
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received October 24, 2007
Manuscript revised December 30, 2007

Evolutionary Approach for Compressing
Textual Documents

Ashutosh GUPTA1 and Suneeta AGARWAL2

1 CSED, IERT Allahabad, UP 211002, India, E-mail:ashutosh333@rediffmail.com
2 CSED, MNNITAllahabad, UP 211002, India, E-mail: suneeta@mnnit.ac.in

Abstract: In the last twenty years, we have seen a vast explosion of textual information flow over web through electronic
mail, web browsing and information retrieval systems etc. In this paper we present a dictionary based lossless transform
algorithm. The approach for transforming a text is based on model of natural distribution for words. The transformation
generates a static dictionary, which is small in size and helpful for increasing the redundancy in the text. The overhead of
storing the dictionaries with backend compressors are minimal. Initial experimental results show that the facilitated with
Transform Module, bzip2, gzip and compress achieves an average improvement in compression ratio of 29.28% over bzip2,
28.71% over gzip, and 19.74% over compress. Experimental results shows that the compression ratio obtained by compressing
the transformed text is much better than compression ratio obtained by directly compressing the text using some of the well
known existing algorithms.

Keywords: Text Compression, Heap’s Law, Stop-word Frequency Distribution, Transform.

1. INTRODUCTION

In the last twenty years, we have seen a vast explosion of
textual information flow over web through electronic mail,
web browsing and information retrieval systems etc. The
importance of data compression is likely to be enhancing in
the future, as there is continuous increase in amount of data
that need to be transformed or archived. The aim of data
compression is to exploit the redundancies in the data to
reduce its space usage. The most widely used data
compression algorithms are based on the sequential data
compressors of Lempel and Ziv [22, 23]. Statistical modeling
techniques may produce superior compression [39], but are
significantly slower.

Text compression is about finding ways to represent the
text in less space. This is accomplished by substituting the
symbols in the text by equivalent ones that are represented
using a smaller number of bits or bytes. For large text
collection, text compression appears as an attractive option
for reducing costs. The gain obtained from compressing text
is that it requires less storage space, it takes less time to be
read from disk or transmitted over a communication link,
and it takes less time to search. The savings of space obtained
by a compression method is measured by the compression
ratio, defined as the size of compressed file as a percentage
of the uncompressed file. There are other important aspects
to be considered, such as compression and decompression
speed. In some situations, decompression speed is more

important than compression speed. For instance, this is the
case with textual databases and documentation systems in
which it is common to compress the text once and to read it
many times from disk.

In the field of data compression, Researchers developed
various approaches such as Huffman encoding [4], arithmetic
encoding [20, 13], Ziv-Lempel family [22, 23, 38], Dynamic
Markov compression, Prediction with partial matching [3] and
Burrows Wheeler Transform [27, 25, 34, 36] based algorithms,
etc. BWT permutes the symbol of a data sequence that share
the same unbounded context by cyclic rotation followed by
lexicographic sort operations. BWT uses move-to-front and
an entropy coder as the backend compressor. PPM is slow
and also consumes large amount of memory to store context
information but PPM achieves better compression that almost
all existing compression algorithms.

In the recent past, Awan and Mukherjee [10],
Franceschini and Mukherjee [32] developed a family of
reversible Star-transformations which applied to a source
text along with a backend compression algorithm. The basic
idea of the transform module is to transform the text into
some intermediate form, which can be compressed with
better efficiency. The transformed text is provided to a
backend compression module, which compresses the
transformed text. However, execution time performance and
runtime memory expenditure of these compression systems
have remained high compared with the backend compression
algorithms such as bzip2 and gzip.

