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Partioned spline estimators for growth curve

estimation in wildlife studies∗
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Abstract

Nonparametric regression estimators are often employed to estimate growth curves.

However, more than one smoothing parameter may be required to estimate growth

curves for some species, particularly those with distinct life-stages. This can be prob-

lematic, especially if confidence intervals about the mean function are also required.

Here a straightforward method, based on the spline estimator, is proposed. First,

the natural history of the species in question is used to determine a finite number of

possible partitions of the growth curve. If needed the partitions are then adjusted

so that they overlap. Next, a spline estimator is fit to each partition. Finally the

individual estimators of the growth curve in each partition are blended together to

form one coherent curve.

The resulting estimator remains a linear function of the data and converges to

the true function at the same rate as the optimal single parameter spline estimator.

Further, mild conditions on how the partitions have been selected, and on the blend-

ing step are given, which ensure that the associated fiducial confidence intervals are

asymptotically valid. Finally, data driven methods for making all of the required

decisions are given.
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1 Introduction. The usefulness of spline estimators of the mean function in growth

curve studies is well documented. See for example Gasser, Muller, Köhler, Molinari, and

Prader [9], Muller [12], Aggery [2], Przybylski and Garcia-Berthou [15], Schillaci and Stall-

mann [17], and Brown, Eggermont, LaRiccia, and Roth [5]. In growth studies the dependent

variable, Y equals some measure of the size of an individual, and the independent random

variable, X equals the age of the individual. The variables are assumed to be related by

the typical regression model

Y = f0(X) + ε, (1.1)

where f0(·) is an unknown smooth function and ε is an independent error term. As in all

regression problems the goal is to estimate f0 based on a sample of n observations,

(X1, Y1), . . . , (Xn, Yn).

Also, the associated confidence intervals for the f0(Xi)’s are desired.

From (1.1) it will be assumed that

Yi = f0(Xi) + εi, (1.2)

with

ε1, · · · εn, i.i.d. (1.3)

E[ε1] = 0, E[ε2
1] = σ2 and E[ε4

1] < ∞. (1.4)

Conditions on the design, X1, · · · , Xn, and f0 are given below.

For a given value of λ > 0, the mth order spline estimator, fλ, is defined as the unique

solution to the problem

min
s.t. f∈ W m,2

n−1

n∑
i=1

(Yi − f(Xi))
2 + λ2m

∫

A

|fm(x)|2 dx, (1.5)

where fm denotes the mth derivative of f , and

Wm,2 =
{
f : f i is absolutely continuous for i = 0, 1, · · · ,m− 1 (1.6)

and

∫
(fm(x))2dx < ∞

}

with problem (1.5) in mind, we assume

f0 ∈ Wm,2 (1.7)
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As illustrated in the following example, in many studies involving wildlife the sampling

scheme, as well as the nature of f0, is such that the problem is multi-scaled. By multi-scaled

problems we mean those regression problems for which a single smoothing parameter, λ, is

not sufficient.

Example: The Wood Thrush (Hylocichla mustelina) is a Neotropical migrant that

breeds in Delaware, USA. Growth data were collected incidentally from 1975 through 2002,

inclusive, at the University of Delaware, USA Woods (UDW), an isolated forest fragment

of approximately 16 ha located on the University Experimental farm in Newark, Delaware,

USA. As part of a larger reproductive study (Brown and Roth [3, 4]), all known nestlings

were uniquely color-banded and measured approximately seven to ten days after hatching.

Season-long mist-netting efforts over the course of the study (Roth, Johnson, and Under-

wood [16]) provided repeat measurement data for many birds, including birds captured

as fledglings and independent, hatching-year birds. At each capture, mass was measured

to the nearest 0.5 g using a 50g or 100g Pesola spring balance. This resulted in 1,314

observations from 933 individuals (see Brown and Roth [4] for further details). In addi-

tion to these data, first reported in Brown and Roth [4], 330 additional observations are

included here from nestlings aged 1 to 13 days after hatching. These data were collected

from 1975 to 1978, inclusive. As most measurements after the initial banding of individuals

as nestlings were collected incidentally over the course of the study, the data set is of the

mixed (longitudinal and cross-sectional) type.

