| = ||g(ργ0)||

≥ |γT
0 g(ργ0)|

=
1

n

∣∣∣∣∣γT
0 {

n∑
t=1

Ztsgn(Yt(θ
∗))− ρ

n∑
t=1

Ztsgn(Yt(θ
∗))γT

0 Ztsgn(Yt(θ
∗))

1 + ργT
0 Ztsgn(Yt(θ∗))

}

∣∣∣∣∣
≥ ρ

n
γT

0

n∑
t=1

ZtZ
T
t

1 + ργT
0 Ztsgn(Yt(θ∗))

γ0 −
1

n

∣∣∣∣∣γT
0

n∑
t=1

Ztsgn(Yt(θ
∗))

∣∣∣∣∣
≥ ρ

n
{1 + ρ max

1≤t≤n
||Ztsgn(Yt(θ

∗))||}−1γT
0

n∑
t=1

ZtZ
T
t γ0 −

1

n

∣∣∣∣∣γT
0

n∑
t=1

Ztsgn(Yt(θ
∗))

∣∣∣∣∣ .

That is,

ρ

{
1

n
γT

0

∑n

t=1
ZtZ

T
t γ0 − (max1≤t≤n ||Ztsgn(Yt(θ

∗))||) 1

n

∣∣∣∑n

t=1
γT

0 Ztsgn(Yt(θ
∗))

∣∣∣}
≤ 1

n

∣∣∣∑n

t=1
γT

0 Ztsgn(Yt(θ
∗))

∣∣∣ .

(7)

Recall that v1 = n1/2(α∗ − α∗0) and define ∆t−1 = β0 + λ0X
2
t−1. Then,

Yt(θ
∗) =

{
∆

1/2
t−1εt −

v1Xt−1

2n1/2

}2

− βm− λmX2
t−1,

and, denoting by m0 the true median, we have

sgn(Yt(θ
∗))− sgn(Yt(θ

∗
0))

= 2{I(Yt(θ
∗
0) < 0)− I(Yt(θ

∗) < 0)}
= 2

{
I(−√m0 < εt <

√
m0)

−I
(−(βm + λmX2

t−1)
1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

< εt

<
(βm + λmX2

t−1)
1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

)}
.
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Let F denote the distribution function of εt and put

St−1 = 1 + X2
t−1 and h(c, d) = E{εtI(c < εt < d)}.

Then, we can write

1√
n

∑n
t=1

XtXt−1

St−1

{
sgn(Yt(θ

∗))− sgn(Yt(θ
∗
0))

}
= 2√

n

∑n
t=1

α0X2
t−1

St−1

{
I(−√m0 < εt <

√
m0)− F (

√
m0) + F (−√m0)

}
− 2√

n

∑n
t=1

α0X2
t−1

St−1

{
I
(
−(βm+λmX2

t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

< εt

<
(βm+λmX2

t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

)
−F

((βm + λmX2
t−1)

1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

)
+F

(−(βm + λmX2
t−1)

1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

)}
+ 2√

n

∑n
t=1

Xt−1∆
1/2
t−1

St−1

{
εtI(−√m0 < εt <

√
m0

)
− h(−√m0,

√
m0)

}
− 2√

n

∑n
t=1

Xt−1∆
1/2
t−1

St−1

{
εtI

(
−(βm+λmX2

t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

< εt

<
(βm+λmX2

t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

)
−h

(
−(βm+λmX2

t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

,

(βm+λmX2
t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

)}
+

2√
n

∑n
t=1

α0X2
t−1

St−1

{
F (
√

m0)− F (−√m0)

−F
(

(βm+λmX2
t−1)1/2+2−1n−1/2v1Xt−1

∆
1/2
t−1

)
+F

(−(βm + λmX2
t−1)

1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

)}
+ 2√

n

∑n
t=1

Xt−1∆
1/2
t−1

St−1

{
h(−√m0,

√
m0)

−h
(−(βm + λmX2

t−1)
1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

,

(βm + λmX2
t−1)

1/2 + 2−1n−1/2v1Xt−1

∆
1/2
t−1

)}
=: I1 + · · ·+ I6.

By Corollary 3.1 of Hall & Heyde (1980), we can show that

|I1 + I2| = op(1) and |I3 + I4| = op(1) (8)
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locally uniformly in v. Hence it follows from (8), Condition 1, and the ergodicity result in

Borkovec & Klüppelberg (1998) that

1√
n

n∑
t=1

XtXt−1

St−1

{sgn(Yt(θ
∗))− sgn(Yt(θ

∗
0))}

= {−2α2
0f(

√
m0)E(

X4
1

S1∆1

)− 2f(
√

m0)
√

m0E(
X2

1

S1

)}v1 (9)

−2α0f(
√

m0)E(
X2

1

S1∆1

)v2 + 2α0f(
√

m0)E(
X4

1

S1∆1

)v3 + op(1)

locally uniformly in v. Similarly,

1√
n

n∑
t=1

1

St−1

{sgn(Yt(θ
∗))− sgn(Yt(θ

∗
0))}

= −2α0f(
√

m0)E(
X2

1

S1∆1

)v1 − 2f(
√

m0)E(
1

S1∆1

)v2 (10)

+2f(
√

m0)E(
X2

1

S1∆1

)v3 + op(1)

and

1√
n

n∑
t=1

X2
t−1

St−1

{sgn(Yt(θ
∗))− sgn(Yt(θ

∗
0))}

= −2α0f(
√

m0)E(
X4

1

S1∆1

)v1 − 2f(
√

m0)E(
X2

1

S1∆1

)v2 (11)