The compression ratio achieved with compressing the
transformed text is much better than compressing the text

Journal of Information Technology and Engineering
Vol. 1 No. 1 (June, 2016)

 Received: 03rd March 2016 Revised: 14th May 2016 Accepted: 01st June 2016

20 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

directly with well known compression algorithms. Heap’s
Law [18, 5, 12], an empirical law widely accepted in
information retrieval, establishes that a natural language text
of O(u) words has a vocabulary of size v = O(u�), for
0 <�� <1. Typically, � is between 0.4 and 0.6 [28, 8, 32],
and therefore v is close to O(�u). An important conclusion
of this law is that for a text of O(u) words, the total number
of stop-words are u* 40%. Stop-words are those words which
occur frequently in the text documents. Articles, prepositions,
and conjunctions are natural candidates for a list of stop-
words. We have identified a list of 664 stop-words.

Our work is based on idea that a natural language text
of O(u) words have u*0.4 stop-words and remaining words
in a text are vocabulary. As volume of stop-words is less as
compared to volume of vocabulary, we can transform all
the stop-words in a text to some intermediate form and all
the vocabulary in a text remains as it is.

In this paper, we used a algorithm given in [32] for
transforming text into an intermediate form suitable for
compression. Compared with compress, gzip and bzip2, the
transform module achieves improvement in compression
performance. Experimental results show that, for our test
corpus, the average compression time using the transform
module with bzip2, gzip and compress is 11.2% slower,
36.35% faster, 9.43% faster as compared with the original
bzip2, gzip and compress respectively. The average
decompression time using transform module with bzip2, gzip
and compress is 42.21% slower, 15.63% faster and 7.2%
faster compared with original bzip2, gzip and compress
respectively.

We conducted experiments on our own test corpora.
Results show that, using transform module, the average BPC
(Bits per character) improved 29.28% over bzip2, 28.71%
over gzip, and 14.58% over compress.

2. BASICS AND RELATED WORK

The aim of Text compression is to exploit the redundancy
in the text to reduce its space requirement [40]. In this paper
we denote the uncompressed file as T and its length in bytes
as u. The compressed file is denoted as Z and its length in
bytes as n. Compression ratio is used in this article to denote
the size of the compressed file as a percentage of the
uncompressed file (i.e., 100 × n / u).

Text compression is usually divided into two categories.
Statistical compression is based on estimating source
character probabilities and assigning them codes according
to the probabilities. Dictionary methods consist in replacing
text substrings by identifiers, so as to take advantage of
repetitions in the text. Semi-static compression requires two
passes over the text, as well as storing the model together
with the compressed file. On the other hand, adaptive
compression cannot start decompression at arbitrary file
positions, because all the previous text must be processed
so as to learn the model that permits decompressing the text
that follows.

Lempel-Ziv compression is a dictionary method based
on replacing text substrings by previous occurrences thereof.
The two most famous algorithms of this family are called
LZ77 [22] and LZ78 [23]. A well-known variant of the latter
is called LZW [38]. Well-known representatives of LZ77
compression are Info-ZIP’s zip and GNU’s gzip. A well-
known representative of LZW is Unix’s compress. The
Lempel-Ziv family is the most popular to compress text
because it combines compression ratios around 35% on plain
English text with fast compression and decompression.
However, Lempel-Ziv compressed text cannot be
decompressed at random positions, because one must process
all the text from the beginning in order to learn the window
that is used to decompress the desired portion.

Huffman coding [4] is designed for statistical
compression. It assigns a variable-length code to each source
symbol, trying to give shorter codes to more probable
symbols. Huffman algorithm guarantees that the code
assignment minimizes the length of the compressed file under
the probabilities given by the model. A common usage of
Huffman coding is to couple it with semi-static zero-order
modeling, taking text characters as the source symbols and
bits as the target symbols. That is, on a first pass over the
text, character frequencies are collected, then Huffman codes
(variable-length bit sequences) are assigned to the characters,
and finally each character occurrence is replaced by its
codeword in a second pass over the text. This combination,
that we call “Huffman compression” for shortness, reaches
the zero-order entropy of the text up to one extra bit per
symbol. Being semi-static, Huffman compression permits
easy decompression of the text starting at any position.
Huffman compression is not very popular on natural
language text because it achieves poor compression ratios
compared to other techniques. However, the situation
changes drastically when one uses the text words, rather than
the characters, as the source symbols [1, 29]. The distribution
of words is much more skewed than that of symbols, and
this permits obtaining much better compression ratios than
character-based Huffman compressors. On English text,
character based Huffman obtains around 60% compression
ratio, while word-based Huffman is around 25% [30].
Actually, similar compression ratios can be obtained by using
Lempel-Ziv on words [15, 17, 33].