Figure 1 gives the distribution of ages (days after hatching), i.e. Xi, for all nestlings

in this data set. Note they range from 1 to 92. Further, such a distribution of ages is

somewhat typical of avian growth studies, with the bulk of the data being collected while

individuals are accessible as nestlings and observations falling off dramatically after the

birds are capable of flight.

Figure 2a gives the scatter plot of the data along with the cubic spline estimator,

with λ selected by generalized cross validation (GCV ) for the original 1314 observations.

For clarity, Figure 2b gives the scatter plot of (Xi,
−
Y i), the spline estimator, and the

corresponding individual 95% confidence intervals.

Remark. Throughout the paper we are using fiducial asymptotic confidence intervals.

That is, for a given value of x the confidence interval is given by

fλ(x)± zα
2

√
V̂ ar(fλ(x)), (1.8)
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Figure 1: Histogram of the ages of the Wood Thrushes included in the study. The x-axis

is age measured in days, and the y-axis is frequency.
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Figure 2: Part a is a scatter plot of the original Wood Thrush data, along with the spline

estimator with λ selected by GCV. Part b is a scatter plot of (Xi, Ȳi), along with the spline

estimator and the individual 95% confidence intervals. The x-axis is age measured in days,

and the y-axis is mass in grams.
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where V̂ ar(fλ(x)) is an estimate of V ar(fλ(x)) the asymptotic variance of fλ(x). Also

we do not require deterministic design points, Xi. The proposed confidence intervals are

conditional on the design. (For the specifics see Section 3.)

The smoothing spline estimator seemed to provide an excellent estimate of the mean

model for the original Wood Thrush growth data. Two biologically important aspects of

the estimator are the following. First, the predicted decrease in juvenile mass immediately

after independence (i.e., 27-34 days after hatching). Secondly, the estimated value of adult

mass, its stability over the adult ages, and the age at which adult mass was achieved are

all as expected. See Brown, Eggermont, LaRiccia, and Roth [5] for more details.
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Figure 3: A scatter plot of (X, Ȳi) for the complete data Wood Thrush data set, along with

the spline estimator with λ selected by GCV and the associated 95% confidence intervals.

The x-axis is age in days and the y-axis is mass in grams.

Figure 3 gives the cubic spline estimator, with λ again selected by GCV, for the complete

data set. While the main shape of the estimator has been kept, clearly for X > 20 the

spline estimator is now under smoothed, and is not realistic. Note that the cause of the

problem is a classical example of the problem discussed in Nychka [13], is two-fold, and

likely to occur in many wildlife studies. First because of the ease of collection there is an

inordinate amount of data collected on young birds, where the growth rate is the largest.

This dictates that the GCV selected value of λ for the entire data set be quite small. On the
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other hand for mature birds, for which f ′0(x) ≈ 0, there are only a relatively small number

of observations. These last two facts imply that for this section of the graph a larger value

of λ would be better. A simple-minded fix would be to just increase the value of λ until

the curve looks somewhat smooth. From a practical point of view the main problem with

this approach is that now the bias of the estimator is larger than its variance, and hence

the asymptotic confidence intervals are no longer valid. (See the discussion of confidence

intervals, especially in Eubank [8, page 268] and Eggermont and LaRiccia [7, Chapter 23]).