+2f(
√

m0)E(
X4

1

S1∆1

)v3 + op(1)

locally uniformly in v. Thus, by (9) - (11),

1√
n

n∑
t=1

Zt{sgn(Yt(θ
∗))− sgn(Yt(θ

∗
0))} = Σ1v + op(1) (12)

locally uniformly in v, where

Σ1 = 2f(
√

m0)


α2

0E(
X4

1

S1∆1
) +

√
m0E(

X2
1

S1
) α0E(

X2
1

S1∆1
) −α0E(

X4
1

S1∆1
)

α0E(
X2

1

S1∆1
) E( 1

S1∆1
) −E(

X2
1

S1∆1
)

−α0E(
X4

1

S1∆1
) −E(

X2
1

S1∆1
) E(

X4
1

S1∆1
)

 .

Then it follows from (12) and the proof of Theorem 1 in Chan & Peng (2005) that

||1
n

n∑
t=1

Ztsgn(Yt(θ
∗))|| = Op(n

−1/2) locally uniformly in v (13)
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and
1

n
γT

0

n∑
t=1

ZtZ
T
t γ0

p→ γT
0 Σ2γ0, (14)

where

Σ2 =

 α2
0E(X4

1/S
2
1) + β0E(X2

1/S
2
1) + λ0E(X4

1/S
2
1) α0E(X2

1/S
2
1) −α0E(X4

1/S
2
1)

α0E(X2
1/S

2
1) E(1/S2

1) −E(X2
1/S

2
1)

−α0E(X4
1/S

2
1) −E(X2

1/S
2
1) E(X4

1/S
2
1)

 .

Apply conditional expectation arguments to the proof of Lemma 3 of Owen (1990), we have

max
1≤t≤n

||Ztsgn(Yt(θ
∗))|| = o(n1/2) locally uniformly in v (15)

with probability one as n →∞. Hence, (6) follows from (7) - (15). Furthermore

γ =
{ 1

n

n∑
t=1

ZtZ
T
t

}−1 1

n

n∑
t=1

Ztsgn(Yt(θ
∗)) + op(n

−1/2)

and

l(θ∗) = n
{ 1

n

n∑
t=1

Ztsgn(Yt(θ
∗))

}T{ 1

n

n∑
t=1

ZtZ
T
t

}−1{ 1

n

n∑
t=1

Ztsgn(Yt(θ
∗))

}
+ op(1) (16)

locally uniformly in v. Similarly we can show that

l(θ∗0) = n
{ 1

n

n∑
t=1

Ztsgn(Yt(θ
∗
0))

}T{ 1

n

n∑
t=1

ZtZ
T
t

}−1{ 1

n

n∑
t=1

Ztsgn(Yt(θ
∗
0))

}
+ op(1) (17)

locally uniformly in v. Using (12), (14), (16) and (17), we have

l(θ∗)− l(θ∗0) = vTΣT
1 Σ−1

2 Σ1v + 2vTΣT
1 Σ−1

2

{ 1√
n

n∑
t=1

Ztsgn(Yt(θ
∗
0))

}
+ op(1) (18)

locally uniformly in v. By minimizing the above equation with respect to v, we obtain

l(θ∗0)− arg minθ∗ l(θ∗)

=
{ 1√

n

∑n

t=1
Ztsgn(Yt(θ

∗
0))

}T

Σ−1
2

{ 1√
n

∑n

t=1
Ztsgn(Yt(θ

∗
0))

}
+ op(1).

(19)

Set Z̄t = (− 1
1+X2

t−1
,

X2
t−1

1+X2
t−1

)T for t = 1, . . . , n. Using the same arguments as in proving (12)

and (18), we can show that

1√
n

n∑
t=1

Z̄t{sgn(Yt((α
∗
0, β

∗, γ∗)T))− sgn(Yt(θ
∗
0))} = Σ3(v2, v3)

T + op(1)
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and

l((α∗0, β
∗, γ∗)T)− l(θ∗0)

= (v2, v3) ΣT
3 Σ−1

4 Σ3 (v2, v3)
T + 2(v2, v3) ΣT

3 Σ−1
4

{ 1√
n

∑n

t=1
Z̄tsgn(Y (θ∗0))

}
+ op(1)

locally uniformly in v2 and v3, where

Σ3 = 2f(
√

m0)

 E( 1
S1∆1

) −E(
X2

1

S1∆1
)

−E(
X2

1

S1∆1
) E(

X4
1

S1∆1
)


and

Σ4 =

 E(1/S2
1) −E(X2

1/S
2
1)

−E(X2
1/S

2
1) E(X4

1/S
2
1)

 .

By minimizing the above equation with respect to v2 and v3, we obtain

l(θ∗0)− arg minθ∗=(α∗0,β∗,γ∗)T l(θ∗)

=
{ 1√

n

∑n

t=1
Z̄tsgn(Yt(θ

∗
0))

}T

Σ−1
4

{
1√
n

∑n

t=1
Z̄tsgn(Yt(θ

∗
0))

}
+ op(1).

(20)

Hence, the theorem follows from (14), (19) and (20).

Proof of Theorem 2. Cases (i) and (ii) follow from Theorem 1 immediately, and case

(iii) can be shown in a way similar to Theorem 1.
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