The text in natural language is not only made up of
words. The text also contains punctuation, separator, and
other special characters. The sequence of characters between
every pair of consecutive words is called a separator.
Separators must also be considered to be symbols of the
source alphabet. In [1] they use the so-called separate
alphabets model, where words and separators are modeled
separately. As every word is followed by a separator and
vice-versa, once it is known whether the text starts with a
word or a separator, no further information is necessary to
decode the stream of codes from the two different alphabets.
Word-based Huffman compression has other advantages. Not

Evolutionary Approach for Compressing Textual Documents 21

only the text can be compressed and decompressed
efficiently, as a whole or in parts, but it is also possible to
search it without decompressing, faster than when searching
the uncompressed text [30]. Also, this type of compression
integrates very well with information retrieval systems,
because the source alphabet is equivalent to the vocabulary
of the inverted index [2, 11, 14]. One of the best known
systems relying on word-based Huffman in the public domain
is MG system [14].

The K-th models assign a probability to each source
symbol as a function of the context of k source symbols that
precede it. They are used to build very effective compressors
such as Prediction by Partial Matching (PPM) and those
based on the Burrows-Wheeler Transform (BWT). PPM [16]
is a statistical compressor that models the character
frequencies according to the context given by the k characters
preceding it in the text, and codes the characters according
to those frequencies using arithmetic coding [13]. PPM is
adaptive, so the statistics are updated as compression
progresses. The larger k, the more accurate is the statistical
model and the better the compression, but more memory
and time is necessary to compress and decompress. More
precisely, PPM uses k+1 models, of order 0 to k, in parallel.
It usually compresses using the k-th order model, unless the
character to compress has never been seen in that model. In
this cases it switches to a lower-order model until the
character is found. The BWT [27 is a reversible permutation
of the text that puts together characters having the same k-th
order context (for any k). Local optimization over the
permuted text obtains results similar to k-th order
compression (for example, by applying move-to-front
followed by Huffman or arithmetic coding). PPM and BWT
usually achieve better compression ratios than other families
(around 20% on English text), yet they are much slower to
compress and decompress, and cannot decompress arbitrary
portions of the text collection. The representatives of this
family are bzip2[21], based on the BWT, ppmdi [37] and
ppmz.

Byte Pair encoding scheme [26, 31] is a universal
compression algorithm that supports random access for all
types of data. The global substitution process of BPE
produces a uniform data format that allows decompression
to begin anywhere in the data. Using BPE, data from
anywhere in a compressed block can be immediately
decompressed without having to start at the beginning of
the block.

In [7] it was presented a new idea of spaceless words.
If a word is followed by a space, we just encode the word. If
not, we encode the word and then the separator. At decoding
time, we decode a word and assume that a space follows,
except if the next symbol corresponds to a separator. In this
case the alternating property does not hold, and a single
alphabet is used. They show that the spaceless word model
achieves slightly better compression ratios. The number of
Huffman trees for a given probability distribution is quite

large. The preferred choice for most applications is the
canonical trees, defined by [9]. It allows more efficiency at
decoding time with less memory requirement. Many
properties of canonical codes are mentioned in [6, 14, 24].

Sun et al. [41] introduces a transform algorithm, called
Star New Transform (StarNT). Ternary Search Tree [19] is
used in the transform to expedite the transform encoding.
Compared with LIPT [10], the new transform achieves
improvement not only in compression performance, but also
in time complexity. Our work can be regarded as being an
elaboration of above observation.

3. TRANSFORMATION OF TEXT

The basic initiative of the transform module is to transform
the text into some intermediate form, which can be
compressed with better effectiveness. The transformed text
is provided to a backend data compression module which
compresses the transformed text. In this section, we will first
discuss stop-word-frequency distribution. After that a brief
discussion about Heaps Law in Information Retrieval is
presented which is followed by detailed description of the
transformation algorithm.