In the literature there are at least three ways in which multi-scaled problems have been

handled. The first approach, discussed in Abramovich and Steinberg [1], is to keep a single

smoothing parameter but modify the penalty function to take into account the distribution

of the Xi’s, call it h(x), and fm
0 , the mth derivative of the true mean function. Specifically,

the original spline minimization problem, (1.2), is replaced by a problem of the form

min n−1

n∑
i=1

(Yi − f(Xi))
2 + λ2m

∫

A

φ(ĥ(x), f̂0

m
(x)) |fm(x)|2 dx, (1.9)

where φ is a non-increasing function, and ĥ and f̂0

m
are estimators of h and fm

0 . A similar

approach was proposed by Pintone, Speckman, and Holmes [14]. Our problem with this

approach is that in preliminary studies the resulting estimator seemed to be much more

sensitive to the selection of φ, than to the data or f0. A second approach is to have an

individual λ for each value of X, or at least each Xi, see Cummins, Filloon and Nychka [6].

However, for most growth model problems f0 is quite smooth. Thus this approach seems

to be overkill.

The third general approach, and the one taken here, is to first split the X domain into

a collection of subsets and then to determine the estimator individually on each subset and

finally to smoothly ”blend” these individual estimators together. For a general discussion

of partitioning the X space in nonparametric regression see Györfi, Kohler, Krzyzak, and

Walk [10]. The main problem associated with this approach is in determining both the

number and then the actual subsets required in a data driven fashion. Also, the question of

how to ”blend” the individual estimates together must be addressed. However as discussed

in Section 2, for many wildlife studies the biology of the animal being studied dictates a

relatively small number of possible partitions which should be considered. Further, bio-

logical theory also presents an argument for a simple method for selecting the number of

partitions to be used. Finally, note that for the proposed estimator the subsets are not
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disjoint. The overlap in the subsets is then used to ”blend” the estimators together in a

fashion which makes asymptotic confidence intervals of the mean function possible.

2 The proposed estimator. In this section we develop the proposed estimator for

fitting growth data in cases where the sampling is similar to that observed in the above

example. The basic form of the proposed estimator is quite simple. Let A denote the

domain of X. For an integer k define the subsets (ai, bi) for i = 1, . . . , k such that

A =
k⋃

i=1

(ai, bi).

Now for each i let f̂λi,i denote the cubic spline estimator, with λ selected by either Gener-

alized Cross Validation (GCV), Generalized Maximum Likelihood (GML), or Mallows Cp,

based only on those data points for which Xj ∈ (ai, bi), and define

f̂i(x) = f̂λi,i(x) for x ∈ (ai, bi)

= 0 otherwise.

Finally for i = 1, . . . , k let δi(x) be a non-negative weight function with

k∑
i=1

δi(x) = 1

for all values of x. Then for given values of k, (ai, bi), and δi(x) the estimator is defined by

f̂(x) =
k∑

i=1

δi(x)f̂i(x). (2.1)

Clearly the problem is to determine a data driven method for selecting the values of k,

(ai, bi), and δi(x), for which f̂ converges at the proper rate, and, as is typical of fiducial

confidence intervals for splines, away from the boundaries, i.e.,

X ∈
(

λ1 ln

(
1

λ1

)
, 1− λk ln

(
1

λk

))

the confidence intervals are asymptotically valid.

One of the main keys to the approach taken here is that the biology (science) of the

animal (system) being studied typically provides one with a small number of natural over-

lapping partitions of A, which can be used to determine the sets (ai, bi). As an example
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Table 1: The four developmental periods of juvenile Wood Thrushes, represented in days

since hatching. The upper age range (92 days) of adult-sized, HY birds is arbitrary and

indicates the oldest known nestling caught during the breeding season.

Developmental period Beginning End Ending age range

Nestling 1 13 12–15

Fledgling 13 30 27–34

Independence 30 41 37–44

Adult-sized HY 41 92 —–

for Wood Thrushes, the first year of their life can be broken up into the four periods;

nestlings, fledglings, independent fledglings, and adult-sized birds (see Table 1). Note that

the age range of each development period was a conservative estimate of the age (days

after hatching) that the life stage begins and ends (Brown and Roth [4]). For example,

under normal circumstances nestlings fledge at 12-15 days old, but commonly fledge at 13

days of age. Based on these four developmental periods, only eight cases with a varying

number of partitions need to be considered for modeling growth (Table 2). These range

from case 1, with the entire range of growth data considered as one partition, to case 8,

with four temporally overlapping partitions (nestlings, fledglings, independent fledglings,

and HY birds). The other cases contain all possible combinations of developmental periods

that include the entire age range of the data (Table 2).