3.1 Stop-word Frequency Distribution

A natural language text consists of vocabulary and stop-
words. Stop-words are those words, which occur frequently
in a text and do not contain valuable information during
searching a pattern. The example of stop-words are a, i, an,
an, so, by, and, but, the, from etc. The detailed list of stop-
words is given in Appendix A. Our list of such words contains
664 stop-words. The stop-word frequency distribution is
based on our observation that English language text has high
percentage of stop-words whose length varies from four to
seven. We show the stop-word frequency and length of stop-
words information, as given in Fig. 1. It is clear from the
figure that words of length four and five have higher
frequency as compared to other words of the English
language. In natural language text, the size of all different
stop-words is very less but the actual volume of the space
occupied by these words in text is large. This is the basis of

Figure 1: Stop-word Frequency Distribution

22 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

our work. We transformed the stop-word into an intermediate
form which helps the backend compressor to compress well.
This reason for this effectiveness is that, we are introducing
an extra redundancy in the stop-words which helps the
backend compressor.

3.2 Heap’s Law

A natural language text consists of vocabulary and stop-
words. Stop-words are frequently occurring words in a text
and do not contain valuable information during searching a
pattern. Our list of such words contains 664 stop-words given
in Appendix A. The example of stop-words are a, i, an, an,
so, by, and, but, the, from etc. The size of all different stop-
words is very less but the actual volume of the space
occupied by these words in text is large. This is an important
conclusion of the Heaps law [18]. Heap’s Law [18], an
empirical law widely accepted in information retrieval,
establishes that a natural language text of O(u) words has a
vocabulary of size v = O(u�), for 0< � <1. Typically, � is
taken as 0.5 and therefore v is close to O (�u). An important
conclusion from this law is that, for a text of O (u) words,
the total number of stop-words are u*40%. Stop-word
includes, articles, prepositions.

Our work is based on idea that a natural language text
of O (u) words has u*0.4 stop-words and remaining words
in a text are vocabulary. As the total number of stop-words
is less as compared to volume of vocabulary, we can
transform all the stop-words in a text to some intermediate.
This will lead to conversion of original text into an
intermediate form which contains u*40% (transformed stop-
words) and remaining u*60% of vocabulary. In this way we
introduce an extra redundancy in the transformed text. In
the next subsection, we will briefly discuss the transformation
algorithm used [32].

3.3 Transformation Algorithm

We are using the transformation algorithm as given by [32].
Here, we briefly discuss the algorithm. “Let A denote a finite
string (or sequence) of characters (or symbols) a

1
a

2
a

3
……a

n

over an alphabet � where a
i
 =A[i] is the ith character of A,

and n is the length of the sequence A. S is a subsequence of
A if there exists integer 1 � r

1
< r

2…..
< r

s
� n such that S[i] =

A[r
i
], 1 � i � n. Let D denote a dictionary of a set of distinct

words. A transformed word corresponding to A, denoted as
*A, is a sequence of n characters in which *A[i] = * if i � r

i

and for all other i, A[i] = A[r
i
] as in S.” The set of stop-

words first arranged with respect to length and with in a set
of words of same length, we arrange them in lexicographic
order. This makes distinct dictionaries of stop-words. For
each stop-word dictionary of length one to fifteen, we make
a transformed stop-word dictionary. The dictionaries used
in the experiment have been prepared in advance, and shared
by both the encoder and decoder. The size of dictionaries is
typically around 5KB. This is a small and one-time overhead
to prepare the dictionaries. Currently the transform

dictionaries only contain lower-case words. Dedicated
operations were designed to handle the initial letter
capitalized words and all letter capitalized words. The
character ‘~’ appended to the transformed word denotes that
the initial letter of the corresponding word in the original
text file is capitalized. The appended character ‘`’ denotes
that all letters of the corresponding word in the original text
file are capitalized. The character ‘\’ is used as escape
character for encoding the occurrence of ‘*’, ‘~’, ‘`’, and ‘\’
in the input text file.

The transformer reads a word from the input text file
and checks the word into the corresponding stop-word
dictionary. If the word is in stop-word dictionary, then
transformer read transformed stop-word dictionary and emit
the corresponding transformed word. Continuing in this way,
we lead to an transformed output which contains redundant
data in it. This introduced redundancy is helpful for
compression algorithms.

The transform decoding module performs the inverse
operations of the transform-encoding module. The escape
character and special symbols (‘*’, ‘~’, ‘`’, and ‘\’) are
recognized, and transformed stop-words are replaced with
their original stop-words.

4. PERFORMANCE EVALUATION

We evaluated the compression performance as well as the
compression time improvement using the own test corpus,
which consists of 22 files. All these test files are listed in Table
1. The experiment was carried out on a 1.6GHZ Pentium IV
256 RAM machine housing Linux 9. We have chosen bzip2,
gzip and compress as a backend compression tool.

4.1 Timing Performance of Transformation

In the transform encoding module, we create the fourteen
dictionaries of stop-word of length one to fifteen excluding
stop-word of length fourteen as there is no word of length
fourteen. These fourteen dictionaries are fixed to encoding
end as well as to decoding end and since the number of stop-
words are very less, so there is no need to generate it every
time. The strings in the fourteen dictionaries are sorted
lexicographically. The time complexity of searching a word
of length m in an appropriate dictionary as a stop-word with
n strings will require at most O(logn+m) time.

4.2 Timing performance with backend Compression
Algorithm

The encoding/decoding time when Transform Module is
combined with the backend data compression algorithms,
i.e. bzip2, gzip, compress is given in Table 2 and Table 3.
Following conclusions can be drawn from table 2 and table
3:

• The average compression time using the transform
algorithm with bzip2, gzip and compress is 11.2%
slower, 36.35 % faster, 9.43 % faster compared with
the original bzip2, gzip and compress respectively.

Evolutionary Approach for Compressing Textual Documents 23

• The average decompression time using the
transform algorithm with bzip2, gzip and compress
is 42.21% slower, 15.63% faster, 7.2% faster
compared with the original bzip2, gzip and
compress respectively

Table 1
Test Corpus

File Size (bytes)

File1.txt 8833

File2.txt 48808

File3.txt 9432

File4.txt 11375

File5.txt 63826

File6.txt 18263

File7.txt 18988

File8.txt 56448

File9.txt 43460

File10.txt 39172

File11.txt 11025

File12.txt 29706

File13.txt 30726

File14.txt 2289

File15.txt 2932

File16.txt 2032

File17.txt 2968

brief.rtf 52557

project.rtf 7405686

Copying.txt 32874

Genesis 219118

Table 2
Comparison of Encoding Speed (in. ms)

AVRG

gzip 63.16

gzip + NT 40.2

compress 103.48

compress + NT 93.72

bzip 2 550.44

bzip 2 + NT 619.8

Table 3
Comparison of Decoding Speed (in. ms)

AVRG

gzip 45.8

gzip + NT 38.64

compress 95.36

compress + NT 88.48

bzip 2 54.8

bzip 2 + NT 94.84

4.3 Compression Performance of Transform Module

We show the compression performance (in terms of BPC)
of the transform, given in figure 2. In our implementation
the original stop-word dictionaries and transformed stop-
word dictionaries are shared by both transform encoder and
by transform decoder. These dictionaries are generated
independently. The dictionaries contain 664 entries of stop-
word and 664 entries of transform stop-words. The size of
dictionaries is nearly 5KB. The figure 2 illustrates the
comparison of average compression performance for our test
corpus. The results are very clear:

• In our test corpus, facilitated with Transform
Module, bzip2, gzip and compress achieves an
average improvement in compression ratio of
29.28% over bzip2, 28.71% over gzip, and 19.74%
over compress.

• The compression performance of bzip2 powered
by Transform Module is superior to the original
bzip2.