Given the appropriate boundary points of the partition the question of how to connect

the different estimators needs to be addressed. Remember that for i = 2, . . . , k

ai < bi−1.

Now for the non-overlapping parts of A, the estimator is defined in terms of a single f̂i.

That is for x ∈ (a1, a2) we take

f̂(x) = f̂1(x), (2.2a)

for i = 2, . . . , k − 1 and x ∈ (bi−1, ai+1)

f̂ (x) = f̂i(x), (2.2b)
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Table 2: The eight possible cases to be considered in modeling partitioned growth data

based on developmental periods of the Wood Thrush (see Table 1). The number of parti-

tions in each cases is indicated by k, ai represents the beginning of each partition, and bi

represents when each partition ends, in days since hatching.

Case k (ai , bi )

1 1 (1,92)

2 2 (1,15), (12,92)

3 2 (1,34), (27,92)

4 2 (1,44), (37,92)

5 3 (1,15), (12,44), (37,92)

6 3 (1,15), (12,34), (27,92)

7 3 (1,34), (27,41), (37,92)

8 4 (1,15), (12,34), (27,44), (37,92)

and for x ∈ (bk−1, bk)

f̂(x) = f̂k(x). (2.2c)

On the intervals (ai, bi−1) the estimator is taken to be nothing more than a weighted

average of f̂i and f̂i−1, with the weights being a function of how far one is away from

the corresponding boundary. Specifically let wi(x) be a non-increasing function with 0 ≤
wi(x) ≤ 1, then for all x ∈ (ai, bi−1)

f̂(x) = wi(x)f̂i−1(x) + (1− wi(x))f̂i(x). (2.2d)

3 Asymptotic Distribution. In this section the asymptotic distribution of
∧
f (x), for

a fixed partition is determined. Also without loss of generality, we shall assume A = (0, 1).

The estimator as defined by (2.2) is nothing more than a linear function of k separate spline

estimators. Thus as long as the ai, bi, and wi ’s are selected so that the overall estimator, f̂ ,

does not depend on the individual f̂i near their boundaries, asymptotic confidence intervals

are easily determined. Further since for all n only a small number of possible subsets are

being considered, the following simple restrictions on the ai, bi, and wi are adequate for the
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asymptotic confidence intervals to be valid.

The specific assumptions required are the following: For i = 1, . . . , k let ni denote the

number of observation for which Xj ∈ [ai, bi]. Then we assume that for all i = 1, . . . , k

ni →∞ and
ni

max(n1, · · · , nk)
→ rj > 0. (3.1)

Next define δ1 > 0 and δ2 > 0. Now for all values of i let ai, bi, and wi be selected so that

wi(x) is continuous on [ai, bi] (3.2)

|ai − bi−1| > δ1, (3.3)

and

for all x ∈ (ai, ai + δ2), wi(x) = 0 (3.4)

are satisfied.

Now with respect to the design we assume

X1, X2, . . . are i.i.d., (3.5)

having a probability density, w, with respect to Lebesgue measure on (0,1), and that, for

positive constants w1 and w2

w1 ≤ w(x) ≤ w2 for all x ∈ (0, 1). (3.6)

Finally, with respect to the λi ≡ λn,i selected for each partition we assume that there

exists a deterministic sequence γn,i for which

λn,i

γn,i

− 1 = op((log n)−1) and γn,i ≈ n−1/(2m+1), (3.7)

for n = 1, . . . , k. Remember the goal is to develop confidence intervals conditioned on the

design. Thus let Xn = (X1, · · · , Xn)T , γn = (γn1, · · · , γnk)
T , and λn = (λn1, · · · , λnk)

T .