Figure 2: Compression Performance with/without Transform

4.12

6.22

3.84

5.78

7.75

5.43

0 2 4 6 8 10

gzip + NT

compress + NT

bzip2 + NT

gzip

compress

bzip2

BPC

5. CONCLUSIONS

In this paper, we proposed a new method for transforming
the natural language text into an intermediate form which is
well suited to backend compressors. We showed that the
transform for stop-words are helpful for compression of
natural language text documents. The percentage of stop-
words is very large as compared to the vocabulary in the
natural language text documents. The overhead of storing
the stop-word dictionaries are very minimal and can be
tolerated. The proposed scheme is helpful for better
compression of natural language text documents. Initial
experimental results show that the facilitated with Transform
Module, bzip2, gzip and compress achieves an average
improvement in compression ratio of 29.28% over bzip2,
28.71% over gzip, and 19.74% over compress.

REFERENCES

[1] A. M. Moffat. Word Based Text Compression. Software
Practice and Experience, 19(2): 185-198, February 1989.

24 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

[2] A. Moffat and R. Wan. RE-Store: A System for
Compressing, Browsing and Searching Large
Documents. In Proc. 8th Intl. Symp. On String Processing
and Information Retrieval (SPIRE’01), pages 162-174.
IEEE CS Press.

[3] A. Moffat. Implementing the PPM Data Compression
Scheme. IEEE Transactions on Communications, 38(11):
1917-1921, 1990.

[4] D. A. Huffman. A Method for the Construction of
Minimum Redundancy Codes. Proc. of IRE, 40: 1098-
1101, 1951.

[5] D. C. van Leijenhorst and Th. P. van der Weide. A Formal
Derivation of Heap’s Law. Journal of Information
Science-Informatics and Computer Science. Vol. 170:2-
4, pages 263-272, 2005.

[6] D. S. Hirschberg and D. A. Lelewer. Efficient Decoding
of Prefix Codes. Commun. ACM 33, 4 (Apr. 1990), 449-
459.

[7] E. S. Moura, G. Navarro and N. Ziviani. Indexing
Compressed Text. In Proceedings of the 4th South
American Workshop on String Processing, 95-111, 1997.

[8] E. S. Moura, G. Navarro and N. Ziviani. Indexing
Compressed Text. In Proc of the 4th South American
workshop on String Processing. R. Baeza-Yates, Ed.
Carleton University Press International Informatics
Series, Vol. 8. Carleton University Press, Ottawa, Canada,
95-111.

[9] E. S. Schwartz and B. Kallick. Generating a Canonical
Prefix Encoding. Commu. of the ACM 7, 166-169, 1964.

[10] F. S. Awan and A. Mukherjee. LIPT: A Lossless Text
Transform to Improve Compression. In Proceedings of
International Conference on Information and Theory:
Coding and Computing, Las Vegas, Nevada, 2001, IEEE
Computer Society.

[11] G. Navarro, E. Moura, M. Neubert, N. Ziviani and R.
Baeza-Yates. Adding Compression to Block Addressing
Inverted Indexes. Information Retrieval, 3(1): 49-77, 2000.

[12] H. S. Heaps. Information Retrieval: Computational and
Theoretical Aspects, 206-208, 1978.

[13] I. H. Witten, A. Moffat and J. G. Cleary. Arithmetic
Coding for Data Compression. Communications of the
ACM, 30(6): 520-541, 1987.

[14] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes.
Morgan Kaufmann Publishers, Inc., second edition,
1999.

[15] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A Locally
Adaptive Data Compression Scheme. Communications
of the ACM, 29: 320–330, 1986.

[16] J. Clearly and I. Witten. Data Compression using
Adaptive Coding and Partial String Matching. IEEE
Transactions on Communications, COM-32(4): 396–
402, April 1984.

[17] J. Dvorský, J. Pokorný, and V. Snásel. Word Based
Compression Methods and Indexing for Text Retrieval
Systems. In ADBIS’99, LNCS 1691, 75–84. Springer,
1999.

[18] J. Heaps. Information Retrieval-Computational and
Theoretical Aspects. Academic Press, Inc., New York,
NY, 1978.

[19] J. L. Bentley and R. Sedgewick. Fast Algorithms for
Sorting and Searching Strings. In Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, January 1997.

[20] J. Rissannen and G. G. Langdon. Arithmetic Coding. IBM
Journal of Research and Development, 2 3: 149-162,
1979.

[21] J. Seward. Bzip2 Program and Documentation, 1999.
http://sourceware.cygnus.com/bzip2/

[22] J. Ziv and A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory. Vol. IT-23, No. 3, May 1977, pp.
337–343.

[23] J. Ziv and A. Lempel. Compression of Individual
Sequences Via Variable Rate Coding. IEEE Transactions
on Information Theory. Vol. IT-24, No. 5, September
1978, pp. 530–535.

[24] J. Zobel and A. Moffat. Adding Compression to a Full-
Text Retrieval System. Softw. Pract. Exper. 25, 8 (Aug.
1995), 891-903.

[25] K. Sadakane. Unifying Text Search and Compresion:
Suffix Sorting, Block Sorting and Suffix Array. PhD.
Thesis, The university of Tokyo, December 1999.

[26] L. Robert and R. Nadarajan. New Algorithm for Random
Access Text Compression. In Proc. 3rd Intl. conf. on
Information technology: New Generation (ITNG’06).
IEEE Computer Society. 2006.

[27] M. Burrows and D. Wheeler. A Block-Sorting Lossless
Data Compression Algorithm. Technical Report, SRC
Research Report 124, Digital Systems Research Center,
Palo Alto, CA, 1994.

[28] M. D. Araujo, G. Navaaro and N. Ziviani. Large Text
Searching Allowing Errors. In Proceedings of the 4th
South American workshop on String Processing. R.
Baeza-Yates, Ed. Carleton University Press International
Informatics Series, Vol. 8. Carleton University Press,
Ottawa, Canada, 2-20.

[29] Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates,
R. (2000). Fast and Exible Word Searching on
Compressed Text. ACM Transactions on Information
Systems, 18(2): 113–139.

[30] N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates.
Compression: A Key for Next-Generation Text Retrieval
Systems. IEEE Computer, 33(11): 37–44, November
2000.

Evolutionary Approach for Compressing Textual Documents 25

[31] Philip Gage, “Random Access Data Compression”, The
C/C++ Users Journal, Sep. 1997.

[32] R. Franceschini and A. Mukherjee. Data Compression
using Encrypted Text. In Proceedings of the third Forum
on Research and Technology, Advances on Digital
Libraries, Pages 130-138. ADL, 1996.

[33] R. Horspool and G. Cormack. Constructing Word-
based Text Compression Algorithms. In Proc. 2nd
IEEE Data Compression Conference (DCC’92), pages
62-71.

[34] R. Yugo Kartono Isal and Alistair Moffat and Alwin C.
H. Ngai. Enhanced Word-Based Block-Sorting Text
Compression. Twenty-Fifth Australasian Computer
Science Conference (ACSC2002). Melbourne, Australia,
2002.

[35] Ricardo A. Baeza-Yates and Gonzalo Navarro. Block
Addressing Indices for Approximate Text Retrieval.
Journal of the American Society of Information Science,
51(1): 69-82, 2000.

[36] S. Grabowski. Text Preprocessing for Burrows-Wheeler
Block Sorting Compression. VII Konferencja “Sieci i
Systemy Informatyczne–teoria, projekty, wdroenia”
�ód, padziernik 1999.

[37] Shkarin, D. (2002). PPM: One Step to Practicality. In
Proc. 12th IEEE Data Compression Conference (DCC
2002), p. 202–211.

[38] T. A. Welch. A Technique for High Performance Data
Compression. IEEE Computing 17(6): 8-19, 1984.

[39] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for Text
Compression. ACM Computing Surveys, 21(4): 557–589,
1989.

[40] T. C. Bell, J . G. Cleary and I. H. Witten. Text
Compression. Prentice Hall Inc., Upper Saddle, river, NJ,
1990.