Also define

γmax = max{γ1, · · · , γk} and nmin = min{n1, · · · , nk}.
Now for a fixed smoothing parameter,γn, denote the conditional variance of the estimator

by

V ar(f̂(x)|Xn, γn),
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and let

sd(f̂(x)) = (Var(f̂(x)|Xn, γn)γn=λn)1/2.

Finally for each x define the pivot variable

PV (x) =
f̂(x)− f0(x)

sd(f̂(x))
, (3.8)

upon which the confidence interval is based. We then have the following theorem.

Theorem 3.1. Assume (1.1) through (1.4), and (3.1) through (3.7). Then for

x ∈
(

γn1 ln

(
1

γn1

)
, 1− γnk ln

(
1

γnk

))

there exists a sequence of zero mean Gaussian processes, Zn(x), with V ar(Zn(x)) = 1 so

that

PV (x) = Zn(x) + nn,λn(x),

with

||nn,λn(x)|| = Op((nminγmin)
−1/2γ−1/2

max log nmin + n
−1/4
min γ−1/2

max )

Proof. For any partition, say [ai, bi]. Let

Di(x, λi) = f̂i(x)− E[f̂i(x)|Xn]

Now Theorem 23.2.3 of Eggermont and LaRiccia [7] gives that under the assumptions there

exists a sequence of zero mean Gaussian processes, say Gn,γi
, with the same covariance

kernel as f̂i(x) so that

Di(x, λi) = Gn,γi
(x) + ni,λi

(x),

with

||nn,λi
||∞ = Op((niγ

3/2
i )−1 log ni + n

−3/4
i γ−1

i )

Now define

D(x, λn) = f̂(x)− E[f̂(x)|Xn].

Since for all x, D is just a linear combination of 2 of the Di’s, there exists another sequence

of zero mean Gaussian process, say Gγn , so that

D(x, λn) = Gγn(x) + ξλn(x),
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with

||ξλn||∞ = Op((nminγ
3/2
max)

−1 log nmin + n
−3/4
min γ−1

max),

Thus

PV (x) =
Gγn(x)

sd(f̂(x))
+

ξλn(x)

sd(f̂(x))
+

E[f̂(x)|xn]− f0(x)

sd( ˆf(x))

Clearly

|| ξλn(x)

sd(f̂(x))
||∞ = O((nm,nγmax)

−1/2γ−1/2
max log nmin + n

−1/4
min γ−1/2

max ),

and we are done if the bias to standard deviation ratio term can be ignored. Now it is well

know that under the above conditions (see, for example. Corollary 22.8.14 of Eggermont

and LaRiccia [7]) that for of the individual spline estimators there exists a k so that

sup
x∈Bi(k)

|E[f̂i(x)|Xn]− fo(x)| = O(λ2m
i + λ

−1/2
i (niλi)

−1 log(ni))

and

V ar(fi|Xn, γ)|γ=λi
= (niγi)

−1,

where

Bi(k) = {x|x ∈ (ai + kλi log(
1

λi

), bi − kλi log(
1

λi

)}

Now since γi = Op(n
−1/(2m+1)
i ), for x ∈ Bi(k)

|E[f̂i(x)|Xn]− f0|
sd(f̂i(x))

→ 0.

Finally, (3.4) establishes that f̂(x) does not depend upon fi(x) for x /∈ Bi(k), and we are

done.

The final ingredient required to be able to determine confidence intervals, is an estimate

of V ar(f̂(x)|Xn).

At the design points this is simple. For each segment let Hi(λi) denote the hat matrix

associated with the spline estimator on the interval [ai, bi]. Then letting

Ŷ = (f̂(x1), · · · , f̂(xn))T ,

Ŷ = RjY,

where Rj is the n× n block diagonal matrix made up of weighted averages of the Hi(λi)’s.