[41] W. Sun, N. Zhang and A. Mukherjee. Dictionary Based
Fast Transform for Text Compression. In Proc. Intl Conf.
on IT: Computers and Communications. (ITCC’03).
IEEE Computer Society, 2003.

26 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

Appendix A
List of StopWords

a besides everyone i miss past still undoing won’t

able best everything i’d more per sub unfortunately would

about better everywhere ie moreover perhaps such unless wouldn’t

above between ex if most placed sup unlike x

abroad beyond exactly ignored mostly please sure unlikely y

according both example i’ll mr plus t until yes

accordingly brief except i’m mrs possible take unto yet

across but f immediate much presumably taken up you

actually by fairly in must probably taking upon you’d

adj c far inasmuch mustn’t provided tell upwards you’ll

after came can farther inc my provides tends us your

afterwards cannot few inc. myself q th use you’re

again cant fewer indeed n que than used yours

against can’t fifth indicate name quite thank useful yourself

ago caption first indicated namely qv thanks uses yourselves

ahead cause five indicates nd r thanx using you’ve

ain’t causes followed inner near rather that usually z

all certain following inside nearly rd that’ll v zero

allow certainly follows insofar necessary re thats value

allows changes for instead need really that’s various

almost clearly forever into needn’t reasonably that’ve versus

alone c’mon former inward needs recent the very

along co formerly is neither recently their via

alongside co. forth isn’t never regarding theirs viz

already com forward it neverf regardless them vs

also come found it’d neverless regards themselves w

although comes four it’ll nevertheless relatively then want

always concerning from its new respectively thence wants

am consequently further it’s next right there was

amid consider furthermore itself nine round thereafter wasn’t

amidst considering g i’ve ninety s thereby way

among contain get j no said there’d we

amongst containing gets just nobody same therefore we’d

an contains getting k non saw therein welcome

and corresponding given keep none say there’ll well

another could gives keeps nonetheless saying there’re we’ll

any couldn’t go kept noon says theres went

anybody course goes know no-one second there’s were

anyhow c’s going known nor secondly thereupon we’re

anyone currently gone knows normally see there’ve weren’t

anything d got l not seeing these we’ve

anyway dare gotten last nothing seem they what

anyways daren’t greetings lately notwithstanding seemed they’d whatever

anywhere definitely h later novel seeming they’ll what’ll

apart described had latter now seems they’re what’s

Evolutionary Approach for Compressing Textual Documents 27

appear despite hadn’t latterly nowhere seen they’ve what’ve

appreciate did half least o self thing when

appropriate didn’t happens less obviously selves things whence

are different hardly lest of sensible think whenever

aren’t directly has let off sent third where

around do hasn’t let’s often serious thirty whereafter

as does have like oh seriously this whereas

a’s doesn’t haven’t liked ok seven thorough whereby

aside doing having likely okay several thoroughly wherein

ask done he likewise old shall those where’s

asking don’t he’d little on shan’t though whereupon

associated down he’ll look once she three wherever

at downwards hello looking one she’d through whether

available during help looks ones she’ll throughout which

away e hence low one’s she’s thru whichever

awfully each her lower only should thus while

b edu here ltd onto shouldn’t till whilst

back eg hereafter m opposite since to whither

backward eight hereby made or six together who

backwards eighty herein mainly other so too who’d

be either here’s make others some took whoever

became else hereupon makes otherwise somebody toward whole

because elsewhere hers many ought someday towards who’ll

become end herself may oughtn’t somehow tried whom

becomes ending he’s maybe our someone tries whomever

becoming enough hi mayn’t ours something truly who’s

been entirely him me ourselves sometime try whose

before especially himself mean out sometimes trying why

beforehand et his meantime outside somewhat t’s will

begin etc hither meanwhile over somewhere twice willing

behind even hopefully merely overall soon two wish

being ever how might own sorry u with

believe evermore howbeit mightn’t p specified un within

below every however mine particular specify under without

beside everybody hundred minus particularly specifying underneath wonder