Thus V ar(Ŷ |Xn) = σ2RjR
T
j .
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This conditional covariance matrix can then be estimated by

V̂ (Ŷ |Xn) = s2(RjR
T
j ),

with s2 any of the consistent nonparametric estimators of σ2. Putting all the above together

we get the asymptotically valid individual confidence interval at Xi,

Ŷi ± zx/2s
√

(RjRT
j )ii

4 Selecting the case. The final step in defining the estimator is to decide between

the different cases. We consider three possible selection criteria, each of which, in a given

application, might be the preferred approach. To keep notation to a minimum let

fi for i = 1, . . . ,M

denote the estimators associated with the M different cases, and denote the true mean

function by f0. Before developing the procedures we first discuss why different procedures

are considered. Typically in the regression setting one wants to have a procedure which

minimizes some guess at

SE(j)=
1

n

n∑
i=1

(fj(Xi)− f0(Xi))
2. (4.1)

However, since SE(j) →p

∫
A

w(x)(fj(x) − f0(x))2dx, for experiments with a sampling

scheme like the above example, such a procedure will lead to a solution which basically

ignores what happens for X > 10. Since in this example one is equally interested in the

adequacy of the estimator over the entire range of X, it is probably more useful to try and

minimize a weighted squared error

WSE(j) =
1

n

n∑
i=1

vi(fj(Xi)− f0(Xi))
2, (4.2)

where the weights, vi, are selected so that

WSE(j) →p

∫

A

(fj(x)− f(x))2dx.
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One often cited complaint with selecting estimators to minimize guesses at (4.1) or (4.2)

is that they under smooth. (see the example in Section 5.) Here remember that for

each segment λi was selected by GCV, and hence to minimize an approximation to (4.1).

Further, the biologists believe that while f0 may not be monotone, it should be relatively

smooth. Hence, it seems reasonable to select that case which minimizes

Wiggle(j) = the number of sign changes in f 1
j . (4.3)

Now on to the guesses for (4.1) through (4.3). Since the estimator is a linear function

of Y, with, more or less, the same structure as the usual spline estimator, one can easily

develop a GCV (actually a zero trace, Li [11]) like procedure for either (4.1) or (4.2). To

see what is involved let us develop the zero trace procedure for (4.2). To start this off we

consider a Mallows type correction to the most naive approximation to WSE(j). Namely

‖W (I −Rj)Y ‖2 , where W = diag(υ1, . . . , υn), and

(fj(X1) · · · fj(Xn))T = RjY.

For this note that

WSE(j) = ‖W (Y0 −RjY ‖2 ,

and hence

E[WSE(j)] = ‖W (I −Rj)Y0‖2 + σ2trace(RT
j W 2Rj).

However

E[‖W (I −Rj)Y ‖2] =

‖W (I −Rj)Y0‖2 + σ2trace((I −RT
j )W 2(I −Rj))

= ‖W (I −Rj)Y0‖2 + σ2{trace(RT
j W 2Rj)

+trace(W 2)− 2 trace(RjW
2).

Thus if σ2 were known the Mallows type procedure would minimize

‖W (I −Rj)Y ‖2 + 2σ2trace(RjW
2)− σ2 trace(W 2). (4.4)

Note that since trace(W 2) does not depend upon j it may be dropped. Next to get the

zero trace type approximation to WSE(j) we replace Rj in (4.4) by αI + (1 − α)Rj for

arbitrary α ∈ [0, 1]. This gives the Mallows(α) criteria

(1− α)2 ‖W (I −Rj)Y ‖2 + 2σ2(trace
{
(I − (1− α)(I −Rj))W

2
}− σ2 trace(W 2)
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which may be re-written as

(1− α)2 ‖W (I −Rj)Y ‖2 + 2σ2
{
trace(W 2)− (1− α)trace[(I −Rj)W

2]
}

,

where the term σ2 trace(W 2) has been dropped. For the zero trace procedure the goal is

to find that value of α for which

trace(W 2)− (1− α)trace[(I −Rj)W
2] = 0.

Clearly this is given by

(1− α) =
trace(W 2)

trace[(I −Rj)W 2]
.

Using this value of α in Mallows(α) then gives the zero trace type procedure:

Select that value of j which solves the problem

min
[trace(W 2)]2 ‖W (I −Rj)Y ‖2

(trace[(I −Rj)W 2])2
. (4.5)

We shall denote the solution by j(WGCV ), since problem (4.5) is reminiscent of the GCV

problem.

With regard to approximating WSE(j) the same sort of argument leads to the following

procedure. Select that value of j which solves

min
‖(I −Rj)Y ‖2

(trace[(I −Rj)])2
. (4.6)

For this case the similarity to the GCV problem is obvious, and hence we shall denote

the solution by j(GCV ). Finally as the proxy for Wiggle(j) we take

Wig(j) =
n−1∑
i=2

{1− I[fj(Xi) = median(fj(Xi−1), fj(Xi), fj(Xi+1))]} , (4.7)

where I{a = b} = 1, if a = b, and 0 otherwise.

5 The wood thrush data re-visited. In this section the estimation procedure of

Section 2 through 4 is applied to the Wood Thrush data. The first step is to make a

concrete selection for wi. Here we took a simple linear function defined on a restricted

subset of (ai, bi−1). That is let Li = ai + δ, and Ui = bi−1 − δ, and for x ∈ (Li, Ui) set

wi(x) = 2 ∗ (x− ci)

(Ui − Li)
,
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Figure 4: The blended spline estimator for cases 1 through 4. The x-axis is age in days,

and the y-axis is mass in grams.

and equal to zero otherwise. In the above ci = 0.5 ∗ (Ui + Li).

Remark. Somewhat surprisingly we found the estimator to be quite insensitive to the

specific selection of wi or δ. However if this worries you, just add other possible choices of

δ to the list of cases to be considered.

Now to the results. Figures 4 and 5 give the graphs of the estimators for the different

cases considered, while Table 4 gives the corresponding values of the different measures.

Finally Figure 6 gives the graph of the estimator for Case 2, which minimizes WIG(j).

Note that the estimate has basically the same shape as the spline estimator based only on

the original data, with an added crink in the curve at X near 13. Interestingly this is right

at the stage when a bird would be getting ready to fledge, and there is some biology to

suggest such a small drop in the growth curve might happen here. However, this hypothesis

needs further investigation and the crink might be nothing more than a statistical glitch.

To further illustrate the procedure Table 5.2 gives the values of the three selection

criteria for the Wood Thrush data when only observations with X > 6 are considered.

(This is the case where a single λ provided an excellent fit.)
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Figure 5: The blended spline estimator for cases 5 through 8. The x-axis is age in days,

and the y-axis is mass in grams.
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Figure 6: The selected blended spline estimator along with the associated 95% confidence

intervals. The x-axis is age in days, and the y-axis is mass in grams.
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Table 3:

Case WIG(j) WSE SE(j)

1 19 7.4 3.8

2 3 6.9 3.4

3 9 5.8 3.1

4 6 6.1 3.0

5 4 6.8 3.2

6 9 6.5 3.5

7 10 6.0 3.0

8 8 6.7 3.5

Table 4:

Case WSE(j) WIG(j) SE(j)

1 2.663 4 2.270

2 2.665 4 2.103

3 2.538 7 3.803

4 2.542 2 2.273

5 2.514 6 1.814

6 2.774 6 1.800

7 2.539 7 3.922

8 2.768 6 1.839

Figure 7 gives the estimator for Case 4, the minimizer of WIG(j). Note that this

estimator is more or less equivalent to the estimator for case 1, given in Figure 2.

Remark. We have considered other data sets also. In all cases minimizing either

WSE(j) or SE(j) resulted in the selection of one of the less smooth estimators. Taking

into account that the estimator based on minimizing any of the three measures, over a

finite number of sets, will converge at the optimal rate, the Wood Thrush researchers have

found that minimizing WIG(j) provides the most satisfactory solution.
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Figure 7: The Wig(j) selected blended spline estimator along with the 95% confidence

interval for the original Wood Thrush data set. The x-axis is age in days, and the y-axis

is mass in grams.
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